JP3857672B2 - Coated conductor and artificial dielectric - Google Patents

Coated conductor and artificial dielectric Download PDF

Info

Publication number
JP3857672B2
JP3857672B2 JP2003281493A JP2003281493A JP3857672B2 JP 3857672 B2 JP3857672 B2 JP 3857672B2 JP 2003281493 A JP2003281493 A JP 2003281493A JP 2003281493 A JP2003281493 A JP 2003281493A JP 3857672 B2 JP3857672 B2 JP 3857672B2
Authority
JP
Japan
Prior art keywords
conductor
dielectric
electromagnetic wave
artificial dielectric
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281493A
Other languages
Japanese (ja)
Other versions
JP2005051047A (en
Inventor
健一 原川
一克 山中
健二 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003281493A priority Critical patent/JP3857672B2/en
Publication of JP2005051047A publication Critical patent/JP2005051047A/en
Application granted granted Critical
Publication of JP3857672B2 publication Critical patent/JP3857672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、導電体が被覆された被覆導電体及びこの被覆導電体を有する人工誘電体に関する。   The present invention relates to a coated conductor coated with a conductor and an artificial dielectric having the coated conductor.

誘電体としては、導電材料を含有することで誘電率が高くされたコンクリートがある(例えば、特許文献1参照)。   As the dielectric, there is concrete whose dielectric constant is increased by containing a conductive material (for example, see Patent Document 1).

ここで、このコンクリートにおいて、誘電率を高くするためには、導電材料の配置濃度を上げて導電材料間の隙間の数を多くすると共に導電材料間の隙間を狭くし、かつ、導電材料同士を接触させずに導電材料の実質的な長さを短くする必要がある。   Here, in this concrete, in order to increase the dielectric constant, the concentration of the conductive material is increased to increase the number of gaps between the conductive materials, and the gap between the conductive materials is narrowed. There is a need to reduce the substantial length of the conductive material without contact.

しかしながら、このコンクリートでは、導電材料の配置濃度を上げると、導電材料同士が接触して導電材料の実質的な長さが長くなることで、導電率が上がってしまい、誘電率を高くすることができないという問題がある。
特開平6−29687号公報
However, in this concrete, when the arrangement concentration of the conductive material is increased, the conductive materials come into contact with each other and the substantial length of the conductive material is increased, thereby increasing the conductivity and increasing the dielectric constant. There is a problem that you can not.
JP-A-6-29687

本発明は、上記事実を考慮し、導電体の近傍導電体との接触を抑制あるいは防止できる被覆導電体及び誘電率を高くできる人工誘電体を得ることが目的である。   In view of the above facts, an object of the present invention is to obtain a coated conductor capable of suppressing or preventing contact of a conductor with a nearby conductor and an artificial dielectric capable of increasing a dielectric constant.

請求項1に記載の被覆導電体は、導電性を有すると共に太さに比し長さを長くされ、近傍に配置される導電性を有する近傍導電体との間で電界エネルギーを蓄積するための導電体と、絶縁性を有すると共に太さに比し長さを長くされ、前記導電体を長手方向において不連続にした状態で長手方向に沿って被覆する絶縁体と、を有している。 Coated conductor according to claim 1 is lengthened compared to the thickness as well as have a conductive, for accumulating electric field energy between the near conductor having conductivity are arranged in the vicinity and conductors are lengthened relative to the thickness as well as have a insulating, a, an insulator covering along the longitudinal direction in a state in which the conductor was discontinuous in the longitudinal direction Yes.

請求項2に記載の被覆導電体は、請求項1に記載の被覆導電体において、前記絶縁体は、導電性を有する導電性材料が分散された構成及び前記導電体に比し高誘電率を有する誘電性材料を有する構成の少なくとも一方とされた、ことを特徴としている。 The coated conductor according to claim 2 is the coated conductor according to claim 1 , wherein the insulator has a configuration in which a conductive material having conductivity is dispersed and has a higher dielectric constant than the conductor. It is characterized in that at least one of the configurations having the dielectric material is included.

請求項3に記載の人工誘電体は、導電性を有すると共に太さに比し長さを長くされた導電体を、長手方向において不連続にした状態で、絶縁性を有すると共に太さに比し長さを長くされた絶縁体によって、前記絶縁体の長手方向に沿って被覆した被覆導電体を有している。 The artificial dielectric according to claim 3 is conductive and has an insulating property and a thickness compared with the thickness in a state where the length of the conductive material is discontinuous in the longitudinal direction. And it has the covering conductor coat | covered along the longitudinal direction of the said insulator with the insulator lengthened .

請求項4に記載の人工誘電体は、請求項3に記載の人工誘電体において、前記絶縁体は、導電性を有する導電性材料が分散された構成及び前記導電体に比し高誘電率を有する誘電性材料を有する構成の少なくとも一方とされた、ことを特徴としている。 The artificial dielectric according to claim 4 is the artificial dielectric according to claim 3 , wherein the insulator has a structure in which a conductive material having conductivity is dispersed and has a higher dielectric constant than the conductor. It is characterized in that at least one of the configurations having the dielectric material is included.

請求項5に記載の人工誘電体は、請求項3または請求項4に記載の人工誘電体において、前記被覆導電体間に、導電性を有する導電性材料及び前記導電体に比し高誘電率を有する誘電性材料の少なくとも一方を有する、ことを特徴としている。 The artificial dielectric according to claim 5 is the artificial dielectric according to claim 3 or 4 , wherein the conductive dielectric between the coated conductors has a higher dielectric constant than the conductive material having conductivity and the conductor. It has at least one of the dielectric material which has these.

請求項6に記載の人工誘電体は、請求項3乃至請求項5の何れか1項に記載の人工誘電体において、前記被覆導電体が混入された母材を有する、ことを特徴としている。 The artificial dielectric according to claim 6 is characterized in that in the artificial dielectric according to any one of claims 3 to 5 , the artificial dielectric has a base material mixed with the covered conductor.

請求項7に記載の人工誘電体は、請求項3乃至請求項6の何れか1項に記載の人工誘電体において、前記被覆導電体が組み合わされた、ことを特徴としている。 An artificial dielectric according to a seventh aspect is characterized in that in the artificial dielectric according to any one of the third to sixth aspects, the covered conductor is combined.

請求項1に記載の被覆導電体では、近傍導電体との間で電界エネルギーを蓄積するための導電体が絶縁体に被覆されている。このため、絶縁体によって導電体の近傍導電体との接触を抑制あるいは防止することができ、導電体と近傍導電体との間で電界エネルギーを高確率で蓄積することができる。   In the coated conductor according to the first aspect, the insulator is coated with the conductor for accumulating electric field energy with the neighboring conductor. For this reason, the insulator can suppress or prevent contact between the conductor and the nearby conductor, and electric field energy can be accumulated with high probability between the conductor and the nearby conductor.

請求項2に記載の被覆導電体では、導電体が不連続にされた状態で絶縁体に被覆されているため、不連続にされた各導電体を短くすることができ、導電体と近傍導電体との間で蓄積する電界エネルギーを大きくすることができる。   In the covered conductor according to claim 2, since the conductor is covered with the insulator in a discontinuous state, each discontinuous conductor can be shortened, and the conductor and the nearby conductor The electric field energy accumulated between the body can be increased.

請求項2に記載の被覆導電体では、絶縁体が、導電性材料が分散された構成及び誘電性材料を有する構成の少なくとも一方とされたため、絶縁体の誘電率を高くすることができ、導電体と近傍導電体との間で蓄積する電界エネルギーを大きくすることができる。 In the coated conductor according to claim 2 , since the insulator is at least one of a configuration in which the conductive material is dispersed and a configuration having a dielectric material, the dielectric constant of the insulator can be increased, The electric field energy accumulated between the body and the nearby conductor can be increased.

請求項3に記載の人工誘電体では、導電体が絶縁体で被覆された被覆導電体を有しているため、絶縁体によって導電体同士の接触が抑制あるいは防止される。このため、人工誘電体の誘電率を高くすることができる。 In the artificial dielectric according to the third aspect , since the conductor has the coated conductor covered with the insulator, the contact between the conductors is suppressed or prevented by the insulator. For this reason, the dielectric constant of the artificial dielectric can be increased.

さらに、導電体が不連続にされた状態で絶縁体に被覆されているため、不連続にされた各導電体が短くされる。このため、人工誘電体の誘電率を一層高くすることができる。 Further , since the conductor is covered with the insulator in a discontinuous state, each discontinuous conductor is shortened. For this reason, the dielectric constant of the artificial dielectric can be further increased.

請求項4に記載の人工誘電体では、絶縁体が、導電性材料が分散された構成及び誘電性材料を有する構成の少なくとも一方とされたため、絶縁体の誘電率が高くなる。このため、人工誘電体の誘電率を一層高くすることができる。 In the artificial dielectric according to the fourth aspect , since the insulator is at least one of the configuration in which the conductive material is dispersed and the configuration having the dielectric material, the dielectric constant of the insulator is increased. For this reason, the dielectric constant of the artificial dielectric can be further increased.

請求項5に記載の人工誘電体では、被覆導電体間に導電性材料及び誘電性材料の少なくとも一方を有するため、被覆導電体間の誘電率が高くなる。このため、人工誘電体の誘電率を一層高くすることができる。 In the artificial dielectric according to claim 5 , since at least one of the conductive material and the dielectric material is provided between the coated conductors, the dielectric constant between the coated conductors is increased. For this reason, the dielectric constant of the artificial dielectric can be further increased.

請求項6に記載の人工誘電体では、被覆導電体が母材に混入されているため、被覆導電体の位置を固定することができる。 In the artificial dielectric according to the sixth aspect , since the coated conductor is mixed in the base material, the position of the coated conductor can be fixed.

請求項7に記載の人工誘電体では、被覆導電体が組み合わされているため、被覆導電体の位置を固定することができる。 In the artificial dielectric according to the seventh aspect , since the covering conductor is combined, the position of the covering conductor can be fixed.

図1(A)には、本発明の実施の形態に係る被覆導電体10が斜視図にて示されており、図2(A)には、この被覆導電体10が断面図にて示されている。   FIG. 1A shows a coated conductor 10 according to an embodiment of the present invention in a perspective view, and FIG. 2A shows this coated conductor 10 in a sectional view. ing.

本実施の形態に係る被覆導電体10は、導電体または近傍導電体としての導電性繊維12を有しており、導電性繊維12は、金属繊維やカーボンファイバ等とされて、断面円形の繊維状とされると共に、高い導電性を有している。導電性繊維12の長さは、後述の電磁波の波長以下に(特に当該電磁波の波長の1/4よりも短く)されると共に、導電性繊維12の太さに比し充分に長く(特に導電性繊維12の太さの10倍よりも長く)されるのが好ましい。   The coated conductor 10 according to the present embodiment has conductive fibers 12 as conductors or nearby conductors, and the conductive fibers 12 are made of metal fibers, carbon fibers, or the like, and have a circular cross section. And has high conductivity. The length of the conductive fiber 12 is set to be equal to or shorter than the wavelength of the electromagnetic wave described later (particularly shorter than ¼ of the wavelength of the electromagnetic wave) and sufficiently long compared to the thickness of the conductive fiber 12 (particularly conductive). It is preferable to be longer than 10 times the thickness of the conductive fiber 12).

導電性繊維12の外周は、絶縁体としての絶縁性被膜14に被膜(被覆)されており、絶縁性被膜14は、断面円環状の筒状とされると共に、絶縁性を有している。絶縁性被膜14は、シリコンやナイロン等の高分子化合物、エナメルやテフロン(登録商標)等のフッ素樹脂、ポリイミドのような耐熱性樹脂等の各種の樹脂とされている。   The outer periphery of the conductive fiber 12 is coated (coated) with an insulating coating 14 as an insulator. The insulating coating 14 has a cylindrical shape with an annular cross section and has insulating properties. The insulating coating 14 is made of various resins such as high molecular compounds such as silicon and nylon, fluorine resins such as enamel and Teflon (registered trademark), and heat resistant resins such as polyimide.

なお、図1(B)に示す如く、導電性繊維12として、断面円形の繊維状とされた絶縁性を有するコア材16の外周に、金属繊維やカーボンファイバ等とされて高い導電性を有すると共に断面円環状の筒状とされた導電性膜18を被膜(被覆)したものを用いてもよい。   As shown in FIG. 1B, the conductive fiber 12 has high conductivity as a metal fiber, carbon fiber, or the like on the outer periphery of the insulating core material 16 having a circular cross-sectional shape. Moreover, you may use what coat | covered (coating) the electroconductive film 18 made into the cylindrical shape of a cross-sectional ring shape.

さらに、図2(B)に示す如く、被覆導電体10の長手方向において、複数の導電性繊維12が不連続にされたものとしてもよい。この場合、不連続にされた各導電性繊維12の長さは、後述の電磁波の波長以下に(特に当該電磁波の波長の1/4よりも短く)されると共に、導電性繊維12の太さに比べて充分に長く(特に導電性繊維12の太さの10倍よりも長く)されている。なお、この被覆導電体10は、例えば、被覆導電体10が長手方向において引っ張られることで、導電性繊維12が長手方向において絶縁性被膜14中で複数に切断されて製造される。   Furthermore, as shown in FIG. 2B, a plurality of conductive fibers 12 may be discontinuous in the longitudinal direction of the coated conductor 10. In this case, the length of each conductive fiber 12 made discontinuous is set to be equal to or less than the wavelength of an electromagnetic wave described later (particularly shorter than ¼ of the wavelength of the electromagnetic wave), and the thickness of the conductive fiber 12 is reduced. Is sufficiently long (in particular, longer than 10 times the thickness of the conductive fiber 12). The coated conductor 10 is manufactured, for example, by pulling the coated conductor 10 in the longitudinal direction, so that the conductive fibers 12 are cut into a plurality of pieces in the insulating coating 14 in the longitudinal direction.

また、図3に示す如く、絶縁性被膜14中に、導電性材料または誘電性材料としての粉状の混入粉20を分散混入してもよい。この場合、混入粉20は、金属粉やカーボン粉等の高導電率を有する強導電性材料粉や、セラミックス粉(例えばチタン酸バリウム粉)等の高誘電率を有する強誘電性材料粉とされている。   Further, as shown in FIG. 3, powdery mixed powder 20 as a conductive material or a dielectric material may be dispersed and mixed in the insulating coating 14. In this case, the mixed powder 20 is a highly conductive material powder having a high conductivity such as a metal powder or carbon powder, or a ferroelectric material powder having a high dielectric constant such as a ceramic powder (for example, barium titanate powder). ing.

図4及び図5には、本発明の実施の形態に係る人工誘電体30が断面図にて示されている。   4 and 5 are sectional views of the artificial dielectric 30 according to the embodiment of the present invention.

図4(A)及び図4(B)に示す人工誘電体30は、板状にされており、上記導電性繊維12が不連続にされていない被覆導電体10が、母材としてのマトリクス32に混入されている。マトリクス32は、板材を構成できるものであれば何でもよく、例えば、石膏、珪酸カルシウム、エポキシ、アクリル、モルタル、ゴム、シリコン、塩化ビニル、尿素樹脂、テフロン(登録商標)、ポリイミド、土、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、セルロース等とされている。さらに、マトリクス32は、セラミックス(例えばチタン酸バリウム)等の誘電性材料としての高誘電率を有する強誘電性材料にされてもよく、また、導電性材料または誘電性材料としての上記混入粉20が分散混入されたものであってもよい。   The artificial dielectric 30 shown in FIGS. 4 (A) and 4 (B) has a plate shape, and the coated conductor 10 in which the conductive fibers 12 are not discontinuous is formed as a matrix 32 as a base material. It is mixed in. The matrix 32 may be anything as long as it can constitute a plate material. For example, gypsum, calcium silicate, epoxy, acrylic, mortar, rubber, silicon, vinyl chloride, urea resin, Teflon (registered trademark), polyimide, earth, ABS ( Acrylonitrile, butadiene, styrene) resin, cellulose and the like. Further, the matrix 32 may be a ferroelectric material having a high dielectric constant as a dielectric material such as ceramics (for example, barium titanate), and the mixed powder 20 as a conductive material or a dielectric material. May be dispersed and mixed.

図4(A)では、被覆導電体10が二次元的または三次元的に不規則(ランダム)に配列された状態でマトリクス32に混入されている。一方、図4(B)では、被覆導電体10が規則的(平行)に配列された状態でマトリクス32に混入されている。   In FIG. 4A, the coated conductors 10 are mixed in the matrix 32 in a state of being irregularly (randomly) arranged two-dimensionally or three-dimensionally. On the other hand, in FIG. 4B, the coated conductors 10 are mixed in the matrix 32 in a state of being regularly (parallel) arranged.

図5(A)に示す人工誘電体30では、上記導電性繊維12が不連続にされた被覆導電体10が、絡められて(組み合わされて)二次元的または三次元的に不規則に配置されている。一方、図5(B)に示す人工誘電体30では、上記導電性繊維12が不連続にされた被覆導電体10が、各種の織り方(縦横に平行に織る平織り)により織られて(組み合わされて)二次元的または三次元的な織物にされている。   In the artificial dielectric 30 shown in FIG. 5A, the coated conductor 10 in which the conductive fibers 12 are discontinuous is entangled (combined) and irregularly arranged two-dimensionally or three-dimensionally. Has been. On the other hand, in the artificial dielectric 30 shown in FIG. 5B, the coated conductor 10 in which the conductive fibers 12 are discontinuous is woven (combined) by various weaving methods (plain weaving in parallel in the vertical and horizontal directions). Have been made into two-dimensional or three-dimensional fabrics.

また、図5(A)または図5(B)に示す人工誘電体30は、組み合わされた被覆導電体10が上記マトリクス32に混入されて板状にされた構成であってもよい。   The artificial dielectric 30 shown in FIG. 5A or FIG. 5B may have a configuration in which the combined coated conductors 10 are mixed into the matrix 32 to form a plate shape.

ここで、人工誘電体30の誘電率は、導電性繊維12によって高くされており、人工誘電体30に電磁波が到来した際には、互いに導通されない導電性繊維12間で電界エネルギーが周期的に蓄積及び放出されることで、人工誘電体30を透過する電磁波に伝播遅延が生じる構成である。   Here, the dielectric constant of the artificial dielectric 30 is increased by the conductive fibers 12, and when electromagnetic waves arrive at the artificial dielectric 30, the electric field energy is periodically generated between the conductive fibers 12 that are not electrically connected to each other. By being accumulated and emitted, a propagation delay occurs in the electromagnetic wave that passes through the artificial dielectric 30.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

以上の構成の人工誘電体30では、導電性繊維12が絶縁性被膜14で被膜された被覆導電体10を有しているため、絶縁性被膜14によって導電性繊維12同士の接触が抑制あるいは防止されて、導電性繊維12同士の導通が抑制あるいは防止される。なお、各導電性繊維12の両端面は絶縁性被膜14で被膜されていないが、導電性繊維12の端面同士が接触する確率は極めて低い。このため、導電性繊維12が高濃度で配置されて導電性繊維12間の隙間の数を多くすると共に導電性繊維12間の隙間を狭くした場合でも、導電性繊維12間で電界エネルギーを極めて高い確率で蓄積することができると共に、導電性繊維12の実質的な長さを極めて高い確率で短くでき、人工誘電体30の誘電率を高くすることができる。   In the artificial dielectric 30 having the above configuration, since the conductive fiber 12 has the coated conductor 10 coated with the insulating coating 14, the insulating coating 14 suppresses or prevents contact between the conductive fibers 12. Thus, conduction between the conductive fibers 12 is suppressed or prevented. In addition, although the both end surfaces of each conductive fiber 12 are not coat | covered with the insulating film 14, the probability that the end surfaces of the conductive fiber 12 contact is very low. For this reason, even when the conductive fibers 12 are arranged at a high concentration to increase the number of gaps between the conductive fibers 12 and to narrow the gaps between the conductive fibers 12, the electric field energy is extremely reduced between the conductive fibers 12. In addition to being able to accumulate with high probability, the substantial length of the conductive fiber 12 can be shortened with extremely high probability, and the dielectric constant of the artificial dielectric 30 can be increased.

また、複数の導電性繊維12が不連続にされた状態で絶縁性被膜14に被膜された被覆導電体10では、不連続にされた各導電性繊維12が短くされる。このため、導電性繊維12間で蓄積する電界エネルギーを大きくすることができ、人工誘電体30の誘電率を一層高くすることができる。   Further, in the coated conductor 10 coated with the insulating coating 14 in a state where the plurality of conductive fibers 12 are discontinuous, each of the discontinuous conductive fibers 12 is shortened. For this reason, the electric field energy accumulated between the conductive fibers 12 can be increased, and the dielectric constant of the artificial dielectric 30 can be further increased.

さらに、絶縁性被膜14に混入粉20(強導電性材料粉または強誘電性材料粉)が分散混入された被覆導電体10では、絶縁性被膜14の誘電率が高くなる。このため、導電性繊維12間で蓄積する電界エネルギーを大きくすることができ、人工誘電体30の誘電率を一層高くすることができる。   Furthermore, in the coated conductor 10 in which the mixed powder 20 (strong conductive material powder or ferroelectric material powder) is dispersed and mixed in the insulating coating 14, the dielectric constant of the insulating coating 14 is increased. For this reason, the electric field energy accumulated between the conductive fibers 12 can be increased, and the dielectric constant of the artificial dielectric 30 can be further increased.

また、マトリクス32が強誘電性材料にされた人工誘電体30やマトリクス32に混入粉20(強導電性材料粉または強誘電性材料粉)が分散混入された人工誘電体30では、被覆導電体10間の誘電率が高くなる。このため、導電性繊維12間で蓄積する電界エネルギーを大きくすることができ、人工誘電体30の誘電率を一層高くすることができる。   Further, in the artificial dielectric 30 in which the matrix 32 is made of a ferroelectric material and in the artificial dielectric 30 in which the mixed powder 20 (ferroelectric material powder or ferroelectric material powder) is dispersed and mixed in the matrix 32, the coated conductor is used. The dielectric constant between 10 increases. For this reason, the electric field energy accumulated between the conductive fibers 12 can be increased, and the dielectric constant of the artificial dielectric 30 can be further increased.

被覆導電体10がマトリクス32に混入された人工誘電体30や被覆導電体10が組み合わされた人工誘電体30(導電性繊維12が絡められたまたは織られた人工誘電体30)では、被覆導電体10の位置を固定することができる。   In the artificial dielectric 30 in which the coated conductor 10 is mixed in the matrix 32 or the artificial dielectric 30 in which the coated conductor 10 is combined (the artificial dielectric 30 in which the conductive fibers 12 are entangled or woven), the coated conductive The position of the body 10 can be fixed.

なお、本実施の形態では、導電体を導電性繊維12にした構成としたが、導電体を粒状または粒子状にした構成としてもよい。   In the present embodiment, the conductive material is the conductive fiber 12, but the conductive material may be granular or particulate.

(適用例)
図6(A)には、第1適用例に係る電磁波吸収体40が断面図にて示されている。
(Application example)
FIG. 6A shows a cross-sectional view of the electromagnetic wave absorber 40 according to the first application example.

第1適用例に係る電磁波吸収体40では、裏面に導電性を有する膜状の反射膜42が設けられており、反射膜42の表側に上記実施の形態に係る人工誘電体30が設けられている。さらに、人工誘電体30の表側(電磁波吸収体40の表面)には、分割導電膜44が設けられており、分割導電膜44では、複数の導電性を有する矩形膜状の導体46が互いに間隙を隔てて格子状に配置されている。   In the electromagnetic wave absorber 40 according to the first application example, a film-like reflective film 42 having conductivity is provided on the back surface, and the artificial dielectric 30 according to the above embodiment is provided on the front side of the reflective film 42. Yes. Furthermore, a split conductive film 44 is provided on the front side of the artificial dielectric 30 (the surface of the electromagnetic wave absorber 40). In the split conductive film 44, a plurality of conductive rectangular film conductors 46 are spaced from each other. They are arranged in a grid pattern with a gap between them.

この電磁波吸収体40では、表側から到来した電磁波が、分割導電膜44(複数の導体46)で反射、吸収及び透過され、かつ、人工誘電体30で吸収及び透過されると共に、反射膜42で反射及び吸収される。このため、到来した電磁波と、反射膜42で反射されて人工誘電体30を介して分割導電膜44を透過した電磁波(分割導電膜44と反射膜42との間で多重反射された電磁波を含む)と、が互いに干渉して打ち消し合うことで、表側から到来した電磁波が吸収される。   In the electromagnetic wave absorber 40, the electromagnetic wave that has arrived from the front side is reflected, absorbed, and transmitted by the divided conductive film 44 (the plurality of conductors 46), and is absorbed and transmitted by the artificial dielectric 30. Reflected and absorbed. For this reason, the incoming electromagnetic wave and the electromagnetic wave reflected by the reflective film 42 and transmitted through the divided conductive film 44 through the artificial dielectric 30 (including electromagnetic waves that are multiple-reflected between the divided conductive film 44 and the reflective film 42). ) Interfere with each other and cancel each other, so that electromagnetic waves coming from the front side are absorbed.

ここで、この電磁波吸収体40では、上述の如く人工誘電体30の誘電率が高くされているため、電磁波が分割導電膜44を透過する際のみならず、電磁波が人工誘電体30を透過する際にも、効果的に電磁波の伝搬遅延が生じる。これにより、人工誘電体30の厚さを、電磁波の波長の1/4(電磁波の伝搬遅延が生じない場合において到来した電磁波と反射膜42で反射された電磁波とが互いに打ち消し合う最小厚さ)よりも、大幅に薄くすることができ、電磁波吸収体40の厚さを大幅に薄くすることができる。   Here, in the electromagnetic wave absorber 40, since the dielectric constant of the artificial dielectric 30 is increased as described above, the electromagnetic wave passes through the artificial dielectric 30 as well as when the electromagnetic wave passes through the divided conductive film 44. In some cases, the propagation delay of electromagnetic waves is effectively generated. Thereby, the thickness of the artificial dielectric 30 is set to ¼ of the wavelength of the electromagnetic wave (the minimum thickness at which the electromagnetic wave that has arrived and the electromagnetic wave reflected by the reflective film 42 cancel each other when no propagation delay of the electromagnetic wave occurs). The thickness of the electromagnetic wave absorber 40 can be significantly reduced.

図6(B)には、第2適用例に係る電磁波吸収体50が断面図にて示されている。   FIG. 6B shows a cross-sectional view of the electromagnetic wave absorber 50 according to the second application example.

第2適用例に係る電磁波吸収体50では、厚さ方向中央に反射膜42が設けられており、反射膜42の表側及び裏側に人工誘電体30が設けられている。各人工誘電体30の反反射膜42側には分割導電膜44が設けられており、各分割導電膜44の反人工誘電体30側には、シート状の化粧シート52が設けられている。   In the electromagnetic wave absorber 50 according to the second application example, the reflective film 42 is provided in the center in the thickness direction, and the artificial dielectric 30 is provided on the front side and the back side of the reflective film 42. A divided conductive film 44 is provided on the anti-reflective film 42 side of each artificial dielectric 30, and a sheet-like decorative sheet 52 is provided on the anti-artificial dielectric 30 side of each divided conductive film 44.

この電磁波吸収体50では、表側及び裏側から到来した電磁波(化粧シート52を透過した電磁波)が、第1適用例と同様に吸収される。   In this electromagnetic wave absorber 50, electromagnetic waves that have arrived from the front side and the back side (electromagnetic waves that have passed through the decorative sheet 52) are absorbed in the same manner as in the first application example.

ここで、このように電磁波吸収体50が表側及び裏側から到来した電磁波を吸収できる場合でも、第1適用例と同様に各人工誘電体30の厚さを電磁波の波長の1/4よりも大幅に薄くすることができ、電磁波吸収体50の厚さを薄くすることができる。   Here, even when the electromagnetic wave absorber 50 can absorb electromagnetic waves coming from the front side and the back side in this way, the thickness of each artificial dielectric 30 is significantly larger than ¼ of the wavelength of the electromagnetic waves as in the first application example. The thickness of the electromagnetic wave absorber 50 can be reduced.

図6(C)には、第3適用例に係る電磁波吸収体60が断面図にて示されている。   FIG. 6C shows an electromagnetic wave absorber 60 according to a third application example in a cross-sectional view.

第3適用例に係る電磁波吸収体60では、上記第1適用例に係る電磁波吸収体40を備えている。電磁波吸収体40の表側(分割導電膜44の表側)には、不燃性を有する板状の不燃部材62(例えば石膏ボードや珪カル板)が貼り付けられており、電磁波吸収体60は不燃部材62により不燃性を有している。   The electromagnetic wave absorber 60 according to the third application example includes the electromagnetic wave absorber 40 according to the first application example. On the front side of the electromagnetic wave absorber 40 (the front side of the divided conductive film 44), a nonflammable plate-like incombustible member 62 (for example, a gypsum board or a silicate board) is attached, and the electromagnetic wave absorber 60 is an incombustible member. 62 is nonflammable.

この電磁波吸収体60では、表側から到来した電磁波(不燃部材62を透過した電磁波)が、第1適用例と同様に吸収される。   In this electromagnetic wave absorber 60, the electromagnetic wave that has arrived from the front side (the electromagnetic wave that has passed through the non-combustible member 62) is absorbed in the same manner as in the first application example.

ここで、このように電磁波吸収体60が不燃部材62により不燃性を有している場合でも、第1適用例と同様に人工誘電体30の厚さを電磁波の波長の1/4よりも大幅に薄くすることができ、電磁波吸収体60の厚さを薄くすることができる。   Here, even when the electromagnetic wave absorber 60 is incombustible due to the non-combustible member 62 as described above, the thickness of the artificial dielectric 30 is significantly larger than ¼ of the wavelength of the electromagnetic wave as in the first application example. The thickness of the electromagnetic wave absorber 60 can be reduced.

図6(D)には、第4適用例に係る電磁波吸収体70が断面図にて示されている。   FIG. 6D shows a cross-sectional view of the electromagnetic wave absorber 70 according to the fourth application example.

第4適用例に係る電磁波吸収体70では、裏面に反射膜42が設けられており、反射膜42の表側に人工誘電体30が設けられている。さらに、人工誘電体30の内部(厚さ方向略中央)には、分割導電膜44が設けられており、分割導電膜44における導体46間の間隙にも人工誘電体30が設けられている。   In the electromagnetic wave absorber 70 according to the fourth application example, the reflective film 42 is provided on the back surface, and the artificial dielectric 30 is provided on the front side of the reflective film 42. Further, a divided conductive film 44 is provided inside the artificial dielectric 30 (approximately in the center in the thickness direction), and the artificial dielectric 30 is also provided in the gap between the conductors 46 in the divided conductive film 44.

この電磁波吸収体70では、表側から到来した電磁波が、表面(人工誘電体30の表面)で反射及び透過され、かつ、人工誘電体30及び分割導電膜44で吸収及び透過されると共に、反射膜42で反射及び吸収される。このため、到来した電磁波と、反射膜42で反射されて人工誘電体30及び分割導電膜44を透過した電磁波(表面と反射膜42との間で多重反射された電磁波を含む)と、が互いに干渉して打ち消し合うことで、表側から到来した電磁波が吸収される。   In this electromagnetic wave absorber 70, the electromagnetic wave coming from the front side is reflected and transmitted by the surface (the surface of the artificial dielectric 30), and is absorbed and transmitted by the artificial dielectric 30 and the divided conductive film 44. 42 is reflected and absorbed. For this reason, the incoming electromagnetic wave and the electromagnetic wave reflected by the reflective film 42 and transmitted through the artificial dielectric 30 and the divided conductive film 44 (including electromagnetic waves that are multiple-reflected between the surface and the reflective film 42) are mutually connected. By interfering and canceling, electromagnetic waves coming from the front side are absorbed.

ここで、この電磁波吸収体70でも、第1適用例と同様に人工誘電体30の厚さを電磁波の波長の1/4よりも大幅に薄くすることができ、電磁波吸収体70の厚さを大幅に薄くすることができる。   Here, also in this electromagnetic wave absorber 70, the thickness of the artificial dielectric 30 can be made much thinner than ¼ of the wavelength of the electromagnetic wave, as in the first application example, and the thickness of the electromagnetic wave absorber 70 can be reduced. Can be significantly thinner.

図6(E)には、第5適用例に係る電磁波吸収体80が断面図にて示されている。   FIG. 6E shows a cross-sectional view of the electromagnetic wave absorber 80 according to the fifth application example.

第5適用例に係る電磁波吸収体80は、第4適用例に係る電磁波吸収体70を備えており、表面(人工誘電体30の表側)に整合膜82(吸収膜)が設けられている。   The electromagnetic wave absorber 80 according to the fifth application example includes the electromagnetic wave absorber 70 according to the fourth application example, and a matching film 82 (absorption film) is provided on the surface (the front side of the artificial dielectric 30).

この電磁波吸収体80では、表側から到来した電磁波が、整合膜82で反射、吸収及び透過され、かつ、人工誘電体30及び分割導電膜44で吸収及び透過されると共に、反射膜42で反射及び吸収される。このため、到来した電磁波と、反射膜42で反射されて人工誘電体30及び分割導電膜44を経て整合膜82を透過した電磁波(整合膜82と反射膜42との間で多重反射された電磁波を含む)と、が互いに干渉して打ち消し合うことで、表側から到来した電磁波が吸収される。   In this electromagnetic wave absorber 80, the electromagnetic wave coming from the front side is reflected, absorbed and transmitted by the matching film 82, absorbed and transmitted by the artificial dielectric 30 and the divided conductive film 44, and reflected and reflected by the reflective film 42. Absorbed. For this reason, the incoming electromagnetic wave and the electromagnetic wave reflected by the reflective film 42 and transmitted through the matching film 82 through the artificial dielectric 30 and the divided conductive film 44 (the electromagnetic waves multiple-reflected between the matching film 82 and the reflective film 42). And the like, the electromagnetic waves arriving from the front side are absorbed.

ここで、この電磁波吸収体80でも、第1適用例と同様に人工誘電体30の厚さを電磁波の波長の1/4よりも大幅に薄くすることができ、電磁波吸収体80の厚さを大幅に薄くすることができる。   Here, also in this electromagnetic wave absorber 80, the thickness of the artificial dielectric 30 can be made much thinner than ¼ of the wavelength of the electromagnetic wave, as in the first application example, and the thickness of the electromagnetic wave absorber 80 can be reduced. Can be significantly thinner.

図6(F)には、第6適用例に係る電磁波吸収体90が断面図にて示されている。   FIG. 6F shows a cross-sectional view of the electromagnetic wave absorber 90 according to the sixth application example.

第6適用例に係る電磁波吸収体90では、裏面に反射膜42が設けられており、反射膜42の表側に人工誘電体30が設けられている。さらに、電磁波吸収体90の表面(人工誘電体30の表側)には、整合膜82が設けられている。   In the electromagnetic wave absorber 90 according to the sixth application example, the reflective film 42 is provided on the back surface, and the artificial dielectric 30 is provided on the front side of the reflective film 42. Further, a matching film 82 is provided on the surface of the electromagnetic wave absorber 90 (the front side of the artificial dielectric 30).

この電磁波吸収体90では、表側から到来した電磁波が、整合膜82で反射、吸収及び透過され、かつ、人工誘電体30で吸収及び透過されると共に、反射膜42で反射及び吸収される。このため、到来した電磁波と、反射膜42で反射されて人工誘電体30を経て整合膜82を透過した電磁波(整合膜82と反射膜42との間で多重反射された電磁波を含む)と、が互いに干渉して打ち消し合うことで、表側から到来した電磁波が吸収される。   In the electromagnetic wave absorber 90, the electromagnetic wave coming from the front side is reflected, absorbed and transmitted by the matching film 82, absorbed and transmitted by the artificial dielectric 30, and reflected and absorbed by the reflective film 42. Therefore, an incoming electromagnetic wave, an electromagnetic wave reflected by the reflective film 42 and transmitted through the matching film 82 through the artificial dielectric 30 (including an electromagnetic wave multiple-reflected between the matching film 82 and the reflective film 42), Interfere with each other and cancel each other, so that electromagnetic waves coming from the front side are absorbed.

ここで、この電磁波吸収体90でも、第1適用例と同様に人工誘電体30の厚さを電磁波の波長の1/4よりも薄くすることができ、電磁波吸収体90の厚さを薄くすることができる。   Here, also in this electromagnetic wave absorber 90, the thickness of the artificial dielectric 30 can be made thinner than ¼ of the wavelength of the electromagnetic wave as in the first application example, and the thickness of the electromagnetic wave absorber 90 is reduced. be able to.

このように、第1適用例乃至第6適用例では、人工誘電体30の厚さを薄くすることができるため、人工誘電体30を安価で軽量にすることができると共に、安価で軽量な電磁波吸収体40、50、60、70、80、90を製作することができる。   As described above, in the first to sixth application examples, since the thickness of the artificial dielectric 30 can be reduced, the artificial dielectric 30 can be made inexpensive and light, and the electromagnetic wave can be made inexpensive and lightweight. Absorbers 40, 50, 60, 70, 80, 90 can be made.

(A)及び(B)は、本発明の実施の形態に係る被膜導電体を示す斜視図である。(A) And (B) is a perspective view which shows the film conductor which concerns on embodiment of this invention. (A)及び(B)は、本発明の実施の形態に係る被膜導電体を示す断面図である。(A) And (B) is sectional drawing which shows the film conductor which concerns on embodiment of this invention. 本発明の実施の形態に係る被膜導電体を示す断面図である。It is sectional drawing which shows the film conductor which concerns on embodiment of this invention. (A)及び(B)は、本発明の実施の形態に係る人工誘電体を示す断面図である。(A) And (B) is sectional drawing which shows the artificial dielectric material which concerns on embodiment of this invention. (A)及び(B)は、本発明の実施の形態に係る人工誘電体を示す平面図である。(A) And (B) is a top view which shows the artificial dielectric material which concerns on embodiment of this invention. 第1適用例乃至第6適用例に係る電磁波吸収体を示す断面図である。It is sectional drawing which shows the electromagnetic wave absorber which concerns on a 1st application example thru | or a 6th application example.

符号の説明Explanation of symbols

10 被覆導電体
12 導電性繊維(導電体、近傍導電体)
14 絶縁性被膜(絶縁体)
20 混入粉(導電性材料、誘電性材料)
30 人工誘電体
32 マトリクス(母材)
10 Coated conductor 12 Conductive fiber (conductor, nearby conductor)
14 Insulating coating (insulator)
20 Mixed powder (conductive material, dielectric material)
30 Artificial dielectric 32 Matrix (base material)

Claims (7)

導電性を有すると共に太さに比し長さを長くされ、近傍に配置される導電性を有する近傍導電体との間で電界エネルギーを蓄積するための導電体と、
絶縁性を有すると共に太さに比し長さを長くされ、前記導電体を長手方向において不連続にした状態で長手方向に沿って被覆する絶縁体と、
を有する被覆導電体。
Is lengthened compared to the thickness as well as have a conductivity, and conductors for storing electric field energy between the near conductor having conductivity are arranged in the vicinity,
It is lengthened compared to the thickness as well as organic insulating properties and insulator cladding in the longitudinal direction in a state in which the conductor was discontinuous in the longitudinal direction,
A coated conductor having:
前記絶縁体は、導電性を有する導電性材料が分散された構成及び前記導電体に比し高誘電率を有する誘電性材料を有する構成の少なくとも一方とされた、ことを特徴とする請求項1記載の被覆導電体。 2. The insulator is at least one of a configuration in which a conductive material having conductivity is dispersed and a configuration having a dielectric material having a dielectric constant higher than that of the conductor. The coated conductor as described. 導電性を有すると共に太さに比し長さを長くされた導電体を、長手方向において不連続にした状態で、絶縁性を有すると共に太さに比し長さを長くされた絶縁体によって、前記絶縁体の長手方向に沿って被覆した被覆導電体を有する人工誘電体。A conductor that has conductivity and has a length that is longer than the thickness of the conductor is made discontinuous in the longitudinal direction, and has an insulating property that has a length that is longer than that of the thickness. An artificial dielectric having a coated conductor coated along a longitudinal direction of the insulator. 前記絶縁体は、導電性を有する導電性材料が分散された構成及び前記導電体に比し高誘電率を有する誘電性材料を有する構成の少なくとも一方とされた、ことを特徴とする請求項3記載の人工誘電体。4. The insulator is at least one of a configuration in which a conductive material having conductivity is dispersed and a configuration having a dielectric material having a higher dielectric constant than the conductor. The described artificial dielectric. 前記被覆導電体間に、導電性を有する導電性材料及び前記導電体に比し高誘電率を有する誘電性材料の少なくとも一方を有する、ことを特徴とする請求項3または請求項4記載の人工誘電体。5. The artificial material according to claim 3, wherein at least one of a conductive material having conductivity and a dielectric material having a higher dielectric constant than that of the conductor is provided between the covered conductors. Dielectric. 前記被覆導電体が混入された母材を有する、ことを特徴とする請求項3乃至請求項5の何れか1項記載の人工誘電体。The artificial dielectric according to any one of claims 3 to 5, further comprising a base material mixed with the covering conductor. 前記被覆導電体が組み合わされた、ことを特徴とする請求項3乃至請求項6の何れか1項記載の人工誘電体。The artificial dielectric according to any one of claims 3 to 6, wherein the covering conductors are combined.
JP2003281493A 2003-07-29 2003-07-29 Coated conductor and artificial dielectric Expired - Fee Related JP3857672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281493A JP3857672B2 (en) 2003-07-29 2003-07-29 Coated conductor and artificial dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281493A JP3857672B2 (en) 2003-07-29 2003-07-29 Coated conductor and artificial dielectric

Publications (2)

Publication Number Publication Date
JP2005051047A JP2005051047A (en) 2005-02-24
JP3857672B2 true JP3857672B2 (en) 2006-12-13

Family

ID=34266979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281493A Expired - Fee Related JP3857672B2 (en) 2003-07-29 2003-07-29 Coated conductor and artificial dielectric

Country Status (1)

Country Link
JP (1) JP3857672B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201398A (en) * 1982-05-19 1983-11-24 三井東圧化学株式会社 Method of producing radio wave absorber
JPH1180468A (en) * 1997-09-03 1999-03-26 Asahi Chem Ind Co Ltd Resin molding material containing conductive filler
JP4005222B2 (en) * 1998-06-23 2007-11-07 株式会社ジャムコ Electromagnetic wave absorber
JP2002158482A (en) * 2000-11-16 2002-05-31 Kitagawa Ind Co Ltd Metallic powder for electromagnetic wave absorber, electromagnetic wave absorber, and paint
JP2002176286A (en) * 2000-12-06 2002-06-21 Tdk Corp Flame resistant radio wave absorbing sheet and three dimensional structure for absorbing flame resistant radio wave
JP2003298004A (en) * 2002-04-04 2003-10-17 Fujitsu Ltd High-frequency module of inter-device interference radio wave shielding type, and electronic device

Also Published As

Publication number Publication date
JP2005051047A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
Ahmad et al. Stealth technology: Methods and composite materials—A review
CN1926933B (en) Electromagnetic wave absorbent
WO2006088063A1 (en) Radio wave shielding body
JP4833571B2 (en) Electromagnetic wave absorber
EP0651697A1 (en) Method for making a material with artificial dielectric constant
KR20040010131A (en) Electromagnetic wave absorber
JP2008205447A (en) Radio wave absorber
JP3857672B2 (en) Coated conductor and artificial dielectric
JP5460697B2 (en) Radio wave absorber
JP5811177B2 (en) Partition structure and partition
JP2004153135A (en) Electromagnetic wave absorber
JP4171500B2 (en) Radio wave shield and manufacturing method thereof
JP2007184458A (en) Radio wave shielding body
JP4644543B2 (en) Radio wave shield
WO2008146044A1 (en) Novel compositions for providing radiation shielding
CN203826519U (en) Wave filtering structure
JP4658635B2 (en) Radio wave shield
KR102575570B1 (en) Electromagnetic metamaterial absorber including via holes
JP2004119565A (en) Radio wave absorber and building material having radio wave absorption power
JP2006233457A (en) Radio shielding body
JP2006314016A (en) Radio wave absorbing structural body
CN104934661B (en) Filtering structure
KR200411474Y1 (en) Electromagentic waves interception a heat insulator styrofoam
JP2003115693A (en) Wave absorber
KR200225364Y1 (en) Construction panel for preventing electrostatic induction

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees