JP3857095B2 - Heating device such as water tank - Google Patents

Heating device such as water tank Download PDF

Info

Publication number
JP3857095B2
JP3857095B2 JP2001276702A JP2001276702A JP3857095B2 JP 3857095 B2 JP3857095 B2 JP 3857095B2 JP 2001276702 A JP2001276702 A JP 2001276702A JP 2001276702 A JP2001276702 A JP 2001276702A JP 3857095 B2 JP3857095 B2 JP 3857095B2
Authority
JP
Japan
Prior art keywords
water temperature
water
sensing element
temperature sensing
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001276702A
Other languages
Japanese (ja)
Other versions
JP2003079269A (en
Inventor
正志 芝原
Original Assignee
クマガイ電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クマガイ電工株式会社 filed Critical クマガイ電工株式会社
Priority to JP2001276702A priority Critical patent/JP3857095B2/en
Publication of JP2003079269A publication Critical patent/JP2003079269A/en
Application granted granted Critical
Publication of JP3857095B2 publication Critical patent/JP3857095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バケツや水槽内に投入して内部の水を所定温度にまで加熱し、その水温を保持するようにした加熱装置の改良に関するものである。
【0002】
【従来の技術】
従来から、例えば熱帯魚などを鑑賞する水槽においては、水槽内の温度を一定温度に加熱、保持するための加熱装置が使用されている。この加熱装置は通電によって発熱するヒータと、このヒータに電力を供給、遮断するスイッチ素子と、温度検知センサ及び温度制御回路とを備えてあり、ヒータによって加熱された水温が設定温度以下においてはヒータに電力を供給して水槽内の水を加熱し、水槽内の水が設定温度に達するとスイッチ素子により通電を遮断してヒータに対する電力の供給を停止し、これを繰り返し行わせて水槽内の水の温度を所定温度に保持している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の加熱装置では水漏れや水槽の転倒、或いは、ヒータが誤って水槽外に出しておいた場合には空焚き状態となってヒータが異常に温度上昇し、火災が発生する等の極めて危険な事態となる虞れがある。このため、回路中に温度ヒューズを設けておき、異常に温度上昇した時にはその温度ヒューズを溶断させて電力を遮断するように構成しているが、一度、温度ヒューズが溶断すると加熱装置の構造上、その取り替えができないため、装置全体を破棄せざるを得ないという問題点がある。
【0004】
本発明は上記のような問題点に鑑みてなされたもので、その目的とするところは、簡単な回路構成によって空焚き状態となった場合にはヒータへの通電を停止状態に保持し、水中に再投入等することによって、或いは、電源プラグをコンセントから抜く等のリセット操作を行うことによって元の使用状態に復帰させることができるようにした水槽等の加熱装置を提供するにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の水槽等の加熱装置は、請求項1に記載したように、主ヒータと、この主ヒータに電力の通電、遮断を行う半導体スイッチと、水温が所定温度に達した時に上記半導体スイッチを非導通とし且つ所定温度以下になると該半導体スイッチを導通状態にする水温感知素子とによって水温制御回路を構成し、この水温制御回路における上記主ヒータの接続子側の回路部間に側路を接続して該側路における上記水温感知素子の近傍位置に補助ヒータを配設し、さらに、この補助ヒータと水温感知素子との間に金属製の熱遮蔽部材を介在させてこの熱遮蔽部材により水中においては補助ヒータからの伝熱を水温感知素子に伝熱することなく水中に放熱させて該補助ヒータの熱により上記水温感知素子の作動を不能状態とし、気中においては水温感知素子に伝熱して該水温感知素子を作動させて上記半導体スイッチを非導通状態に保持するように構成している。
【0006】
【作用】
加熱装置をバケツ或いは水槽等の水中に投入し、水温制御回路に通電すると、主ヒータが発熱して水を加熱する。水温が所定温度に達すると水温感知素子が開き、半導体スイッチを非導通状態にして主ヒータへの通電を遮断する。水温が低下すると再び水温感知素子が自動的に閉じて半導体スイッチを導通状態にし、主ヒータを発熱させて所定温度にまで水温を上昇させる。このように、水温感知素子の開閉によって主ヒータへの電力の供給、遮断を行いながら水温を所定温度に保持する。
【0007】
水温を一定温度に制御している状態において、上記補助ヒータを水温制御回路における主ヒータの接続子側の回路部間に接続した側路に設けている場合には、半導体スイッチが導通、非導通にかかわらず常に発熱している。
【0008】
しかしながら、この補助ヒータが通電によって発熱しても、水中においては水の熱伝導率が大きいために水中に放熱されて温度上昇が小さく、従って、補助ヒータからの発熱は水温感知素子の開閉に殆ど影響を与えることはなく、この水温感知素子によって上述したように水温を一定温度に制御させることができる。
【0009】
この場合、補助ヒータの発熱によって水温感知素子周辺の水温が、多少、高くなるので、補助ヒータと水温感知素子との間に金属製の熱遮蔽部材を介在させておけば、補助ヒータからこの熱遮蔽部材に伝わる熱を水温感知素子に直接、伝熱させることなく、水中に放熱させて補助ヒータの発熱による水温感知素子の開放を確実に防止することができる。
【0010】
次に、地震等によって水槽やバケツ内が水漏れや地震等による転倒、或いは、ヒータが誤って水槽外に出しておいた場合等のように気中での空焚き状態となった時には、通電によって発熱している補助ヒータは空気の熱伝導率が小さいために温度上昇が大きくなって水温感知素子を開にし、半導体スイッチを非導通状態にして主ヒータに対する電力の供給を停止させた状態に保持する。
【0011】
例えば、補助ヒータの電力を2ワットとすると、水温感知素子の周辺の空気の温度を略20℃上昇させることができ、気中の温度(気温)が10℃であれば、水温感知素子の周辺が略30℃となって水温感知素子を開にすることができる。この場合、気温が5℃以下であれば、補助ヒータの発熱にもかかわらず、水温感知素子の周辺の空気が25℃以下となって該水温感知素子が閉じた状態を保持するが、この水温感知素子の閉止していると、主ヒータの温度が上昇し、その温度が水温感知素子に伝熱して該水温感知素子を開かせて主ヒータに対する電力の供給を停止させることができる。
【0012】
そして、加熱装置の電源プラグを電源コンセントから引き抜いたのち再び差し込む等のリセット操作を行うことによって、或いは、この加熱装置を水槽中に投入等することによって再使用状態にすることができる。
【0013】
【発明の実施の形態】
次に、本発明の具体的な実施の形態を図面について説明すると、図1はバケツや水槽(以下、水槽という)内に投入して水槽内に収容されている水を所定温度にまで加熱する加熱装置を示すもので、ガラス製の管からなる筒状本体1内の一半部内にニクロム線からなる主ヒータ2を配設していると共に、この筒状本体1内の他半部には感温リードスイッチからなる水温感知素子LS1 とこの水温感知素子LS1 に近接させた位置に配設している抵抗器からなる補助ヒータR2、及び、トライアックからなる半導体スイッチTC1 を備えた温度制御回路を構成しているプリント基板3を設けてあり、この温度制御回路に圧着接続子H1、H2を介して上記主ヒータ2を接続している。なお、水温感知素子LS1 に対して補助ヒータR2を近接させた位置とは、補助ヒータR2の発熱を水温感知素子LS1 が感知し得る位置である。また、補助ヒータR2の能力は主ヒータ2が空気中で500 ℃以上になるのに対して30〜50℃であり、電力的には主ヒータ2が100 〜300 Wに対して補助ヒータR2は1〜2Wのものである。
【0014】
さらに、上記水温感知素子LS1 と補助ヒータR2との間に金属製の熱遮蔽部材4を介在させている。この熱遮蔽部材4は、図2に示すように筒状本体1の他端部内周面に内嵌した短筒部4aと、この短筒部4aの一端から水平状に突設した板部4bとからなり、この板部4bを水温感知素子LS1 と補助ヒータR2との間に介在させていると共に、短筒部4aと板部4bとの間にゴム製の仕切り板5を配設し、この仕切り板5に設けているスリット5aを通じて板部4bを水温感知素子LS1 と補助ヒータR2との間に介在させている。
【0015】
また、主ヒータ2から仕切り板5に至る筒状本体1内にはマグネシア砂を充填していると共に筒状本体1の一端部内をシリコンで防水し、ゴム製キャップ6を筒状本体1の一端部外周面に被着して筒状本体1内を水密状態に保護している一方、筒状本体1の他端部における上記熱遮蔽部材4の短筒部4a側にシリコンを充填して上記温度制御回路のプリント基板3の電気的絶縁を保持してあり、さらに、筒状本体1の他端部にゴム製キャップ7を被着して内部を水密状態に保護していると共にこのゴム製キャップ7から上記温度制御回路に接続して電源を供給するための先端に電源フラグ8を有する電源コード9を引き出している。
【0016】
図3は主ヒータ2や補助ヒータR2等を備えた上記温度制御回路を示すもので、電源コード9から給電された電力は電源コード9側に接続した回路の接続子AC1 、AC2 における一方の接続子AC1 から主ヒータ2側の一方の接続子H1を通じて主ヒータ2に流れたのち、該主ヒータ2側の他方の接続子H2から電源コード9側の他方の接続子AC2 へと流れる回路10を有し、この回路10における主ヒータ2と電源コード9との他方の接続子H2、AC2 間にトライアックからなる上記半導体スイッチTC1 の端子T1、T2を接続していると共にこの半導体スイッチTC1 の端子T2側とゲート間に水感温リードスイッチからなる上記水温感知素子LS1 と抵抗R1とを有する回路10a を接続して水温制御回路10を構成している。
【0017】
さらに、この水温制御回路10における上記半導体スイッチTC1 のT1、T2端子間に上記補助ヒータR2を有する回路10b を接続している。即ち、この回路10b を上記半導体スイッチTC1 の回路10a に並列接続してあり、補助ヒータR2を上述のように、水温制御回路10における感温リードスイッチからなる上記水温感知素子LS1 の近傍位置、即ち、補助ヒータR2の発熱がこの水温感知素子LS1 によって感知し得る対向位置に配設していると共にこの補助ヒータR2と水温感知素子LS1 との間に上記熱遮蔽部材4の板部4bを介在させている。
【0018】
次に、このように構成した加熱装置の作用を述べる。筒状本体1を水槽の水中に投入すると共に電源プラグ8をコンセント(図示せず)に差し込むと、電源コード9に電力が給電されて電流が水温制御回路10における接続子AC1 から接続子H1、主ヒータ2、接続子H2、トライアックからなる半導体スイッチTC1 、接続子AC2 へと流れ、主ヒータ2が発熱して水を加熱すると共に加熱された水の温度は水温制御回路10中に設けている水温感知素子LS1 によって感知される。
【0019】
水温感知素子LS1 として使用している感温リードスイッチは、水温が所定の温度、例えば25℃になると開き、この温度よりも僅かに低くなると閉じるように構成されてあり、従って、水温が所定の温度に達すると、該感温リードスイッチが開いて水温制御回路10中のトライアックからなる半導体スイッチTC1 が導通しなくなって主ヒータ2への電力の供給が遮断される一方、水温が所定温度(25℃)よりも僅かに低くなると、感温リードスイッチからなる水温感知素子LS1 が閉じて半導体スイッチTC1 が導通し、主ヒータ2による水の加温が行われる。このように、水温感知素子LS1 の開閉の繰り返しによって水槽内の水が所定の温度に保持される。
【0020】
また、半導体スイッチTC1 が導通して主ヒータ2に通電しているときは、半導体スイッチTC1 の端子T1、T2間の電圧は無視できるから補助ヒータR2には電流が流れず、従って、補助ヒータR2は発熱しないが、半導体スイッチTC1 非導通となって主ヒータ2が開状態のときには、電流が接続子AC1 から主ヒータ2側の一方の接続子H1、主ヒータ2、該主ヒータ2側の他方の接続子H2を通じて補助ヒータR2へと流れる。しかしながら、例えば、電源電圧を100V、主ヒータ2の電力を200W、補助ヒータR2の電力を2Wとすると、主ヒータ2の抵抗値が50Ω、補助ヒータの抵抗値が5000Ωとなって、主ヒータ2に流れる電流による発生熱量は無視することができ、補助ヒータR2によって支配される。
【0021】
電力が2Wの補助ヒータR2が水中において発熱すると、該補助ヒータR2と水中との温度差は水の熱伝導率0.5 W/m℃に反比例するので、ガラス管からなる筒状本体1の放熱面積及び水中で温度勾配を生じる筒状本体1の表面からの距離を所定量に設定すると約2℃位になる。同様に、空気中において電力が2Wの補助ヒータR2が発熱すると、空気の熱伝導率が0.025 W/m℃であって温度差が約22℃となる。なお、温度差は熱伝導率の値に反比例するので、水中より気中が20倍になるが、実際にはガラス管からなる筒状本体1の表面の状態や水、空気の対流、等の条件を効力した場合、上記の半分、即ち、水中より気中が10倍程度になると考えるのが適当である。
【0022】
従って、熱伝導率の大きい水中において補助ヒータR2が発熱すると、温度差が少なくても水中に直ちに放熱されて該補助ヒータR2周辺の水温を約2℃上昇させるが、この補助ヒータR2と水温感知素子LS1 との間には金属製の熱遮蔽部材4が介在しているので、補助ヒータR2の発熱はこの熱遮蔽部材4の板部4bから短筒部4aに伝熱して水中に放熱され、上記温度上昇が水温感知素子LS1 に殆ど影響を及ぼすことはない。そのため、水温感知素子LS1 が上述したように所定の水温(25℃)に達した時に主ヒータ2への通電を停止させ、水温が所定温度よりも僅かに低くなると、主ヒータ2が通電して所定の水温に達するまで水の加熱が行われるものである。
【0023】
次に、水槽が水漏れや転倒、或いは、筒状本体1が誤って水槽外に出しておいた場合のように空気中での通電状態となった時には、通電によって発熱している補助ヒータR2は、上述したように空気の熱伝導率が小さいために放熱量が少なくなって温度が上昇し、この温度上昇によって水温感知素子LS1 を開状態に保持して主ヒータ2への通電を停止状態に維持する。例えば、気中温度が10℃であれば、水温感知素子LS1 の周囲が30℃以上の温度となって、該水温感知素子LS1 を開き、トライアックからなる半導体スイッチTC1 を非導通状態に保持しておくことができるものである。なお、気中の温度が5℃以下であると、補助ヒータR2の発熱にもかかわらず、水温感知素子LS1 の周囲の温度が25℃以下となって該水温感知素子LS1 が閉じた状態となるが、この場合には主ヒータ2が発熱するために、その温度上昇によって水温感知素子LS1 の周囲の温度が25℃以上に達した時に該水温感知素子LS1 が開き、主ヒータ2の発熱が停止することになる。
【0024】
図4は上記温度制御回路の変形例を示すもので、上記実施の形態においては、補助ヒータR2を半導体スイッチTC1 の回路10a に対して並列接続した回路10b に設けているが、この図4に示す温度制御回路においては、補助ヒータR2を回路10におけるトライアックからなる半導体スイッチTC1 の端子T1側と主ヒータ2の一方の接続子H1との間に接続した側路10c に、水温感知素子LS1 に近接して設けているものである。その他の構造については上記実施の形態と同じであるので、同一部分には同一符号を付して詳細な説明を省略する。
【0025】
このように構成したので、筒状本体1を水槽の水中に投入すると共に電源プラグ8をコンセント(図示せず)に差し込むと、電源コード9からの電力は水温制御回路10における一方の接続子AC1 から接続子H1、主ヒータ2、接続子H2、トライアックからなる半導体スイッチTC1 、接続子AC2 へと流れて主ヒータ2が発熱すると共に、上記電力は水温制御回路10における一方の接続子AC1 から側路10c 側にも流れて補助ヒータR2から他方の接続子AC2 に流通し、補助ヒータR2は感温リードスイッチからなる上記水温感知素子LS1 の動作に関係なく常に発熱している。
【0026】
従って、上記実施の形態と同様に主ヒータ2の発熱によって水が加熱されると共にその水温が水温制御回路10中に設けている水温感知素子LS1 によって感知され、水温感知素子LS1 は、水温が所定の温度、例えば25℃になると開いて半導体スイッチTC1 を非導通とし、この温度よりも僅かに低くなると閉じて半導体スイッチTC1 を導通させることになり、この繰り返しにより水槽内の水が所定の温度に保持される。
【0027】
一方、補助ヒータR2は常に発熱しているが、熱伝導率の大きい水中においては上述したように、該補助ヒータR2周辺の水温を約2℃上昇させるだけであり、この補助ヒータR2と水温感知素子LS1 との間には金属製の熱遮蔽部材4が介在しているので、補助ヒータR2の発熱はこの熱遮蔽部材4の板部4bから短筒部4aに伝熱して水中に放熱され、上記温度上昇が水温感知素子LS1 に殆ど影響を及ぼすことはない。そのため、上記実施の形態と同様に、水温感知素子LS1 が上述したように所定の水温(25℃)に達した時に主ヒータ2への通電を停止させ、水温が所定温度よりも僅かに低くなると、主ヒータ2が通電して所定の水温に達するまで水の加熱が行われるものである。
【0028】
次に、水槽が水漏れや転倒、或いは、筒状本体1が誤って水槽外に出しておいた場合のように空気中での通電状態となった時には、通電によって発熱している補助ヒータR2は、上述したように空気の熱伝導率が小さいために放熱量が少なくなって温度が上昇し、この温度が熱遮蔽部材4に伝熱して該熱遮蔽部材4により水温感知素子LS1 が所定温度以上に加熱されて開状態を保持し、主ヒータ2への通電を停止状態に保持するものである。
【0029】
そして、上記図3、図4に示すいずれの実施の形態においても、水温制御回路10を備えた筒状本体1からなる加熱装置を元の水槽の水中に戻すことによって、或いは、電源プラグをコンセントから抜く等のリセット操作を行ったのち、再び電源プラグ6をコンセントに差し込むと共に筒状本体1を水槽内に投入することによって、元の使用状態に復帰させることができるものである。
【0030】
【発明の効果】
以上のように本発明の水槽等の加熱装置によれば、主ヒータと、この主ヒータに電力の通電、遮断を行う半導体スイッチと、水温が所定温度に達した時に上記半導体スイッチを非導通とし且つ所定温度以下になると該半導体スイッチを導通状態にする水温感知素子とによって水温制御回路を構成し、この水温制御回路における上記水温感知素子の近傍位置に上記電力の通電によって発熱する補助ヒータを配設して水中においては該補助ヒータの熱を水中に放熱させて該補助ヒータの熱による上記水温感知素子の作動を不能状態とし、気中通電により異常温度となった時にこの補助ヒータの熱により上記水温感知素子を作動させて上記半導体スイッチを非導通状態に保持するように構成しているので、構造が簡単で安価に提供し得るのは勿論、水中においては、補助ヒータの発熱を水温感知素子の作動に影響を及ぼすことなく、この水温感知素子によって水温を感知させて水槽内の水温を所定温度に保持することができ、気中における空焚き状態となった場合には補助ヒータの熱を水温感知素子に伝達して半導体スイッチを非導通状態とし、主ヒータへの通電を停止状態に保持して安全性を高めることができる。
【0031】
その上、電源プラグをコンセントから抜く等の人為的動作によって再使用可能な状態に復帰させることができるのは勿論、電源プラグをコンセントから抜くことなく加熱装置を再び水中に投入することによって、そのまま元の使用状態に復帰させ、水温を一定温度に加熱、保持することができる。
【0032】
このように、水温制御回路中に温度で作動する電子部品を使用することなく、電力の小さい補助ヒータをその回路に接続した簡単な構造によって、該補助ヒータから水への熱の流れと、空気中への熱の流れの物理定数の差を利用して水中においてはこの補助ヒータの発熱にもかかわらず、水温制御回路によって一定の水温に保持させることができ、気中においては補助ヒータの発熱によって水温感知素子を開状態に保持して主ヒータが異常高温になるのを確実に防止することができるものである。
【0033】
さらに、補助ヒータと水温感知素子との間に金属製の熱遮蔽部材を介在させてこの熱遮蔽部材により水中においては補助ヒータからの伝熱を水温感知素子に伝熱することなく水中に放熱させ、気中においては水温感知素子に伝熱して該水温感知素子を作動させるように構成しているので、水中においては補助ヒータの発熱を熱遮蔽部材によって水温感知素子に電熱するのを防止して水温感知素子により正確に水温感知を行わせることができ、気中においては熱遮蔽部材を介して水温感知素子に伝熱して該水温感知素子を確実に作動させることができる。
【図面の簡単な説明】
【図1】 加熱装置の簡略縦断側面図、
【図2】 遮蔽部材と仕切り板の斜視図、
【図3】 加熱装置の回路図、
【図4】 その変形例を示す回路図。
【符号の説明】
1 筒状本体
2 主ヒータ
4 遮蔽部材
10 水温制御回路
R2 補助ヒータ
TC1 半導体スイッチ(トライアック)
LS1 水温感知素子(感温リードスイッチ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a heating apparatus that is charged into a bucket or a water tank to heat the internal water to a predetermined temperature and maintain the water temperature.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, in an aquarium for appreciating tropical fish, a heating device for heating and maintaining the temperature in the aquarium at a constant temperature has been used. This heating device includes a heater that generates heat when energized, a switch element that supplies and cuts off power to the heater, a temperature detection sensor, and a temperature control circuit. When the temperature of water heated by the heater is below a set temperature, the heater When the water in the aquarium reaches the set temperature, the switch element cuts off the power supply and stops the power supply to the heater, and this is repeated until the water in the aquarium reaches the set temperature. The temperature of water is maintained at a predetermined temperature.
[0003]
[Problems to be solved by the invention]
However, in the above heating device, such as water leakage or water tank overturning, or if the heater is out of the water tank by mistake, it will become empty and the heater will rise abnormally, causing a fire, etc. There is a risk of a very dangerous situation. For this reason, a temperature fuse is provided in the circuit, and when the temperature rises abnormally, the temperature fuse is blown to cut off the power, but once the temperature fuse blows, the structure of the heating device However, since the replacement cannot be performed, there is a problem that the entire apparatus must be discarded.
[0004]
The present invention has been made in view of the above-described problems. The object of the present invention is to maintain the energization of the heater in a stopped state when it is idled by a simple circuit configuration, The present invention is to provide a heating device such as a water tank that can be returned to the original use state by re-inserting the power supply or the like, or by performing a reset operation such as removing the power plug from the outlet.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a heating apparatus such as a water tank according to the present invention includes a main heater, a semiconductor switch for energizing and shutting off the power to the main heater, and a water temperature of a predetermined temperature. A water temperature control circuit comprising a water temperature sensing element that renders the semiconductor switch non-conductive when the temperature reaches a predetermined temperature and the semiconductor switch becomes conductive when the temperature falls below a predetermined temperature. A side path is connected between the circuit portions, an auxiliary heater is disposed in the side path in the vicinity of the water temperature sensing element, and a metal heat shielding member is interposed between the auxiliary heater and the water temperature sensing element. In this state, heat transfer from the auxiliary heater is dissipated into the water without transferring heat to the water temperature sensing element in the water, and the operation of the water temperature sensing element is disabled by the heat of the auxiliary heater. And it is configured to hold the semiconductor switch non-conductive to operate the water temperature sensing element conducts the heat to the water temperature sensing element in a gas.
[0006]
[Action]
When the heating device is put into water such as a bucket or a water tank and the water temperature control circuit is energized, the main heater generates heat and heats the water. When the water temperature reaches a predetermined temperature, the water temperature sensing element is opened, and the semiconductor switch is turned off to cut off the power supply to the main heater. When the water temperature is lowered, the water temperature sensing element is automatically closed again, the semiconductor switch is turned on, the main heater is heated, and the water temperature is raised to a predetermined temperature. In this way, the water temperature is kept at a predetermined temperature while supplying and shutting off the power to the main heater by opening and closing the water temperature sensing element.
[0007]
In the state where the water temperature is controlled at a constant temperature, if the auxiliary heater is provided in a side path connected between the circuit parts on the main heater connector side in the water temperature control circuit , the semiconductor switch is turned on and off. Regardless of the fever always.
[0008]
However, even if this auxiliary heater generates heat when energized, the thermal conductivity of water is large in water, so that heat is dissipated into water and the temperature rise is small. Therefore, the heat generated from the auxiliary heater hardly affects the opening and closing of the water temperature sensing element. There is no influence, and the water temperature can be controlled to a constant temperature by the water temperature sensing element as described above.
[0009]
In this case, the water temperature around the water temperature sensing element slightly increases due to the heat generated by the auxiliary heater. Therefore, if a metal heat shielding member is interposed between the auxiliary heater and the water temperature sensing element, the heat from the auxiliary heater is increased. The heat transmitted to the shielding member can be radiated into the water without directly transferring the heat to the water temperature sensing element, thereby reliably preventing the water temperature sensing element from being opened due to the heat generated by the auxiliary heater.
[0010]
Next, when the water tank or bucket has fallen due to a water leak or an earthquake due to an earthquake or the like, or when the heater has been blown out of the water tank by mistake, such as when the heater has been accidentally moved out of the water tank, The auxiliary heater that generates heat due to the low thermal conductivity of the air increases the temperature, opens the water temperature sensing element, turns off the semiconductor switch, and stops supplying power to the main heater. Hold.
[0011]
For example, if the power of the auxiliary heater is 2 watts, the temperature of the air around the water temperature sensing element can be raised by about 20 ° C, and if the air temperature (air temperature) is 10 ° C, the temperature around the water temperature sensing element Becomes approximately 30 ° C., and the water temperature sensing element can be opened. In this case, if the air temperature is 5 ° C. or less, the air around the water temperature sensing element is 25 ° C. or less and the water temperature sensing element is kept closed despite the heat generated by the auxiliary heater. When the sensing element is closed, the temperature of the main heater rises, the temperature is transferred to the water temperature sensing element, and the water temperature sensing element is opened to stop the supply of power to the main heater.
[0012]
And it can be made into a reusable state by performing reset operation, such as reinserting, after pulling out the power plug of a heating apparatus from a power outlet, or by throwing this heating apparatus into a water tank.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, a specific embodiment of the present invention will be described with reference to the drawings. FIG. 1 is charged into a bucket or a water tank (hereinafter referred to as a water tank) to heat the water contained in the water tank to a predetermined temperature. A heating device is shown, and a main heater 2 made of nichrome wire is disposed in one half of a cylindrical main body 1 made of glass tube, and the other half of the cylindrical main body 1 is sensitive to the other half. Constructs a temperature control circuit with a water temperature sensing element LS1 consisting of a temperature reed switch, an auxiliary heater R2 consisting of a resistor located close to the water temperature sensing element LS1, and a semiconductor switch TC1 consisting of a triac A printed circuit board 3 is provided, and the main heater 2 is connected to the temperature control circuit via crimping connectors H1 and H2. The position where the auxiliary heater R2 is brought close to the water temperature sensing element LS1 is a position where the water temperature sensing element LS1 can sense the heat generated by the auxiliary heater R2. In addition, the capacity of the auxiliary heater R2 is 30 to 50 ° C. compared to 500 ° C. or more in the air in the main heater 2, and the power of the auxiliary heater R2 is 100 to 300 W in terms of power. 1-2W.
[0014]
Further, a metal heat shielding member 4 is interposed between the water temperature sensing element LS1 and the auxiliary heater R2. As shown in FIG. 2, the heat shielding member 4 includes a short cylindrical portion 4a fitted on the inner peripheral surface of the other end portion of the cylindrical main body 1, and a plate portion 4b projecting horizontally from one end of the short cylindrical portion 4a. The plate portion 4b is interposed between the water temperature sensing element LS1 and the auxiliary heater R2, and a rubber partition plate 5 is disposed between the short tube portion 4a and the plate portion 4b. A plate portion 4b is interposed between the water temperature sensing element LS1 and the auxiliary heater R2 through a slit 5a provided in the partition plate 5.
[0015]
The cylindrical main body 1 extending from the main heater 2 to the partition plate 5 is filled with magnesia sand, and one end of the cylindrical main body 1 is waterproofed with silicon, and the rubber cap 6 is connected to one end of the cylindrical main body 1. The cylindrical body 1 is attached to the outer peripheral surface of the part to protect the inside of the cylindrical body 1 in a watertight state, while the other end of the cylindrical body 1 is filled with silicon on the short cylinder part 4a side of the heat shielding member 4 described above. The printed circuit board 3 of the temperature control circuit is electrically insulated, and a rubber cap 7 is attached to the other end of the cylindrical main body 1 to protect the inside in a watertight state. A power cord 9 having a power flag 8 is drawn from the cap 7 to the tip for supplying power by connecting to the temperature control circuit.
[0016]
FIG. 3 shows the temperature control circuit including the main heater 2 and the auxiliary heater R2, and the like. The power supplied from the power cord 9 is connected to one of the connectors AC1 and AC2 of the circuit connected to the power cord 9 side. A circuit 10 flows from the child AC1 to the main heater 2 through one connector H1 on the main heater 2 side, and then flows from the other connector H2 on the main heater 2 side to the other connector AC2 on the power cord 9 side. And the terminals T1 and T2 of the semiconductor switch TC1 made of triac are connected between the other connectors H2 and AC2 of the main heater 2 and the power cord 9 in the circuit 10 and the terminal T2 of the semiconductor switch TC1. The water temperature control circuit 10 is configured by connecting the circuit 10a having the water temperature sensing element LS1 and the resistor R1 including a water temperature reed switch between the side and the gate.
[0017]
Further, a circuit 10b having the auxiliary heater R2 is connected between the T1 and T2 terminals of the semiconductor switch TC1 in the water temperature control circuit 10. That is, this circuit 10b is connected in parallel to the circuit 10a of the semiconductor switch TC1, and the auxiliary heater R2 is located in the vicinity of the water temperature sensing element LS1 comprising the temperature sensitive reed switch in the water temperature control circuit 10 as described above, that is, In addition, the heat generation of the auxiliary heater R2 is disposed at an opposing position where it can be detected by the water temperature sensing element LS1, and the plate portion 4b of the heat shielding member 4 is interposed between the auxiliary heater R2 and the water temperature sensing element LS1. ing.
[0018]
Next, the operation of the heating apparatus configured as described above will be described. When the cylindrical main body 1 is put into the water of the aquarium and the power plug 8 is inserted into an outlet (not shown), power is supplied to the power cord 9, and the current is supplied from the connector AC1 to the connector H1 in the water temperature control circuit 10. The main heater 2, the connector H 2, the triac semiconductor switch TC 1, and the connector AC 2 flow to the main heater 2 to generate water and heat the water, and the temperature of the heated water is provided in the water temperature control circuit 10. It is sensed by the water temperature sensing element LS1.
[0019]
The temperature sensitive reed switch used as the water temperature sensing element LS1 is configured to open when the water temperature reaches a predetermined temperature, for example, 25 ° C., and to close when the water temperature is slightly lower than this temperature. When the temperature is reached, the temperature sensitive reed switch is opened and the semiconductor switch TC1 composed of the TRIAC in the water temperature control circuit 10 becomes non-conductive and the power supply to the main heater 2 is cut off, while the water temperature is kept at a predetermined temperature (25 When the temperature is slightly lower than (° C.), the water temperature sensing element LS1 composed of the temperature sensitive reed switch is closed and the semiconductor switch TC1 is turned on, and the main heater 2 heats the water. Thus, the water in the water tank is maintained at a predetermined temperature by repeatedly opening and closing the water temperature sensing element LS1.
[0020]
Further, when the semiconductor switch TC1 is conducting and energizing the main heater 2, the voltage between the terminals T1 and T2 of the semiconductor switch TC1 can be ignored, so no current flows through the auxiliary heater R2, and accordingly, the auxiliary heater R2 Does not generate heat, but when the semiconductor switch TC1 is non-conductive and the main heater 2 is in the open state, the current flows from the connector AC1 to one connector H1 on the main heater 2 side, the main heater 2, and the main heater 2 side. It flows to the auxiliary heater R2 through the other connector H2. However, for example, if the power supply voltage is 100 V, the power of the main heater 2 is 200 W, and the power of the auxiliary heater R2 is 2 W, the resistance value of the main heater 2 is 50Ω and the resistance value of the auxiliary heater is 5000Ω. The amount of heat generated due to the current flowing through can be ignored and is governed by the auxiliary heater R2.
[0021]
When the auxiliary heater R2 with power of 2 W generates heat in water, the temperature difference between the auxiliary heater R2 and water is inversely proportional to the thermal conductivity of water 0.5 W / m ° C. And if the distance from the surface of the cylindrical main body 1 which produces a temperature gradient in water is set to a predetermined amount, it becomes about 2 ° C. Similarly, when the auxiliary heater R2 having a power of 2 W generates heat in the air, the thermal conductivity of the air is 0.025 W / m ° C. and the temperature difference is about 22 ° C. The temperature difference is inversely proportional to the value of thermal conductivity, so the air is 20 times as much as the water. Actually, however, the surface state of the cylindrical body 1 made of glass tubes, water, air convection, etc. When the conditions are effective, it is appropriate to consider that the above half, that is, the air is about 10 times more than the water.
[0022]
Therefore, if the auxiliary heater R2 generates heat in water with high thermal conductivity, even if the temperature difference is small, the heat is immediately dissipated into the water and the water temperature around the auxiliary heater R2 is increased by about 2 ° C. Since the metal heat shield member 4 is interposed between the element LS1 and the heat generated by the auxiliary heater R2, the heat is transferred from the plate portion 4b of the heat shield member 4 to the short tube portion 4a and dissipated into the water. The above temperature rise hardly affects the water temperature sensing element LS1. Therefore, when the water temperature sensing element LS1 reaches the predetermined water temperature (25 ° C.) as described above, the energization to the main heater 2 is stopped, and when the water temperature is slightly lower than the predetermined temperature, the main heater 2 is energized. Water is heated until a predetermined water temperature is reached.
[0023]
Next, when the water tank leaks or falls, or when the cylindrical main body 1 is accidentally put out of the water tank, the auxiliary heater R2 that generates heat by energization becomes energized. As described above, since the thermal conductivity of air is small, the amount of heat released is reduced and the temperature rises. With this temperature rise, the water temperature sensing element LS1 is kept open and the main heater 2 is de-energized. To maintain. For example, if the air temperature is 10 ° C, the temperature around the water temperature sensing element LS1 becomes 30 ° C or higher, the water temperature sensing element LS1 is opened, and the semiconductor switch TC1 made of triac is held in a non-conductive state. It can be left. If the temperature in the air is 5 ° C. or less, the temperature around the water temperature sensing element LS1 becomes 25 ° C. or less and the water temperature sensing element LS1 is closed despite the heat generated by the auxiliary heater R2. However, in this case, since the main heater 2 generates heat, when the temperature around the water temperature sensing element LS1 reaches 25 ° C. or more due to the temperature rise, the water temperature sensing element LS1 opens and the main heater 2 stops generating heat. Will do.
[0024]
FIG. 4 shows a modification of the temperature control circuit. In the above embodiment, the auxiliary heater R2 is provided in the circuit 10b connected in parallel to the circuit 10a of the semiconductor switch TC1, but in FIG. In the temperature control circuit shown, the auxiliary heater R2 is connected to the water temperature sensing element LS1 in the side passage 10c connected between the terminal T1 side of the semiconductor switch TC1 made of triac in the circuit 10 and one connector H1 of the main heater 2. It is provided in close proximity. Since other structures are the same as those in the above embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0025]
With this configuration, when the cylindrical body 1 is put into the water of the water tank and the power plug 8 is inserted into an outlet (not shown), the power from the power cord 9 is supplied to one connector AC1 in the water temperature control circuit 10. To the connector H1, main heater 2, connector H2, triac semiconductor switch TC1 and connector AC2, the main heater 2 generates heat, and the power is from one connector AC1 in the water temperature control circuit 10 side. It also flows to the side of the passage 10c and flows from the auxiliary heater R2 to the other connector AC2, and the auxiliary heater R2 always generates heat regardless of the operation of the water temperature sensing element LS1 composed of a temperature sensitive reed switch.
[0026]
Accordingly, as in the above embodiment, water is heated by the heat generated by the main heater 2 and the water temperature is sensed by the water temperature sensing element LS1 provided in the water temperature control circuit 10, and the water temperature sensing element LS1 has a predetermined water temperature. At a temperature of 25 ° C., for example, it opens to turn off the semiconductor switch TC1, and when it falls slightly below this temperature, it closes and turns on the semiconductor switch TC1, and the repetition of this operation causes the water in the water tank to reach a predetermined temperature. Retained.
[0027]
On the other hand, the auxiliary heater R2 always generates heat, but in the water with high thermal conductivity, as described above, the water temperature around the auxiliary heater R2 is only increased by about 2 ° C. Since the metal heat shield member 4 is interposed between the element LS1 and the heat generated by the auxiliary heater R2, the heat is transferred from the plate portion 4b of the heat shield member 4 to the short tube portion 4a and dissipated into the water. The above temperature rise hardly affects the water temperature sensing element LS1. Therefore, as in the above embodiment, when the water temperature sensing element LS1 reaches the predetermined water temperature (25 ° C.) as described above, the energization to the main heater 2 is stopped and the water temperature is slightly lower than the predetermined temperature. The water is heated until the main heater 2 is energized and reaches a predetermined water temperature.
[0028]
Next, when the water tank leaks or falls, or when the cylindrical main body 1 is accidentally put out of the water tank, the auxiliary heater R2 that generates heat by energization becomes energized. As described above, since the thermal conductivity of air is small, the amount of heat radiation is reduced and the temperature rises. This temperature is transferred to the heat shielding member 4, and the heat shielding member 4 causes the water temperature sensing element LS1 to reach a predetermined temperature. Heated as described above, the open state is maintained, and energization of the main heater 2 is maintained in a stopped state.
[0029]
In any of the embodiments shown in FIGS . 3 and 4 , the heating device comprising the cylindrical body 1 provided with the water temperature control circuit 10 is returned to the original water tank, or the power plug is connected to the outlet. After performing a resetting operation such as unplugging, the power plug 6 is inserted into the outlet again, and the cylindrical main body 1 is put into the water tank, whereby the original use state can be restored.
[0030]
【The invention's effect】
As described above, according to the heating device such as the water tank of the present invention, the main heater, the semiconductor switch for energizing and shutting off the power to the main heater, and the semiconductor switch is made non-conductive when the water temperature reaches a predetermined temperature. A water temperature control circuit is configured by a water temperature sensing element that turns on the semiconductor switch when the temperature is lower than a predetermined temperature, and an auxiliary heater that generates heat by energizing the electric power is disposed in the vicinity of the water temperature sensing element in the water temperature control circuit. In the water, the heat of the auxiliary heater is dissipated into the water to disable the operation of the water temperature sensing element due to the heat of the auxiliary heater. Since the water temperature sensing element is operated to hold the semiconductor switch in a non-conductive state, it is possible to provide a simple and inexpensive structure. In the inside, the water temperature can be sensed by the water temperature sensing element and the water temperature in the aquarium can be maintained at a predetermined temperature without affecting the operation of the water temperature sensing element. In this state, the heat of the auxiliary heater is transmitted to the water temperature sensing element so that the semiconductor switch is turned off, and energization to the main heater is held in a stopped state, thereby improving safety.
[0031]
In addition, it can be restored to a reusable state by an artificial operation such as unplugging the power plug from the outlet, and of course, by simply putting the heating device into the water again without removing the power plug from the outlet. The water temperature can be heated and maintained at a constant temperature by returning to the original use state.
[0032]
In this way, the heat flow from the auxiliary heater to the water and the air can be achieved by a simple structure in which an auxiliary heater with low power is connected to the circuit without using electronic components that operate at a temperature in the water temperature control circuit. Using the difference in the physical constant of the heat flow to the inside, despite the heat generated by the auxiliary heater in water, the water temperature control circuit can maintain a constant water temperature. In the air, the auxiliary heater generates heat. Thus, the water temperature sensing element can be held in an open state to reliably prevent the main heater from becoming abnormally hot.
[0033]
Further, a metal heat shielding member is interposed between the auxiliary heater and the water temperature sensing element, and the heat shielding member dissipates heat from the auxiliary heater into the water without transferring it to the water temperature sensing element. In the air, heat is transferred to the water temperature sensing element to activate the water temperature sensing element, so that in water, the heat generated by the auxiliary heater is prevented from being heated by the heat shielding member to the water temperature sensing element. The water temperature can be accurately detected by the water temperature sensing element, and in the air, heat can be transferred to the water temperature sensing element via the heat shielding member so that the water temperature sensing element can be reliably operated.
[Brief description of the drawings]
FIG. 1 is a simplified longitudinal side view of a heating device,
FIG. 2 is a perspective view of a shielding member and a partition plate,
FIG. 3 is a circuit diagram of a heating device,
FIG. 4 is a circuit diagram showing a modification example thereof.
[Explanation of symbols]
1 cylindrical body 2 main heater 4 shielding member
10 Water temperature control circuit
R2 Auxiliary heater
TC1 Semiconductor switch (Triac)
LS1 Water temperature sensing element (temperature sensitive reed switch)

Claims (1)

主ヒータと、この主ヒータに電力の通電、遮断を行う半導体スイッチと、水温が所定温度に達した時に上記半導体スイッチを非導通とし且つ所定温度以下になると該半導体スイッチを導通状態にする水温感知素子とによって水温制御回路を構成し、この水温制御回路における上記主ヒータの接続子側の回路部間に側路を接続して該側路における上記水温感知素子の近傍位置に補助ヒータを配設し、さらに、この補助ヒータと水温感知素子との間に金属製の熱遮蔽部材を介在させてこの熱遮蔽部材により水中においては補助ヒータからの伝熱を水温感知素子に伝熱することなく水中に放熱させて該補助ヒータの熱により上記水温感知素子の作動を不能状態とし、気中においては水温感知素子に伝熱して該水温感知素子を作動させて上記半導体スイッチを非導通状態に保持するように構成していることを特徴とする水槽等の加熱装置。 A main heater, a semiconductor switch for energizing and shutting off the power to the main heater, and a water temperature sensing that turns off the semiconductor switch when the water temperature reaches a predetermined temperature and turns the semiconductor switch into a conductive state when the water temperature falls below a predetermined temperature. A water temperature control circuit is constituted by the elements, and a side path is connected between the circuit portions on the connector side of the main heater in the water temperature control circuit, and an auxiliary heater is disposed in the vicinity of the water temperature sensing element in the side path. Further, a metal heat shielding member is interposed between the auxiliary heater and the water temperature sensing element, and the heat shielding member underwater does not transmit heat from the auxiliary heater to the water temperature sensing element in the water. The water temperature sensing element is disabled by the heat of the auxiliary heater, and in the air, heat is transferred to the water temperature sensing element to activate the water temperature sensing element to activate the semiconductor temperature sensing element. Heating apparatus of the tank or the like, characterized in that it is configured to hold the pitch non-conductive.
JP2001276702A 2001-09-12 2001-09-12 Heating device such as water tank Expired - Lifetime JP3857095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276702A JP3857095B2 (en) 2001-09-12 2001-09-12 Heating device such as water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276702A JP3857095B2 (en) 2001-09-12 2001-09-12 Heating device such as water tank

Publications (2)

Publication Number Publication Date
JP2003079269A JP2003079269A (en) 2003-03-18
JP3857095B2 true JP3857095B2 (en) 2006-12-13

Family

ID=19101364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276702A Expired - Lifetime JP3857095B2 (en) 2001-09-12 2001-09-12 Heating device such as water tank

Country Status (1)

Country Link
JP (1) JP3857095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029627A (en) * 2010-07-30 2012-02-16 Kyoei Aqua Tec Kk Water temperature control device for water tank

Also Published As

Publication number Publication date
JP2003079269A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
US7209651B1 (en) Fluid-heating apparatus, circuit for heating a fluid, and method of operating the same
US7256372B2 (en) Fluid-heating apparatus, circuit for heating a fluid, and method of operating the same
JP4669779B2 (en) Electric blanket / pad
US3231716A (en) Electrical heating device for warming up and maintaining the temperature of a nursing bottle
US3760147A (en) Apparatus for heating a water bed
JP2812929B2 (en) Underwater heater for aquarium
JP3857095B2 (en) Heating device such as water tank
RU131212U1 (en) THERMAL RELAY FOR ELECTRIC HEATER
CN210157418U (en) Plug-in heater with universal bayonet
JP3651113B2 (en) Hot water tank equipment
JP3857080B2 (en) Heating device such as water tank
JPH1062268A (en) Hot water heater for ornamental fish
JP2002343538A (en) Heating device for water tank
CN207408013U (en) A kind of thermoprobe, power supply connector and electrical heating utensil
JP3863407B2 (en) Heating device such as water tank
JP3843220B2 (en) Cartridge heater with thermal fuse
KR200313236Y1 (en) Heating Device For Water Tank
US2528030A (en) Electric heater
KR200403665Y1 (en) Safety Device of Heating Wire
JPH10321345A (en) Water tank heat reserving apparatus
JPH1022057A (en) Water tank heat retaining apparatus
JP2007123172A (en) Heating device for water tank or the like
JPH0125239Y2 (en)
JP2006311817A (en) Heating apparatus for aquarium or the like
JPH0965798A (en) Heater device of water tank for ornamental fish

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Ref document number: 3857095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term