JP3857945B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP3857945B2
JP3857945B2 JP2002101467A JP2002101467A JP3857945B2 JP 3857945 B2 JP3857945 B2 JP 3857945B2 JP 2002101467 A JP2002101467 A JP 2002101467A JP 2002101467 A JP2002101467 A JP 2002101467A JP 3857945 B2 JP3857945 B2 JP 3857945B2
Authority
JP
Japan
Prior art keywords
valve
spring
unit
plunger
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002101467A
Other languages
Japanese (ja)
Other versions
JP2003294163A (en
Inventor
寿宣 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takano Co Ltd
Original Assignee
Takano Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Co Ltd filed Critical Takano Co Ltd
Priority to JP2002101467A priority Critical patent/JP3857945B2/en
Publication of JP2003294163A publication Critical patent/JP2003294163A/en
Application granted granted Critical
Publication of JP3857945B2 publication Critical patent/JP3857945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス等の流体の流量を連続制御する流量制御弁に関する。
【0002】
【従来の技術】
従来、ソレノイド部及びこのソレノイド部の励磁により変位するプランジャ部を有する電磁駆動部と、プランジャ部に対して一体に設けることにより流路を開閉する弁部を備え、ソレノイド部に印加する励磁電圧を可変して、流体の流量を連続制御できるようにした流量制御弁は知られている。この場合、弁部は、バネ部材により弾性支持し、ソレノイド部の励磁によりプランジャ部に付与される吸引力に対するバランスを取っている。
【0003】
【発明が解決しようとする課題】
しかし、このような従来の流量制御弁は、次のような問題点があった。即ち、図7に、ノーマルオープンタイプ(非通電時に全開)の流量制御弁における励磁電圧対流量特性を示すが、従来の流量制御弁は、点線で示す励磁電圧対流量特性Prのように、励磁電圧を0〔V〕から上昇させた場合、同図中、5〔V〕付近(Xc点)から急激に流量の変化率が大きくなる。したがって、流量が少なくなる範囲では、励磁電圧を僅かに変化させただけでも流量は大きく変化することになり、制御が不安定になるとともに、高精度かつ信頼性の高い流量制御を行うことができない問題があった。
【0004】
本発明は、このような従来の技術に存在する課題を解決したものであり、全制御範囲において、高精度の流量制御、さらには安定性及び信頼性の高い流量制御を行うことができるとともに、容易かつ低コストに実施できる流量制御弁の提供を目的とする。
【0005】
【課題を解決するための手段及び実施の形態】
本発明は、ソレノイド部3及びこのソレノイド部3の励磁により変位するプランジャ部4を有する電磁駆動部2と、プランジャ部4に対して一体に設けることにより流路Fを開閉する弁部5を備えるとともに、弁部5をバネ機構により弾性支持してなる流量制御弁1を構成するに際して、中心側から周縁側に至る複数の板バネ部7as…,7bs…を有し、かつプランジャ部4の変位位置に対応して異なるバネ定数となる二枚のバネ部材7a,7bを重ね合わせたバネ機構6を備え、一のバネ部材7aを、周縁側をソレノイド部3に対して固定し、かつ中心側を弁部5に固定するとともに、他のバネ部材7bを、周縁側をソレノイド部3に対して固定し、かつ中心側をプランジャ部4の変位位置に対応して弁部5に係止させてなることを特徴とする。
【0006】
この場合、好適な実施の形態により、電磁駆動部2は、ソレノイド部3の内部における一側に、プランジャ部4の端面に対向するポール部10を備えて構成できるとともに、弁部5は、プランジャ部4から軸方向に突出したシャフト部11と、このシャフト部11の先端に設けた弁本体部12により構成できる。
【0007】
これにより、弁部5は、プランジャ部4の変位位置に対応して異なるバネ定数となる複数のバネ部材7a,7bを組合わせたバネ機構6により弾性支持されるため、例えば、ノーマルオープンタイプの流量制御弁1の場合、ソレノイド部3を励磁し、励磁電圧を0〔V〕から上昇させれば、一のバネ部材7aにより支持される弁部5は、最初に、バネ部材7aのみのバネ定数に基づく弾性に抗して変位し、流量は緩やかに減少する。一方、弁部5が、バネ部材7aのみでは流量の変化率が急激に大きくなる位置又はその前後位置(予め設定した所定位置)に達すれば、他のバネ部材7bと弁部5が係止し、弁部5は、バネ部材7aと7bを組合わせたバネ定数に基づく弾性に抗して変位する。よって、急激に流量の変化率が大きくなる不具合が回避され、流量の変化率が緩やかな状態で流量を0まで変化させることが可能となる。
【0008】
【実施例】
次に、本発明に係る好適な実施例を挙げ、図面に基づき詳細に説明する。
【0009】
まず、本実施例に係る流量制御弁1の構成について、図1〜図6を参照して説明する。
【0010】
例示の流量制御弁1は、ノーマルオープンタイプであり、図1に示すように、基本的な構成として電磁駆動部2と弁部5を備える。電磁駆動部2は、磁性材で形成した細長い長方形プレートをコの字形に折曲したヨーク21を備え、このヨーク21の内側に、コイルボビン22にワイヤWを巻回して構成したソレノイド部3を収容する。そして、コイルボビン22の一端面22s側から、コイルボビン22の内部に、磁性材で形成したコア部23を挿入するとともに、ヨーク21の開放側には、磁性材で形成したサブヨーク24を架設固定する。この場合、コア部23は、内端に軸方向へ刳り貫いた凹部23sを有するとともに、固定ネジ25によりサブヨーク24の内面に固定される。なお、26,27は、コイルボビン22の両側に配したセパレータである。
【0011】
また、コイルボビン22の他端面22t側におけるセパレータ27に対向するヨーク21には開孔部28を形成し、非磁性のステンレス材により形成したガイド筒29を挿入する。この場合、ガイド筒29は、ヨーク21から外方に突出するアウタ部29oと、開孔部28を通してコイルボビン22の内部に挿入するインナ部29iからなる。この際、インナ部29iの先端側は、コア部23の外周面に嵌合させる。一方、ガイド筒29の内部には、凹部23sに挿入する凸部4sを有する磁性材で形成したプランジャ部4をスライド自在に収容し、さらに、プランジャ部4の端面に対向する磁性材で形成したポール部10を収容する。なお、ソレノイド部3は、当該ソレノイド部3を励磁(通電)する通電部30に接続するとともに、この通電部30はソレノイド部3に印加する励磁電圧を可変する制御部31に接続する。以上により、電磁駆動部2が構成される。
【0012】
他方、弁部5はプランジャ部4に対して一体に設ける。このため、上述したプランジャ部4及びポール部10は、弁部5を装着した状態でガイド筒29に収容する。弁部5は、非磁性材で形成したシャフト部11と、このシャフト部11の先端を大径化し、この先端面に円盤形の弁部材32を埋設した弁本体部12を一体に有する。また、弁部5には、プランジャ部4の変位位置に対応して異なるバネ定数となる一対のバネ部材7a,7bを組合わせたバネ機構6を装着する。
【0013】
図4にバネ部材7aを、図5にバネ部材7bをそれぞれ示す。バネ部材7aは、円形のバネ板材13aに打抜孔を形成することにより、中心に挿通孔13asを設けるとともに、中心側から周縁側に至る三つの板バネ部7as…を設けて構成する。また、バネ部材7bは、円形のバネ板材13bに打抜孔を形成することにより、中心に挿通孔13bsを設けるとともに、中心側から周縁側に至る三つの板バネ部7bs…を設けて構成する。この場合、打抜孔の形状や大きさにより板バネ部7as…,7bs…の数量,長さ及び幅を任意に設定できる。
【0014】
そして、シャフト部11の後端側を、バネ部材7aの挿通孔13as及びバネ部材7bの挿通孔13bsに対して順番に通し、この後、シャフト部11の外周面に形成したネジ部に、係合ナット33を螺着する。これにより、一のバネ部材7aの中心側が、弁本体部12の背面と係合ナット33間に挟まれて固定されるとともに、他のバネ部材7bの中心側は、弁本体部12と係合ナット33間に遊びを有する状態で装着され、このバネ部材7aと7bによりバネ機構6が構成される。この場合、係合ナット33は、図2に示すように、プランジャ部4の変位位置に対応してバネ部材7bに係止可能な段差係止部33sを有する。
【0015】
一方、弁部5を、プランジャ部4に固定するに際しては、まず、シャフト部11を、後端側からポール部10の中心に形成した貫通孔、さらにはプランジャ部4の中心に形成した貫通孔へ順番に挿通させる。そして、プランジャ部4に挿通させたシャフト部11に対して、プランジャ部4の凸部4s側の端面に螺着した規制ネジ35により軸方向への位置規制を行うとともに、プランジャ部4の外周面から螺着した固定ネジ36により固定する。なお、シャフト部11は、ポール部10に対してスライド自在となる。
【0016】
この後、プランジャ部4及びポール部10をガイド筒29に内部に収容する。この際、ポール部10に形成した段差が、ガイド筒29の内面に形成した段差に係止することにより、ポール部10の収容位置が規制される。これにより、シャフト部11は、プランジャ部4から軸方向に突出し、ポール部10を貫通してヨーク21から突出したガイド筒29の内部に臨むとともに、ポール部10は、コイルボビン22の他端面22t付近に配される。
【0017】
また、ガイド筒29(アウタ部29o)の内部には、固定筒37を挿入し、この固定筒37とポール部10間に、バネ部材7aと7bの周縁側を挟むとともに、さらに、ガイド筒29に内周面に、弁座ブロック38を螺着して固定筒37,ポール部10及びバネ部材7a,7bの周縁側を固定する。この場合、弁座ブロック38は、中心に、弁本体部12に対向する流入口Riを有するとともに、この流入口Riの周りに周方向に一定間隔置きに形成した六つの流出口Ro…を有する。これにより、流入口Riから弁本体部12が収容される弁室Rfを通って流出口Ro…に至る流路Fが構成される。
【0018】
次に、本実施例に係る流量制御弁1の動作について、図1〜図7を参照して説明する。
【0019】
まず、非通電時には、ソレノイド部3は励磁されないため、弁部5の位置は、バネ機構6によって規制される。即ち、図2に示すように、バネ部材7a,7bは中立位置にあるため、弁部5は上昇した開位置となる。したがって、図1に示すように、例えば、ガス等の流体を、白抜矢印Wiの方向から流入口Riに供給すれば、流路Fを通り、流出口Ro…から白抜矢印Woの方向に流出する。
【0020】
一方、制御部31により通電部30を制御し、ソレノイド部3に所定の励磁電圧を印加すれば、ソレノイド部3から磁束が発生する。この磁束は、ポール部10とプランジャ部4間では軸方向に通過するとともに、コア部23とプランジャ部4間では、凹部23sと凸部4sの存在により径方向(放射方向)に通過する。したがって、軸方向におけるコア部23とプランジャ部4間には、ほとんど吸引力が発生しないのに対し、軸方向におけるポール部10とプランジャ部4間には、吸引力が発生する。この結果、変位自在のプランジャ部4は、固定されたポール部10に吸引され、図1中、下方へ変位する。
【0021】
この場合、弁部5は、プランジャ部4の変位位置に対応して異なるバネ定数となる複数のバネ部材7a,7bを組合わせたバネ機構6により弾性支持されるため、例示するノーマルオープンタイプの流量制御弁1の場合には、ソレノイド部3に印加する励磁電圧を、0〔V〕から徐々に上昇させることにより、一のバネ部材7aにより支持される弁部5は、最初に、バネ部材7aのみのバネ定数に基づく弾性に抗して下方へ変位する。この結果、弁部5による開度が徐々に小さくなり、流量は緩やかに減少する。このときの励磁電圧対流量特性Poを図7に実線で示す。
【0022】
そして、弁部5が、バネ部材7aのみでは流量の変化率が急激に大きくなる位置、即ち、図7のXc点に対応する予め設定した所定位置に達すれば、図3に示すように、係合ナット33の段差係止部33sがバネ部材7bの中心側に係止し、弁部5は、バネ部材7aと7bを組合わせたバネ定数に基づく弾性に抗して変位する。この結果、急激に流量の変化率が大きくなる不具合が回避され、流量の変化率が緩やかな状態で流量を0(閉位置)まで変化させることが可能となる(図7に実線で示す励磁電圧対流量特性Po参照)。
【0023】
よって、このような本実施例に係る流量制御弁1によれば、弁部5は、プランジャ部4の変位位置に対応して異なるバネ定数となる一対のバネ部材7a,7bを組合わせたバネ機構6により弾性支持されるため、全制御範囲において、高精度の流量制御、さらには安定性及び信頼性の高い流量制御が可能となる。また、バネ機構6は、中心側から周縁側に至る複数の板バネ部7as…,7bs…を設けた一対のバネ部材7a,7bにより構成されるとともに、一のバネ部材7aは、周縁側がソレノイド部3に対して固定され、かつ中心側が弁部5に固定されるとともに、他のバネ部材7bは、周縁側がソレノイド部3に対して固定され、かつ中心側がプランジャ部4の変位位置に対応して弁部5に係止される構成を採用したため、容易かつ低コストに実施可能となる。
【0024】
以上、実施例について詳細に説明したが、本発明はこのような実施例に限定されるものではなく、細部の構成,形状,材料,数量,数値等において、本発明の要旨を逸脱しない範囲で任意に変更,追加,削除することができる。例えば、ノーマルオープンタイプの流量制御弁1を例示したが、ノーマルクローズタイプ(非通電時に全閉)にも同様に適用できる。また、バネ機構6は、一対のバネ部材7a,7bを用いた二段タイプを例示したが、任意数量のバネ部材7a…を用いた複数段タイプにより構成することもできる。
【0025】
【発明の効果】
このように、本発明に係る流量制御弁は、中心側から周縁側に至る複数の板バネ部を有し、かつプランジャ部の変位位置に対応して異なるバネ定数となる二枚のバネ部材を重ね合わせたバネ機構を備え、一のバネ部材を、周縁側を前記ソレノイド部に対して固定し、かつ中心側を弁部に固定するとともに、他のバネ部材を、周縁側をソレノイド部に対して固定し、かつ中心側をプランジャ部の変位位置に対応して弁部に係止させてなるため、次のような顕著な効果を奏する。
【0026】
(1) 全制御範囲において、高精度の流量制御、さらには安定性及び信頼性の高い流量制御を行うことができる。
【0027】
(2) バネ機構を、中心側から周縁側に至る複数の板バネ部を設けた二枚のバネ部材により構成したため、容易かつ低コストに実施できる。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係る流量制御弁の縦断側面図、
【図2】同流量制御弁に備える弁部の開位置におけるバネ機構の縦断側面図、
【図3】同流量制御弁に備える弁部の閉位置におけるバネ機構の縦断側面図、
【図4】同流量制御弁に備えるバネ機構の一のバネ部材の平面図、
【図5】同流量制御弁に備えるバネ機構の他のバネ部材の平面図、
【図6】図1中A−A線における半断面を含む底面図、
【図7】流量制御弁の励磁電圧対流量特性図、
【符号の説明】
1 流量制御弁
2 電磁駆動部
3 ソレノイド部
4 プランジャ部
5 弁部
6 バネ機構
7a バネ部材
7b バネ部材
7as… 板バネ部
7bs… 板バネ部
10 ポール部
11 シャフト部
12 弁本体部
F 流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate control valve that continuously controls the flow rate of a fluid such as a gas.
[0002]
[Prior art]
Conventionally, an electromagnetic drive unit having a solenoid unit and a plunger unit that is displaced by excitation of the solenoid unit, and a valve unit that opens and closes the flow path by being provided integrally with the plunger unit, an excitation voltage applied to the solenoid unit is provided. 2. Description of the Related Art A flow control valve that is variable and can continuously control the flow rate of a fluid is known. In this case, the valve portion is elastically supported by the spring member and balances the suction force applied to the plunger portion by excitation of the solenoid portion.
[0003]
[Problems to be solved by the invention]
However, such a conventional flow control valve has the following problems. In other words, FIG. 7 shows the excitation voltage versus flow rate characteristics of a normally open type (fully open when not energized) flow control valve, but the conventional flow rate control valve has an excitation voltage vs. flow rate characteristic Pr indicated by a dotted line. When the voltage is raised from 0 [V], the rate of change of the flow rate suddenly increases from around 5 [V] (point Xc) in FIG. Therefore, in the range where the flow rate is reduced, even if the excitation voltage is changed slightly, the flow rate changes greatly, the control becomes unstable, and high-precision and highly reliable flow rate control cannot be performed. There was a problem.
[0004]
The present invention solves such a problem existing in the prior art, and can perform high-accuracy flow control, and further stable and reliable flow control in the entire control range, It aims at providing the flow control valve which can be implemented easily and at low cost.
[0005]
[Means for Solving the Problems and Embodiments]
The present invention includes an electromagnetic drive unit 2 having a solenoid unit 3 and a plunger unit 4 that is displaced by excitation of the solenoid unit 3, and a valve unit 5 that opens and closes the flow path F by being provided integrally with the plunger unit 4. In addition, when the flow rate control valve 1 is formed by elastically supporting the valve portion 5 with a spring mechanism, the plunger portion 4 has a plurality of leaf spring portions 7as... 7bs. It has a spring mechanism 6 in which two spring members 7a and 7b having different spring constants corresponding to positions are overlapped, one spring member 7a is fixed to the solenoid portion 3 on the peripheral side, and the center side Is fixed to the valve portion 5, and the other spring member 7 b is fixed to the solenoid portion 3 on the peripheral side and locked to the valve portion 5 on the center side corresponding to the displacement position of the plunger portion 4. Features that become To.
[0006]
In this case, according to a preferred embodiment, the electromagnetic drive unit 2 can be configured to include a pole portion 10 facing the end surface of the plunger portion 4 on one side inside the solenoid portion 3, and the valve portion 5 can be configured as a plunger. A shaft portion 11 protruding in the axial direction from the portion 4 and a valve main body portion 12 provided at the tip of the shaft portion 11 can be used.
[0007]
Thereby, since the valve part 5 is elastically supported by the spring mechanism 6 combining a plurality of spring members 7a and 7b having different spring constants corresponding to the displacement position of the plunger part 4, for example, a normally open type In the case of the flow control valve 1, if the solenoid unit 3 is excited and the excitation voltage is increased from 0 [V], the valve unit 5 supported by the one spring member 7 a is first a spring of only the spring member 7 a. Displacement against the elasticity based on the constant, the flow rate decreases slowly. On the other hand, when the valve portion 5 reaches the position where the rate of change of the flow rate increases rapidly only with the spring member 7a or the front and rear positions (predetermined predetermined position), the other spring member 7b and the valve portion 5 are locked. The valve portion 5 is displaced against elasticity based on a spring constant obtained by combining the spring members 7a and 7b. Therefore, the problem that the rate of change of the flow rate suddenly increases can be avoided, and the flow rate can be changed to 0 while the rate of change of the flow rate is moderate.
[0008]
【Example】
Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
[0009]
First, the configuration of the flow control valve 1 according to the present embodiment will be described with reference to FIGS.
[0010]
The illustrated flow control valve 1 is a normally open type, and includes an electromagnetic drive unit 2 and a valve unit 5 as a basic configuration as shown in FIG. The electromagnetic drive unit 2 includes a yoke 21 formed by bending an elongated rectangular plate made of a magnetic material into a U-shape, and accommodates a solenoid unit 3 configured by winding a wire W around a coil bobbin 22 inside the yoke 21. To do. A core portion 23 made of a magnetic material is inserted into the coil bobbin 22 from the one end surface 22 s side of the coil bobbin 22, and a sub-yoke 24 made of a magnetic material is installed and fixed on the open side of the yoke 21. In this case, the core portion 23 has a recess 23 s penetrating in the axial direction at the inner end, and is fixed to the inner surface of the sub yoke 24 by a fixing screw 25. Reference numerals 26 and 27 denote separators disposed on both sides of the coil bobbin 22.
[0011]
Further, an opening 28 is formed in the yoke 21 facing the separator 27 on the other end surface 22t side of the coil bobbin 22, and a guide cylinder 29 formed of a nonmagnetic stainless material is inserted. In this case, the guide tube 29 includes an outer portion 29 o that protrudes outward from the yoke 21 and an inner portion 29 i that is inserted into the coil bobbin 22 through the opening portion 28. At this time, the front end side of the inner portion 29 i is fitted to the outer peripheral surface of the core portion 23. On the other hand, inside the guide tube 29, the plunger portion 4 formed of a magnetic material having a convex portion 4s inserted into the concave portion 23s is slidably accommodated, and further formed of a magnetic material facing the end surface of the plunger portion 4. The pole part 10 is accommodated. The solenoid unit 3 is connected to an energization unit 30 that excites (energizes) the solenoid unit 3, and the energization unit 30 is connected to a control unit 31 that varies the excitation voltage applied to the solenoid unit 3. Thus, the electromagnetic drive unit 2 is configured.
[0012]
On the other hand, the valve portion 5 is provided integrally with the plunger portion 4. For this reason, the plunger part 4 and the pole part 10 mentioned above are accommodated in the guide cylinder 29 in a state where the valve part 5 is mounted. The valve portion 5 integrally includes a shaft portion 11 formed of a nonmagnetic material and a valve main body portion 12 in which the tip of the shaft portion 11 has a large diameter and a disc-shaped valve member 32 is embedded in the tip surface. The valve unit 5 is equipped with a spring mechanism 6 in which a pair of spring members 7a and 7b having different spring constants corresponding to the displacement position of the plunger unit 4 are combined.
[0013]
FIG. 4 shows the spring member 7a, and FIG. 5 shows the spring member 7b. The spring member 7a is formed by forming a punching hole in a circular spring plate material 13a to provide an insertion hole 13as at the center and three plate spring portions 7as... From the center side to the peripheral side. The spring member 7b is formed by forming a punching hole in a circular spring plate member 13b to provide an insertion hole 13bs at the center and three plate spring portions 7bs... From the center side to the peripheral side. In this case, the quantity, length, and width of the leaf spring portions 7as, 7bs,... Can be arbitrarily set according to the shape and size of the punched holes.
[0014]
Then, the rear end side of the shaft portion 11 is sequentially passed through the insertion hole 13as of the spring member 7a and the insertion hole 13bs of the spring member 7b, and thereafter, the thread portion formed on the outer peripheral surface of the shaft portion 11 is engaged. The joint nut 33 is screwed. Accordingly, the center side of one spring member 7a is sandwiched and fixed between the back surface of the valve main body 12 and the engagement nut 33, and the center side of the other spring member 7b is engaged with the valve main body 12. A spring mechanism 6 is configured by the spring members 7a and 7b. In this case, as shown in FIG. 2, the engaging nut 33 has a step locking portion 33 s that can be locked to the spring member 7 b corresponding to the displacement position of the plunger portion 4.
[0015]
On the other hand, when the valve portion 5 is fixed to the plunger portion 4, first, the shaft portion 11 is first formed in the through hole formed in the center of the pole portion 10 from the rear end side, and further in the through hole formed in the center of the plunger portion 4. Are inserted in order. The shaft portion 11 inserted through the plunger portion 4 is axially restricted by a restriction screw 35 screwed to the end surface of the plunger portion 4 on the convex portion 4s side, and the outer peripheral surface of the plunger portion 4 It is fixed with a fixing screw 36 which is screwed from the outside. The shaft portion 11 is slidable with respect to the pole portion 10.
[0016]
Thereafter, the plunger portion 4 and the pole portion 10 are housed inside the guide tube 29. At this time, the step formed on the pole portion 10 is locked to the step formed on the inner surface of the guide tube 29, whereby the accommodation position of the pole portion 10 is regulated. Thus, the shaft portion 11 protrudes in the axial direction from the plunger portion 4, faces the inside of the guide tube 29 that protrudes from the yoke 21 through the pole portion 10, and the pole portion 10 is near the other end surface 22 t of the coil bobbin 22. Arranged.
[0017]
Further, a fixed cylinder 37 is inserted into the guide cylinder 29 (outer portion 29o), the peripheral sides of the spring members 7a and 7b are sandwiched between the fixed cylinder 37 and the pole portion 10, and the guide cylinder 29 is further inserted. The valve seat block 38 is screwed onto the inner peripheral surface to fix the periphery of the fixed cylinder 37, the pole portion 10, and the spring members 7a and 7b. In this case, the valve seat block 38 has an inflow port Ri facing the valve body 12 at the center and six outflow ports Ro ... formed around the inflow port Ri at regular intervals in the circumferential direction. . Thereby, the flow path F which reaches the outflow port Ro ... from the inflow port Ri through the valve chamber Rf in which the valve main body 12 is accommodated is configured.
[0018]
Next, operation | movement of the flow control valve 1 which concerns on a present Example is demonstrated with reference to FIGS.
[0019]
First, at the time of de-energization, since the solenoid part 3 is not excited, the position of the valve part 5 is regulated by the spring mechanism 6. That is, as shown in FIG. 2, since the spring members 7a and 7b are in the neutral position, the valve portion 5 is in the raised open position. Therefore, as shown in FIG. 1, for example, if a fluid such as a gas is supplied to the inlet Ri from the direction of the white arrow Wi, it passes through the flow path F and passes from the outlet Ro to the white arrow Wo. leak.
[0020]
On the other hand, when the energization unit 30 is controlled by the control unit 31 and a predetermined excitation voltage is applied to the solenoid unit 3, magnetic flux is generated from the solenoid unit 3. This magnetic flux passes in the axial direction between the pole portion 10 and the plunger portion 4, and passes in the radial direction (radial direction) between the core portion 23 and the plunger portion 4 due to the presence of the concave portion 23 s and the convex portion 4 s. Therefore, almost no suction force is generated between the core portion 23 and the plunger portion 4 in the axial direction, whereas a suction force is generated between the pole portion 10 and the plunger portion 4 in the axial direction. As a result, the displaceable plunger portion 4 is sucked by the fixed pole portion 10 and is displaced downward in FIG.
[0021]
In this case, the valve portion 5 is elastically supported by the spring mechanism 6 in which a plurality of spring members 7a and 7b having different spring constants corresponding to the displacement position of the plunger portion 4 is used. In the case of the flow control valve 1, the excitation voltage applied to the solenoid unit 3 is gradually increased from 0 [V], so that the valve unit 5 supported by the one spring member 7 a first has a spring member. It is displaced downward against the elasticity based on the spring constant of 7a only. As a result, the opening degree by the valve unit 5 gradually decreases, and the flow rate gradually decreases. The excitation voltage versus flow rate characteristic Po at this time is shown by a solid line in FIG.
[0022]
When the valve portion 5 reaches a position where the rate of change of the flow rate increases rapidly only with the spring member 7a, that is, a predetermined position corresponding to the point Xc in FIG. 7, as shown in FIG. The step locking portion 33s of the joint nut 33 is locked to the center side of the spring member 7b, and the valve portion 5 is displaced against elasticity based on a spring constant obtained by combining the spring members 7a and 7b. As a result, the problem that the rate of change of the flow rate suddenly increases can be avoided, and the flow rate can be changed to 0 (closed position) while the rate of change of the flow rate is slow (excitation voltage indicated by a solid line in FIG. 7). (Refer to the flow rate characteristic Po).
[0023]
Therefore, according to the flow control valve 1 according to this embodiment, the valve portion 5 is a spring in which a pair of spring members 7a and 7b having different spring constants corresponding to the displacement position of the plunger portion 4 are combined. Since it is elastically supported by the mechanism 6, it is possible to control the flow rate with high accuracy and control the flow rate with high stability and reliability in the entire control range. The spring mechanism 6 is composed of a pair of spring members 7a, 7b provided with a plurality of leaf spring portions 7as, 7bs,... From the center side to the peripheral side. The other spring member 7b is fixed to the solenoid unit 3 and the center side is fixed to the displacement position of the plunger unit 4 while being fixed to the solenoid unit 3 and the center side is fixed to the valve unit 5. Correspondingly, the configuration in which the valve portion 5 is locked is adopted, so that it can be easily and inexpensively implemented.
[0024]
The embodiment has been described in detail above, but the present invention is not limited to such an embodiment, and the detailed configuration, shape, material, quantity, numerical value, and the like are within the scope not departing from the gist of the present invention. It can be changed, added, or deleted arbitrarily. For example, although the normally open type flow control valve 1 is illustrated, it can be similarly applied to a normally closed type (fully closed when not energized). Moreover, although the spring mechanism 6 illustrated the two-stage type using a pair of spring members 7a and 7b, it can also be comprised by the multistage type using arbitrary numbers of spring members 7a ....
[0025]
【The invention's effect】
As described above, the flow control valve according to the present invention includes two spring members having a plurality of leaf spring portions extending from the center side to the peripheral side, and having different spring constants corresponding to the displacement positions of the plunger portion. The spring mechanism is overlapped, and one spring member is fixed to the solenoid part on the peripheral side and fixed to the valve part on the center side, and another spring member is connected to the solenoid part on the peripheral side. And the center side is locked to the valve portion corresponding to the displacement position of the plunger portion.
[0026]
(1) In the entire control range, highly accurate flow rate control, and furthermore, flow rate control with high stability and reliability can be performed.
[0027]
(2) Since the spring mechanism is composed of two spring members provided with a plurality of leaf spring portions from the center side to the peripheral side, the spring mechanism can be implemented easily and at low cost.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a flow control valve according to a preferred embodiment of the present invention,
FIG. 2 is a longitudinal side view of a spring mechanism in an open position of a valve portion provided for the flow rate control valve;
FIG. 3 is a longitudinal side view of a spring mechanism in a closed position of a valve portion provided in the flow rate control valve;
FIG. 4 is a plan view of one spring member of a spring mechanism provided in the flow rate control valve;
FIG. 5 is a plan view of another spring member of a spring mechanism provided in the flow rate control valve;
6 is a bottom view including a half cross section taken along line AA in FIG.
FIG. 7 is an excitation voltage versus flow rate characteristic diagram of a flow control valve;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow control valve 2 Electromagnetic drive part 3 Solenoid part 4 Plunger part 5 Valve part 6 Spring mechanism 7a Spring member 7b Spring member 7as ... Plate spring part 7bs ... Plate spring part 10 Pole part 11 Shaft part 12 Valve body part F Flow path

Claims (3)

ソレノイド部及びこのソレノイド部の励磁により変位するプランジャ部を有する電磁駆動部と、前記プランジャ部に対して一体に設けることにより流路を開閉する弁部を備えるとともに、前記弁部をバネ機構により弾性支持してなる流量制御弁において、中心側から周縁側に至る複数の板バネ部を有し、かつ前記プランジャ部の変位位置に対応して異なるバネ定数となる二枚のバネ部材を重ね合わせたバネ機構を備え、一のバネ部材を、周縁側を前記ソレノイド部に対して固定し、かつ中心側を前記弁部に固定するとともに、他のバネ部材を、周縁側を前記ソレノイド部に対して固定し、かつ中心側を前記プランジャ部の変位位置に対応して前記弁部に係止させてなることを特徴とする流量制御弁。  An electromagnetic drive unit having a solenoid unit and a plunger unit that is displaced by excitation of the solenoid unit, and a valve unit that opens and closes the flow path by being provided integrally with the plunger unit, and the valve unit is elastic by a spring mechanism In the supported flow control valve, two spring members having a plurality of leaf spring portions from the center side to the peripheral side and having different spring constants corresponding to the displacement position of the plunger portion are overlapped. A spring mechanism is provided, and one spring member is fixed to the solenoid part on the peripheral side and fixed to the valve part on the center side, and the other spring member is fixed to the solenoid part on the peripheral side. A flow rate control valve characterized in that it is fixed and the center side is locked to the valve portion corresponding to the displacement position of the plunger portion. 前記電磁駆動部は、前記ソレノイド部の内部における一側に、前記プランジャ部の端面に対向するポール部を備えることを特徴とする請求項1記載の流量制御弁。  The flow rate control valve according to claim 1, wherein the electromagnetic driving unit includes a pole portion that faces an end surface of the plunger portion on one side inside the solenoid portion. 前記弁部は、前記プランジャ部から軸方向に突出したシャフト部と、このシャフト部の先端に設けた弁本体部を備えることを特徴とする請求項1記載の流量制御弁。  The flow control valve according to claim 1, wherein the valve portion includes a shaft portion protruding in the axial direction from the plunger portion, and a valve main body portion provided at a tip of the shaft portion.
JP2002101467A 2002-04-03 2002-04-03 Flow control valve Expired - Fee Related JP3857945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101467A JP3857945B2 (en) 2002-04-03 2002-04-03 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101467A JP3857945B2 (en) 2002-04-03 2002-04-03 Flow control valve

Publications (2)

Publication Number Publication Date
JP2003294163A JP2003294163A (en) 2003-10-15
JP3857945B2 true JP3857945B2 (en) 2006-12-13

Family

ID=29241827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101467A Expired - Fee Related JP3857945B2 (en) 2002-04-03 2002-04-03 Flow control valve

Country Status (1)

Country Link
JP (1) JP3857945B2 (en)

Also Published As

Publication number Publication date
JP2003294163A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
US7969146B2 (en) Displacement measurement device
US5284425A (en) Fluid metering pump
US6119966A (en) Fuel injection valve, pilot control valve therefor, and method for its assembly
US6053472A (en) Rotary solenoid operated proportional flow control valve
JPH09196223A (en) Air control valve
JP2002222710A (en) Electromagnetic drive device and flow rate control device using the same
JP3442405B2 (en) Duty drive solenoid valve
WO2006085420A1 (en) Proportional solenoid and flow control valve employing it
JP4275307B2 (en) Proportional solenoid valve
JP3857945B2 (en) Flow control valve
JP2006242232A (en) Electric exhaust valve and blood pressure meter
US10865889B2 (en) Poppet switch valve device and method for manufacturing poppet switch valve device
US5104046A (en) Fuel injection having a single solenoid
JP3820207B2 (en) Flow control valve
JPS5926835B2 (en) solenoid control valve
JP3820178B2 (en) Flow control valve
CN111750132B (en) Flow path switching valve
JP2009091934A (en) Negative pressure responding valve
JPH07110077A (en) Flow control linear solenoid valve and driving circuit therefor
JPH09119555A (en) Measuring method for gap of solenoid valve
JP5044497B2 (en) Flow control valve
JP3122718U (en) Electric exhaust valve and blood pressure monitor
JP2001021059A (en) Proportional control valve
JP2003207069A (en) Solenoid valve device
JPH07113432B2 (en) Proportional control valve for gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

R150 Certificate of patent or registration of utility model

Ref document number: 3857945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160922

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees