JP3859217B2 - Low voltage distribution system protection device in high magnetic field environment - Google Patents

Low voltage distribution system protection device in high magnetic field environment Download PDF

Info

Publication number
JP3859217B2
JP3859217B2 JP2004007774A JP2004007774A JP3859217B2 JP 3859217 B2 JP3859217 B2 JP 3859217B2 JP 2004007774 A JP2004007774 A JP 2004007774A JP 2004007774 A JP2004007774 A JP 2004007774A JP 3859217 B2 JP3859217 B2 JP 3859217B2
Authority
JP
Japan
Prior art keywords
magnetic field
high magnetic
voltage distribution
distribution system
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004007774A
Other languages
Japanese (ja)
Other versions
JP2005204400A (en
Inventor
慶直 大川
佳大 村野
義美 森戸
伸司 樫村
健一 岡田
浩樹 岡村
孝夫 三橋
崇 佐々木
実 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004007774A priority Critical patent/JP3859217B2/en
Publication of JP2005204400A publication Critical patent/JP2005204400A/en
Application granted granted Critical
Publication of JP3859217B2 publication Critical patent/JP3859217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

この発明は、高磁場環境においても正常に作動する低圧配電系統保護装置及び低圧配電系統保護機器の選定方法に関するものである。   The present invention relates to a low voltage distribution system protection device that operates normally even in a high magnetic field environment and a method for selecting a low voltage distribution system protection device.

核融合実験炉ではプラズマを閉じ込めるために強力な磁場を必要とするため、漏れ磁場が生じることとなり、周囲機器に影響を与える。この実験炉におけるクライオスタット外壁部の漏れ磁場は、2000ガウス以上に達しているが、このような場所においても測定機器等のための低圧配電線路を設ける必要がある。
一方、通常の低圧配電系統では電源から負荷までの間に、配線を保護するための保護機器と、負荷の制御と保護を行う制御保護機器が設置されている。
In the nuclear fusion experimental reactor, a strong magnetic field is required to confine the plasma, so a leakage magnetic field is generated, affecting surrounding equipment. The leakage magnetic field at the outer wall of the cryostat in this experimental furnace has reached 2000 gauss or more, but it is necessary to provide a low-voltage distribution line for measuring equipment or the like in such a place.
On the other hand, in a normal low-voltage distribution system, a protection device for protecting wiring and a control protection device for controlling and protecting the load are installed between the power source and the load.

この単純化した低圧配電系統を図3に示す。現在、わが国では配線を保護する保護機器としては配線用遮断器(MCCB:Molded Case Circuit Breaker)が一般的である。MCCBは事故時の短絡電流や過負荷電流から電線が溶断したり焼損したりすることを防ぐため過電流を自動的に検出し遮断する機能を持つ。負荷の制御には電磁接触器(MC:MagneticContactor)が一般的に用いられており、これは電磁石の励磁により接点を開閉し電路の開閉を行う装置であって、負荷の制御が目的のため、短絡電流は遮断できず、遮断可能電流は過負荷領域までである。負荷としてモータを使う場合は、過負荷によるモータの焼損を防ぐために、MCにサーマルリレー(THR:ThermalRelay)を組み合わせた電磁開閉器(MS:Magnetic Switch)を使うのが一般的である。THRはバイメタルを用いた熱動形過負荷検出リレーであり、過負荷電流が流れた場合にMCの励磁をオフして電路を開にしモータの焼損を防ぐものである。   This simplified low voltage distribution system is shown in FIG. In Japan, a circuit breaker (MCCB: Molded Case Circuit Breaker) is generally used as a protective device for protecting wiring. MCCB has a function to automatically detect and shut off overcurrent in order to prevent the wire from fusing or burning out due to a short circuit current or overload current at the time of an accident. An electromagnetic contactor (MC: Magnetic Contactor) is generally used for load control, and this is a device that opens and closes contacts by exciting magnets, and for load control purposes, The short-circuit current cannot be interrupted, and the interruptable current is up to the overload region. When a motor is used as a load, an electromagnetic switch (MS: Magnetic Switch) in which a MC is combined with a thermal relay (THR: Thermal Relay) is generally used in order to prevent burning of the motor due to overload. The THR is a thermal overload detection relay using a bimetal, and when an overload current flows, the MC excitation is turned off to open the circuit and prevent the motor from burning.

これらの低圧配電系統の保護機器や負荷の制御と保護を行う制御保護機器は、上記核融合実験炉の周囲のような2000ガウスという高磁場環境においては、動作に異常が現われ、使用に耐えないことを我々は実験により確認した。
実験によると配線用遮断器は約160ガウス以上、電磁接触器は約130ガウス以上で異常を示した。
「三菱ノーヒューズ遮断器 技術資料集」第67頁、三菱電機株式会社作成、2002年3月発行
These protection devices for low-voltage distribution systems and control / protection devices that control and protect the load are not suitable for use in a high magnetic field environment of 2000 gauss, such as around the above-mentioned fusion experimental reactor. We confirmed this by experiment.
According to the experiment, the circuit breaker for wiring was about 160 gauss or more, and the magnetic contactor was about 130 gauss or more.
"Mitsubishi No-fuse Circuit Breaker Technical Data", page 67, created by Mitsubishi Electric Corporation, published in March 2002

従って、このような、高磁場環境下で正常動作する低圧配電系統の保護機器や負荷の制御と保護を行う制御保護機器は存在しておらず、またこれに関する情報も知られていないのが現状である。また、低圧配電系統の各保護機器を磁気シールドすることも考えられるがコストの面で採用できないし、保護機器への磁気シールドのシミュレーションを行って、磁気シールドの可能性を検討してみたが、磁界を充分に下げることはできなかったため、他の手段を検討する必要に迫られた。   Therefore, there is no such protection equipment for low-voltage distribution systems that normally operate in a high magnetic field environment, nor control protection equipment that controls and protects loads. It is. In addition, it is conceivable to magnetically shield each protective device of the low voltage distribution system, but it is not possible to adopt it in terms of cost, and the possibility of magnetic shielding was examined by simulating the magnetic shield to the protective device, Since the magnetic field could not be lowered sufficiently, it was necessary to consider other means.

この発明は、これらの点に鑑みて為されたものであり、保護機器を磁気シールドしなくても、高磁場環境下においても正常動作する低圧配電系統の配線保護機器や負荷の制御と保護を行う制御保護機器を有する、簡単な保護装置及び保護方法を提供し、上記課題を解決しようとするものである。   The present invention has been made in view of these points, and can control and protect a load protection device and a load of a low-voltage distribution system that normally operates even in a high magnetic field environment without magnetic shielding of the protection device. It is an object of the present invention to provide a simple protection device and protection method having a control protection device to perform, and to solve the above-mentioned problems.

請求項の発明は、2000ガウス以上の高磁場環境における低圧配電系統保護装置において、配電線路に高磁場適用ヒューズ、高磁場適用開閉器及び高磁場適用サーマルリレーを設け、上記高磁場適用ヒューズは絶縁性の筒内に銀リボンないし単一の金属からなるエレメントを張り、周りを消弧砂で満充填した構成とし、上記高磁場適用開閉器はソリッドステートコンタクタとし、上記高磁場適用サーマルリレーはバイメタル以外の可動部に使用されている鉄部材を非磁性体とした構成としたことを特徴とする、高磁場環境における低圧配電系統保護装置である。The invention of claim 1 is a low voltage distribution system protection device in a high magnetic field environment of 2000 gauss or more, wherein the distribution line is provided with a high magnetic field application fuse, a high magnetic field application switch and a high magnetic field application thermal relay, An element made of silver ribbon or a single metal is stretched in an insulating cylinder, and the surroundings are filled with arc-extinguishing sand. The high-field application switch is a solid-state contactor, and the high-field application thermal relay is A low-voltage distribution system protection device in a high magnetic field environment, characterized in that an iron member used for a movable part other than a bimetal is a non-magnetic material.

請求項1乃至4の発明によれば、高磁場中であっても、磁気シールドをしなくても、低圧配電系統の保護が可能となった。また、この発明の保護装置又は方法では、どの向きの磁界にも、また、静磁界だけでなく変動磁界にも対応できる。   According to the first to fourth aspects of the invention, the low-voltage distribution system can be protected even in a high magnetic field or without a magnetic shield. Further, the protection device or method of the present invention can deal with a magnetic field in any direction and not only a static magnetic field but also a variable magnetic field.

低圧配電系統保護装置の各機器を、高磁場中で影響の受けないものに選定し又は改良した。   Each device of the low-voltage distribution system protection device was selected or improved so as not to be affected in a high magnetic field.

図1はこの発明の低圧配電系統保護装置の概略構成を示し、電源と負荷が1対1に対応した単純な系統とした。この発明の特徴は、電源1から負荷2にいたる配電線路3に、特に短絡電流保護機能として高磁場適用ヒューズ4、過負荷電流保護機能及び開閉機能として高磁場適用開閉器5、及び、過負荷電流検出機能として高磁場適用サーマルリレー6を設けたことである。   FIG. 1 shows a schematic configuration of a low-voltage distribution system protection device according to the present invention, which is a simple system in which a power source and a load are in a one-to-one correspondence. The present invention is characterized by a high magnetic field application fuse 4 as a short-circuit current protection function, a high magnetic field application switch 5 as an overload current protection function and a switching function, and an overload in a distribution line 3 from the power source 1 to the load 2. A high magnetic field application thermal relay 6 is provided as a current detection function.

この高磁場適用ヒューズ4の構造は、図2に示すように、セラミックス円筒41内に銀リボンからなるヒューズエレメント42をわたし、まわりを消弧用硅砂43で満充填したものであり、上記セラミックス円筒41の両端にキャップ44、44を被せ、各キャップの外側に端子45、45を設け、これらの各端子45と上記ヒューズエレメント42を電気的に接続したものである。そして過電流通電時にはヒューズエレメント42が溶融、蒸発した金属蒸気が満充填の硅砂43に衝突して通電路への拡散が阻止され、通電路が絶縁物化することで、電流遮断する。   As shown in FIG. 2, this high magnetic field applied fuse 4 has a structure in which a ceramic cylinder 41 is filled with a fuse element 42 made of a silver ribbon and the surroundings are fully filled with arc extinguishing sand 43. Caps 44 and 44 are put on both ends of 41, terminals 45 and 45 are provided on the outside of each cap, and each of these terminals 45 and the fuse element 42 are electrically connected. At the time of overcurrent energization, the fuse element 42 melts and evaporates the metal vapor collides with the fully filled cinnabar 43 and is prevented from diffusing into the energizing path, and the energizing path becomes an insulator, thereby interrupting the current.

このような消弧砂を充填し、エレメントを合金とした低圧配電系統用ヒューズは従来からあったが、低圧配電系統用では、消弧砂をそれほど充填しなくても十分にアークに対応することができ、また、従来、2000ガウスという高磁場自体も存在しなかったため、高磁場の影響を受けにくいという知見が従来なく、高磁場に用いられたことがなかった。   Conventionally, fuses for low-voltage power distribution systems filled with arc-extinguishing sand and made of elements as alloys have been used in the past. In addition, since there was no high magnetic field of 2000 gauss, the knowledge that it was hardly affected by the high magnetic field has never been used so far, and it has never been used for a high magnetic field.

本発明者は、高磁場における低圧配電系統保護装置として使用可能な機器を見出そうと、各種電気機器をスクリーニングする過程の中で、ヒューズエレメントの低圧配電系統における挙動、すなわち磁場のない通常の環境における挙動と、高磁場における挙動とが、まったく、相違していること、つまり、磁場のない低圧配電系統では、ヒューズエレメントはなんら影響を受けないのに対し、2000ガウスの高磁場では、ヒューズエレメントは、電磁力により大きく振動することに気づき、この振動を抑制する手段として、消弧砂を満充填したヒューズエレメント構成を採用した。   In order to find a device that can be used as a protective device for a low-voltage distribution system in a high magnetic field, the present inventor is in the process of screening various electrical devices, and the behavior of the fuse element in the low-voltage distribution system, that is, a normal field without a magnetic field. The behavior in the environment and the behavior in the high magnetic field are completely different, that is, in the low voltage distribution system without magnetic field, the fuse element is not affected at all, whereas in the high magnetic field of 2000 Gauss, the fuse The element noticed that it vibrates greatly due to electromagnetic force, and adopted a fuse element configuration filled with arc-extinguishing sand as means for suppressing this vibration.

また、この発明では、ヒューズエレメントを合金ではなく、銀リボンないし単一金属としたが、これは、合金エレメントヒューズの高磁場環境における特性試験を実施したところ、過負荷電流領域において、ヒューズに対する磁場の方向により溶断時間が大きく変化するという結果を得たためである。
このような合金エレメントヒューズを高磁場環境で使用する場合、ヒューズの磁場方向による溶断時間変化範囲の測定・評価が必要となり、ヒューズ選定が煩雑となる。したがって合金エレメントヒューズを高磁場環境で使用することには問題があり、過負荷電流、短絡電流のいずれに対しても速断性のある銀リボンないし単一金属を用いたエレメントのヒューズとした。
In the present invention, the fuse element is not an alloy, but a silver ribbon or a single metal. However, when a characteristic test of the alloy element fuse in a high magnetic field environment is performed, a magnetic field applied to the fuse in the overload current region is obtained. This is because the result that the fusing time varies greatly depending on the direction of the film was obtained.
When such an alloy element fuse is used in a high magnetic field environment, it is necessary to measure and evaluate the range of change in fusing time depending on the magnetic field direction of the fuse, and the fuse selection becomes complicated. Therefore, there is a problem in using the alloy element fuse in a high magnetic field environment, and a fuse of an element using a silver ribbon or a single metal which has a quick disconnection with respect to both an overload current and a short circuit current.

上記ヒューズとして、具体的には、日之出電機製作所製500GA50および500GB100を2000ガウスの高磁場中で、試験した結果、磁場中で正常動作することを確認した。消弧砂の満充填は、磁場中でエレメントが受ける電磁力による振動を消弧砂で受ける構成となることから、単に遮断時の溶断時間特性のみならず、磁場中での繰り返し通電による機械的劣化に対しても一定の効果が期待できる。これ以外のヒューズについても単一金属又は銀リボンから成るヒューズエレメントの周りを硅砂で満充填した構造を持つ低圧限流ヒューズであれば同様に作用すると考えられる。また、さらにヒューズホルダーも非磁性材料を用いる。   As the fuse, specifically, 500GA50 and 500GB100 manufactured by Hinoide Electric Manufacturing Co., Ltd. were tested in a high magnetic field of 2000 gauss. As a result, it was confirmed that they normally operated in the magnetic field. Since arc extinguishing sand is fully filled, the arc extinguishing sand receives vibrations caused by electromagnetic force applied to the element in the magnetic field. A certain effect can be expected for deterioration. Other fuses are considered to work in the same way as long as the low-voltage current-limiting fuse has a structure in which a fuse element made of a single metal or a silver ribbon is fully filled with sand. Further, the fuse holder is also made of a nonmagnetic material.

上記高磁場適用開閉器5には、ソリッドステートコンタクタ(SSC)を採用した。このソリッドステートコンタクタは、半導体として逆並列接続されたサイリスタを用いており、DC12〜24Vの制御信号でサイリスタを制御する、本来スイッチング素子であるため、異常電流を遮断して電気機器や電力系統を保護する機能の無い素子であるが、この発明では、このような単なるスイッチを、高磁場用サーマルリレーとともに使用することにより、高磁場用遮断器として使用した点に他の特徴がある。実際に2000ガウスの高磁場中でSSCの動作試験を実施した。試験に使用したSSCは三菱電機製 US−K20SSTEおよびその駆動ユニットUA−SH1である。試験項目は、開閉特性、閉状態における電流零点での無通電時間、開状態における主回路漏れ電流、主回路電流波形である。   The high magnetic field application switch 5 is a solid state contactor (SSC). This solid state contactor uses a thyristor connected in reverse parallel as a semiconductor, and controls the thyristor with a DC12-24V control signal. Although it is an element without a protecting function, the present invention has another feature in that such a simple switch is used as a high magnetic field breaker by using it together with a high magnetic field thermal relay. Actually, an SSC operation test was performed in a high magnetic field of 2000 gauss. The SSC used for the test is US-K20SSTE manufactured by Mitsubishi Electric and its drive unit UA-SH1. The test items are switching characteristics, non-energization time at the current zero point in the closed state, main circuit leakage current in the open state, and main circuit current waveform.

磁場の有無でSSCの動作に違いは見られず、磁場中でも正常動作した。磁場中でのSSCの動作確認試験は主回路電流が数アンペアと小電流で行ったが、原理的に半導体に磁場が影響するとは考えられず、磁場中でもSSCは使用可能であるといえる。
また、動作確認試験を行ったSSC(US−K20SSTE)は小容量品のためサイリスタの冷却は自然空冷であるが、大容量のSSCには通常冷却ファンが用いられている。磁場中では電磁現象を利用したファンの使用は適さないため、放熱フィンを大型化する等の対応が必要となる。さらに、圧電素子やペルチェ素子を用いて冷却することもできる。
There was no difference in the operation of the SSC with or without a magnetic field, and the operation was normal even in a magnetic field. The SSC operation confirmation test in a magnetic field was performed with a small main circuit current of several amperes. However, in principle, it is not considered that the magnetic field affects the semiconductor, and it can be said that the SSC can be used even in the magnetic field.
The SSC (US-K20SSTE) for which the operation check test has been performed is a small-capacity product, so that the thyristor is naturally cooled by air, but a cooling fan is usually used for a large-capacity SSC. Since use of a fan utilizing an electromagnetic phenomenon is not suitable in a magnetic field, it is necessary to take measures such as increasing the size of the radiation fin. Furthermore, it can also cool using a piezoelectric element and a Peltier element.

上記高磁場適用サーマルリレー6は、従来のサーマルリレー(THR)を改良した改良型THRを用いた。THRは熱動形過電流継電器であり、モータの過負荷保護に用いられる。THRでは過電流がある時間以上流れると、その発熱による温度上昇でバイメタルが湾曲し過電流を検出する。THRは原理的に電磁的な作用を用いていないために磁場中でも正常動作が期待される。しかし、THR標準品では機構部に磁性体である鉄部品を可動部として使用しており、磁場中では鉄部品が磁化し互いに吸着することで動作に支障がでる恐れがある。 そこで、THRの可動部の鉄部品に代えて、これを非磁性材料にし、改良型THRとしたのである。   As the high magnetic field application thermal relay 6, an improved THR improved from a conventional thermal relay (THR) was used. THR is a thermal overcurrent relay, and is used for motor overload protection. In THR, when the overcurrent flows for a certain period of time, the bimetal is bent due to the temperature rise due to the heat generation, and the overcurrent is detected. Since THR does not use electromagnetic action in principle, normal operation is expected even in a magnetic field. However, in the THR standard product, an iron part, which is a magnetic material, is used as a movable part in the mechanism part, and there is a risk that the iron parts are magnetized and attracted to each other in a magnetic field, thereby hindering the operation. Therefore, instead of the iron part of the movable part of the THR, this is made of a non-magnetic material to obtain an improved THR.

2000ガウスの高磁場中で正常動作を確認した改良型THRとしては、三菱電機製 TH−N20の最も磁場の影響を受け易いと考えられる可動部の部材を非磁性材料に変更しただけで、対応可能であった。一般のバイメタルには、磁性体である鉄やニッケル合金が使われていて、THRのバイメタルもそれが使われている。磁場中での使用を考えればバイメタルも非磁性体に変更すべきであるが、バイメタル材料の変更はTHRの再設計が必要であり新機種の開発となってしまう。上記TH−N20の構造上、磁性体であるバイメタルに磁場が働いても影響は少ないと考えられるため、敢えてバイメタル材料は変更しなかったが、この改良型THRが磁場中でも正常動作したことから、TH−N20はバイメタルの非磁性化をしなくても可動部の鉄部材を非磁性化することだけで高磁場中でも対応できることが明らかになった。   As an improved THR that has confirmed normal operation in a high magnetic field of 2000 gauss, it can be handled by simply changing the movable part of the TH-N20 manufactured by Mitsubishi Electric to a nonmagnetic material. It was possible. Common bimetals use magnetic iron and nickel alloys, and THR bimetals are also used. Considering use in a magnetic field, the bimetal should be changed to a non-magnetic material. However, changing the bimetal material requires redesign of the THR, resulting in the development of a new model. Due to the structure of the TH-N20, it is considered that there is little influence even if a magnetic field acts on the bimetal that is a magnetic material. Therefore, the bimetal material was not changed, but this improved THR operated normally even in the magnetic field. It has become clear that TH-N20 can cope with high magnetic fields only by demagnetizing the iron member of the movable part without demagnetizing the bimetal.

以上の機器の組み合せからなるシステムを構成し、評価試験を実施した。試験に使用した機器の組み合わせは以下の通りである。
・ 日之出電機製作所製ヒューズ500GA50A
・ 三菱電機製ソリッドステートコンタクタUS−K50SSTE
(駆動ユニットUA−SH1付)
・ 三菱電機製サーマルリレーTH−N20(改良型)
今回の組み合わせシステムにおいて、過負荷電流領域では主としてソリッドステートコンタクタにより遮断し、短絡電流領域ではヒューズにより遮断する保護分担としている。
組み合せ試験の条件は表1の通りとし、過負荷電流遮断試験および保護協調試験を実施した。
A system composed of a combination of the above devices was constructed and an evaluation test was conducted. The equipment combinations used in the test are as follows.
・ Hinoide Electric Mfg. Fuse 500GA50A
・ Mitsubishi Electric Solid State Contactor US-K50SSTE
(With drive unit UA-SH1)
・ Mitsubishi Electric thermal relay TH-N20 (improved type)
In the combined system this time, the protection is shared mainly by the solid-state contactor in the overload current region and by the fuse in the short-circuit current region.
The conditions of the combination test were as shown in Table 1, and an overload current interruption test and a protection coordination test were conducted.

Figure 0003859217
Figure 0003859217

試験の結果、いずれの条件においても、サーマルリレー、ソリッドステートコンタクタの破損が発生することなく、異常電流を正常に遮断できることが確認できた。また磁場の有無および印加方向による顕著な遮断特性変化は確認されなかった。
組合せ試験の結果から、上記組合せシステムにより2000ガウスの高磁場中での過負荷電流保護が可能である。
またヒューズ単体による2000ガウスの高磁場中での遮断試験の結果、磁場の有無および印加方向による遮断特性の顕著な差は見られなかったことから、上記組み合わせシステムによる短絡電流保護についても可能であると考えられる。
またさらに、配電系統が複雑になり、電源から負荷への配線が分岐し、一つの電源に対して複数の負荷が対応するようになっても事情は変わらない。この場合は母線上位の保護装置(ヒューズ+SSC+THR)があり、各分岐回路には下位の保護装置が必要になるが、通常の配電系統の保護装置と同様にそれぞれの保護装置間で時限保護協調を図ることは可能である。
As a result of the test, it was confirmed that the abnormal current could be normally cut off without any damage of the thermal relay and the solid state contactor under any condition. In addition, no significant change in cutoff characteristics was observed depending on the presence or absence of a magnetic field and the direction of application.
From the result of the combination test, overload current protection in a high magnetic field of 2000 gauss is possible by the above combination system.
In addition, as a result of the interruption test in a high magnetic field of 2000 gauss with a single fuse, no significant difference in the interruption characteristics depending on the presence or absence of the magnetic field and the application direction was found, so it is also possible to protect the short circuit current by the above combination system it is conceivable that.
Furthermore, the situation does not change even if the power distribution system becomes complicated, the wiring from the power source to the load branches, and a plurality of loads correspond to one power source. In this case, there is a protection device (fuse + SSC + THR) on the upper side of the bus, and each branch circuit requires a lower-order protection device. It is possible to achieve timed protection coordination.

この発明の実施の形態例の概略構成図である。It is a schematic block diagram of the embodiment of this invention. この発明の実施の形態例に使用したヒューズの断面図である。It is sectional drawing of the fuse used for the Example of this invention. 従来の低圧配電系統保護装置の概略構成図である。It is a schematic block diagram of the conventional low voltage distribution system protection apparatus.

符号の説明Explanation of symbols

1 電源
2 モータ
3 配電線路
4 高磁場適用ヒューズ
5 高磁場適用開閉器
6 高磁場適用サーマルリレー
1 Power supply
2 Motor 3 Distribution line
4 High magnetic field applicable fuse 5 High magnetic field applicable switch
6 Thermal relay with high magnetic field

Claims (1)

2000ガウス以上の高磁場環境における低圧配電系統保護装置において、配電線路に高磁場適用ヒューズ、高磁場適用開閉器及び高磁場適用サーマルリレーを設け、上記高磁場適用ヒューズは絶縁性の筒内に銀リボンないし単一の金属からなるエレメントを張り、周りを消弧砂で満充填した構成とし、上記高磁場適用開閉器はソリッドステートコンタクタとし、上記高磁場適用サーマルリレーはバイメタル以外の可動部に使用されている鉄部材を非磁性体とした構成としたことを特徴とする、高磁場環境における低圧配電系統保護装置。 In a low voltage distribution system protection device in a high magnetic field environment of 2000 gauss or more, a high magnetic field application fuse, a high magnetic field application switch and a high magnetic field application thermal relay are provided on the distribution line, and the high magnetic field application fuse is silver in an insulating cylinder. A ribbon or single metal element is stretched and the surrounding area is fully filled with arc-extinguishing sand. The high-field application switch is a solid-state contactor. The high-field application thermal relay is used for moving parts other than bimetal. A low-voltage distribution system protection device in a high magnetic field environment, characterized in that the iron member used is made of a non-magnetic material.
JP2004007774A 2004-01-15 2004-01-15 Low voltage distribution system protection device in high magnetic field environment Expired - Fee Related JP3859217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007774A JP3859217B2 (en) 2004-01-15 2004-01-15 Low voltage distribution system protection device in high magnetic field environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007774A JP3859217B2 (en) 2004-01-15 2004-01-15 Low voltage distribution system protection device in high magnetic field environment

Publications (2)

Publication Number Publication Date
JP2005204400A JP2005204400A (en) 2005-07-28
JP3859217B2 true JP3859217B2 (en) 2006-12-20

Family

ID=34821324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007774A Expired - Fee Related JP3859217B2 (en) 2004-01-15 2004-01-15 Low voltage distribution system protection device in high magnetic field environment

Country Status (1)

Country Link
JP (1) JP3859217B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428316B (en) * 2018-11-05 2020-06-12 广州小鹏汽车科技有限公司 Overcurrent fusing protection method and automobile battery management system

Also Published As

Publication number Publication date
JP2005204400A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
KR910002243B1 (en) Switching device for a protection apparatus
CA2773227C (en) Circuit interrupter with enhanced arc quenching capabilities
US10176945B2 (en) DC electrical circuit breaker
KR101022897B1 (en) Current limit apparatus and fault current limiter using the same
EP0061020A1 (en) Arc restricting device for circuit breaker
JP6357221B2 (en) Protective device
EP2637188B1 (en) Arc chuteless DC current interruptor
JPWO2015002187A1 (en) Protective device
KR20080062942A (en) Arc-suppression appratus of circuit breaker
US20110248815A1 (en) Method For Expanding The Adjustment Range of Overload Protection Devices, Associated Overload Protection Devices, and Their Use
CA1101471A (en) Current limiting circuit breaker with improved magnetic drive device
CN105390315B (en) System and method for quenching an arc
JPS62503141A (en) Electrostatic switching circuits or devices for providing protective power to loads and circuits
CN108511296B (en) Breaker with arc shield
JP3859217B2 (en) Low voltage distribution system protection device in high magnetic field environment
Burns et al. Current limiting arc flash quenching system for improved incident energy reduction
JP6875473B2 (en) Circuit breaker with narrow profile
CN110197781B (en) Structure for double break contacts with electromagnetic arc blow
EP3139395A1 (en) Electromagnetically assisted arc quench with pivoting permanent magnet
CN111433875B (en) Low-voltage protection switch device
JP2019519902A (en) Semiconductor cutoff device
DiMarco et al. Interplay of energies in circuit breaker and fuse combinations
Meckler et al. Does an electronic circuit breaker need electrical contacts?
Harris et al. Advances in solid-state circuit breakers
Keim Developments in Pyrotechnic-Assisted Fuses [Happenings]

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060616

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060721

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees