JP3856687B2 - Manufacturing method of pipe-shaped impact reinforcement - Google Patents

Manufacturing method of pipe-shaped impact reinforcement Download PDF

Info

Publication number
JP3856687B2
JP3856687B2 JP2001349603A JP2001349603A JP3856687B2 JP 3856687 B2 JP3856687 B2 JP 3856687B2 JP 2001349603 A JP2001349603 A JP 2001349603A JP 2001349603 A JP2001349603 A JP 2001349603A JP 3856687 B2 JP3856687 B2 JP 3856687B2
Authority
JP
Japan
Prior art keywords
metal pipe
pipe material
heating
pressing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349603A
Other languages
Japanese (ja)
Other versions
JP2003145220A (en
Inventor
末吉 半下石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2001349603A priority Critical patent/JP3856687B2/en
Publication of JP2003145220A publication Critical patent/JP2003145220A/en
Application granted granted Critical
Publication of JP3856687B2 publication Critical patent/JP3856687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パイプ状衝突補強材の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
車輌のセンターピラー部やドア等にパイプ状の衝突補強材を入れることは、車輌の強度を確保して衝突安全性の向上を図るのに極めて有効な対策である。このため、高張力鋼パイプ材あるいは焼入れ後の超高張力鋼パイプ材に曲げ加工を施して、センターピラー部やドア内部への取付けに好都合な湾曲形状を付与し、これをパイプ状の衝突補強材として利用しようとする試みがある。
【0003】
しかしながら、高張力鋼のような硬い材料からなるパイプ材に対して、ベンダーやプレス機により冷間での曲げ加工を施しても、スプリングバックの影響で取付けスペースに適合する湾曲形状を付与することが難しく、曲げ加工の精度が極めて低いという欠点があった。スプリングバックを受け入れながらも曲げ加工の精度を上げるために、曲げ加工を多段階に設定して工程数を増やすという方法もあるが、それでは製造コストが見合わない。また、曲げ加工後に単なる焼入れを施すと製品に歪みが生じ易く、曲げ加工時に正確な形状を付与しても最終製品の形状が安定しないという問題がある。
【0004】
本発明はかかる事情に鑑みてなされたものである。本発明の目的は、金属パイプ材に対する正確な曲げ形状付与と焼き入れとを同時に行うことができ、少ない工程数でパイプ状衝突補強材を製造することが可能なパイプ状衝突補強材の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1の発明は、真っ直ぐに延びた金属パイプ材の各端部における上内壁と下内壁とを相互接触させ、相互接触した上下内壁間の隙間が完全に埋まるように溶接を施すことにより、当該金属パイプ材の両端部を封止して当該金属パイプ材の内部を密閉空間化する密閉化工程と、前記内部が密閉空間化された金属パイプ材を加熱する加熱工程と、前記加熱された金属パイプ材に対し、その金属パイプ材よりも相対的に低温のプレス型を用いてプレス加工を施すことにより所望の曲げ形状を付与するプレス工程とを備えてなることを特徴とするパイプ状衝突補強材の製造方法である。
【0006】
請求項2の発明は、 真っ直ぐに延びた金属パイプ材の両端部又はその近傍を押し潰すと共にその押し潰した部位に溶接を施すことにより、当該金属パイプ材の両端部又はその近傍を封止して当該金属パイプ材の内部を密閉空間化する密閉化工程と、前記内部が密閉空間化された金属パイプ材を加熱する加熱工程と、前記加熱された金属パイプ材に対し、その金属パイプ材よりも相対的に低温のプレス型を用いてプレス加工を施すことにより所望の曲げ形状を付与するプレス工程とを備えてなることを特徴とするパイプ状衝突補強材の製造方法である。
【0007】
請求項1又は2の方法によれば、密閉化工程において、真っ直ぐに延びた金属パイプ材の両端部又はその近傍を封止することにより、金属パイプ材の内部に空気を閉じこめた状態で当該金属パイプ材の内部が密閉空間化される(尚、密閉化工程を例えば窒素等の不活性ガス雰囲気下で行うことにより、内部に閉じこめる気体を不活性ガスにすることもできる)。続く加熱工程で金属パイプ材を加熱することにより、金属パイプ材内に封じ込められた空気等のガス圧が高まると共に、金属パイプ材が軟化する。続くプレス工程において、加熱により軟化した金属パイプ材に対し、所望の曲げ形状に対応したプレス型を用いてプレス加工を施すことにより、当該金属パイプ材には所望の曲げ形状がいちどきに付与される。このプレス加工は熱間成形でありプレス時に金属パイプ材が塑性変形するため、プレス後にプレス型から製品を取り外したときの形戻り(即ちスプリングバック)がほとんどなく、金属パイプ材に所望の曲げ形状を正確に付与することができる。またプレス時には、金属パイプ材内部の高いガス圧によってパイプ材の形状保持が図られるため、軟化した中空体(金属パイプ材)に対するプレスにもかかわらず、大きな形状崩れが生じない。更にこのプレス工程では、加熱された金属パイプ材よりも相対的に低温のプレス型が用いられるため、プレスによる曲げ形状付与と同時に金属パイプ材には焼き入れがなされ、プレス後の製品(パイプ状衝突補強材)の強度はプレス前に比べて飛躍的に向上する。このように本発明の方法によれば、一度のプレス加工で、金属パイプ材に所望の曲げ形状を高い寸法精度で付与すると共に、同時焼き入れによって高い強度を付与することができる。
【0008】
尚、上記プレス型の温度は「加熱された金属パイプ材よりも相対的に低温」であればよいが、プレス直前の加熱状態にある金属パイプ材の温度とプレス型の温度との温度較差が大きいほど、焼き入れ効果が高いことは言うまでもない。それ故、プレス型の温度としては、常温又は室温(例えば25℃)以下であることは好ましい。また、連続生産ラインに設置されたプレス型が、「加熱された金属パイプ材よりも相対的に低温」の状態を常に維持できるよう強制冷却機構を備えることは好ましい。
【0009】
特に、請求項2の方法によれば、金属パイプ材の両端部又はその近傍を押し潰した後に当該押し潰した部位に溶接を施すので、金属パイプの気密性を高めて、金属パイプ内部を確実に密閉空間化することができる。尚、金属パイプ材の両端部又はその近傍を押し潰す際の形状は、「偏平状」、「湾曲状」あるいはその他の形状のいずれであってもよい。
【0010】
請求項3の発明は、請求項1又は2に記載のパイプ状衝突補強材の製造方法において、前記加熱工程では、金属パイプ材を850℃以上であってその金属パイプ材の融点未満の温度に加熱すると共に、前記プレス工程では、850℃以上の加熱状態にある金属パイプ材に対して上記のプレス加工を施すことを特徴とする。
【0011】
請求項3によれば、850℃以上の加熱状態にある金属パイプ材に対して上記のプレス加工を施すことにより、所望の湾曲形状付与と同時焼き入れとが効果的に達成される。なお、プレス時における金属パイプ材の温度が850℃を下回ると、相対的に低温のプレス型による焼き入れ効果が小さく十分な強度向上が図れない虞れがある。また、プレス加工によっても金属パイプ材が弾性変形するにとどまり、スプリングバックを生ずる虞れがある。加熱工程における金属パイプ材の加熱温度を融点未満にとどめたのは、温度による金属パイプ材の型崩れを回避するためである。
【0012】
請求項4の発明は、請求項1〜3のいずれか一項に記載のパイプ状衝突補強材の製造方法において、前記真っ直ぐに延びた金属パイプ材が高張力鋼からなる場合において、前記加熱工程では、金属パイプ材を850℃以上1050℃以下の温度に加熱すると共に、前記プレス工程では、850℃以上の加熱状態にある金属パイプ材に対して上記のプレス加工を施すことを特徴とする。
【0013】
請求項4によれば、850℃以上の加熱状態にある金属パイプ材に対して上記のプレス加工を施すことにより、所望の湾曲形状付与と同時焼き入れとが効果的に達成される。なお、プレス時における金属パイプ材の温度が850℃を下回ると、相対的に低温のプレス型による焼き入れ効果が小さく十分な強度向上が図れない虞れがある。また、プレス加工によっても金属パイプ材が弾性変形するにとどまり、スプリングバックを生ずる虞れがある。加熱工程における金属パイプ材の加熱温度を1050℃以下にとどめたのは、高張力鋼を1050℃を超えて加熱すると、金属結晶の粗大化が助長され結晶組織の結びつきが粗くなり、却って強度向上が図れなくなってしまう虞れがあるからである。
【0014】
尚、請求項4で言及した高張力鋼は、鉄以外の成分として、0.18〜0.25wt%の炭素、0.15〜0.35wt%の珪素、1.15〜1.40wt%のマンガン、0.15〜0.25wt%のクロムおよび0.01〜0.03wt%のチタンを少なくとも含有してなる鉄系材料であることは好ましい。更に好ましくは、融点が1300〜1400℃の高張力鋼である。
【0015】
請求項5の発明は、請求項1〜4のいずれか一項に記載のパイプ状衝突補強材の製造方法において、前記密閉化工程では、前記金属パイプ材の内部に所定量の液体を入れた状態で金属パイプ材の内部を密閉空間化することを特徴とする。
【0016】
請求項5の方法によれば、金属パイプ材内に封入した液体が加熱時に気化して内圧の上昇をもたらし、熱間プレス時におけるパイプ形状の維持に貢献する。特に金属パイプ材内に入れる液体の量を調節することで、加熱工程及びプレス工程でのパイプ材内圧を自在に制御することが可能となる。
【0017】
【発明の実施の形態】
以下に本発明を、衝突補強材の一種である車輌ドアフレーム用リインフォースメントの製造方法に具体化した一実施形態を図面を参照して説明する。
【0018】
(金属パイプ材の密閉空間化)
図1(A)に示すように、真っ直ぐに延びた断面円形状の金属パイプ材10を必要な長さに切断したものを出発材料とする(なお、図1ではパイプ材の肉厚を単一の線で簡略表示する)。このパイプ材10は、高張力鋼に分類される鉄系材料(「鋼材A」と呼ぶ)からできている。その鋼材Aは、鉄以外の添加元素の品質管理範囲がそれぞれ、炭素:0.18〜0.25wt%(重量パーセント)、珪素:0.15〜0.35wt%、マンガン:1.15〜1.40wt%、クロム:0.15〜0.25wt%及びチタン:0.01〜0.03wt%という鋼材である。鋼材Aの融点は、およそ1300〜1400℃である。
【0019】
図1(B)に示すように、金属パイプ材10の両端部11,11に対し、プレス機(図示略)でプレス加工を施して各端部を偏平化する。偏平化された各端部11は、当初円形の内周壁を構成していた上内壁と下内壁とが相互接触し、平板状に一体化することにより構築される。但し、この程度のプレス加工では、金属パイプ材の端部11の封止(又は気密性確保)はおぼつかない。そこで図1(C)に示すように、偏平化された各端部11の一部分(W)に対し、その平板形状を横切るようにシーム溶接(抵抗溶接の一種)を施す。これにより、相互接触した上内壁と下内壁との間の微小な隙間が完全に埋められ、金属パイプ材10の内部が密閉空間化される。
【0020】
(金属パイプ材の加熱及びプレス加工)
続いて図1(D)に示すように、前記内部が密閉空間化された金属パイプ材10を加熱装置に移し、所定の目標温度(本実施形態では900℃)にまで加熱した。本実施形態では、加熱装置として電気加熱炉を用いると共に、電気加熱炉内を不活性ガス雰囲気(例えば窒素ガス雰囲気)とし、常温から徐々に温度を上げて目標温度に到達させ、若干時間その目標温度を保持した。この900℃(1173K)への加熱により、金属パイプ材10内に密封された空気の圧力は、常温時圧力(即ち大気圧)の約4倍に達する。
【0021】
次に、目標温度に加熱した金属パイプ材10を加熱装置から付形用プレス機の固定型21及び可動型22(図2(E)参照)間に高速搬送し、直ちにプレス加工を施した。即ち、金属パイプ材10を加熱装置から取り出して付形用プレス機にセットし押圧動作を開始するまでの時間を5秒以内として、プレス直前の金属パイプ材10の温度が850℃を下回らないように配慮した。
【0022】
図2(E)に示すように、付形用プレス機は固定型21及び可動型22からなり、両型21,22の型合わせによって、パイプ材の所望曲げ形状に対応した付形室23が構築される。固定型21及び可動型22の内部には冷却水用の通路24,25が確保され、両型21,22を強制冷却可能となっている。これは、高温状態の金属パイプ材10と冷えたプレス型21,22との間に相応の温度差を与え、高温状態の金属パイプ材10が冷えたプレス型21,22に接触した際に、所望の湾曲形状の付与と同時に、効果的な焼き入れがなされることを意図したものである。
【0023】
プレス型21,22内での金属パイプ材10の押圧を10〜20秒程度保持し金属パイプ材10の形状の安定化及び焼き入れの完了を見計らってから、可動型22を固定型21から離間させて製品を取り出した(図2(F)参照)。プレス型21,22から取り出した直後の製品の温度は250℃前後であったが、その後、数分間自然放冷することで常温近くに達した。
【0024】
以上のような一連の工程により、図2(F)及び図3に示すような所望の曲げ形状を有するパイプ状のリインフォースメント10を得ることができる。尚、パイプ状リインフォースメント10の偏平な両端部11,11については、当該リインフォースメントをドアフレームに取り付ける際の取付介在部(いわゆるブラケット)として利用することも可能である。
【0025】
尚、前記加熱時の目標温度の好ましい範囲は、加熱した金属パイプ材10をプレス型21,22に高速搬送したときのプレス型投入時における温度が850℃以上1050℃以下となる温度である。プレス型投入時の温度が850℃未満の場合には、冷えたプレス型で押圧するときの温度差が小さくなり、焼き入れによる強度向上が不十分となる虞れがある。他方、プレス型投入時の温度が1050℃を超えるほど高温度に加熱すると、むしろ強度が低下する(又は強度向上が頭打ちの傾向となる)虞れがある。その理由としては、プレス型投入時の温度を高くするために加熱装置での加熱温度をあまり高くしすぎると、加熱段階で金属結晶の粗大化が助長され、結晶組織の結びつきが却って粗くなるからである。このように、プレス型投入時の金属パイプ材温度が、850℃から金属パイプ材の融点の直近温度まで、更に好ましくは850℃以上1050℃以下となるように、金属パイプ材を事前加熱することが好ましい。
【0026】
本実施形態によれば、出発材料たる金属パイプ材10の両端部を封止した後、その内部が密閉空間化された金属パイプ材を予め加熱し、それを高温状態のまま冷えたプレス型を用いてプレスするという手法(ホットスタンプ法)を採用することで、以下のような効果を得ることができる。
【0027】
(イ)高温の金属パイプ材10をプレス型21,22で付形加工する際に、金属パイプ材10の内圧が高い状態にあることは、軟化した中空状金属パイプ材の形状保持を容易にする。
【0028】
(ロ)出発材料たる真っ直ぐに延びた金属パイプ材10に対して、緩やかな湾曲形状の付形と焼き入れとを同時に行うことができる。このことは、焼き入れによる最終製品の強度向上のみならず、衝突補強材の製造工程の簡素化及び生産性の向上を図ることを可能とする。
【0029】
(ハ)従来の冷間ベンディング加工や冷間プレス加工の場合と異なり、プレス型21,22から製品を取り出した後もスプリングバックによる型戻りがなく、最終製品の形状安定性が優れている。また、従来の冷間加工法では形状付与が難しかった「カーブの緩やかな湾曲形状」を付与することが極めて容易になる。
【0030】
(変更例)本発明の実施形態を以下のように変更してもよい。
・上記実施形態において、図1(C)の工程におけるシーム溶接に代えて、レーザー溶接を用いてもよい。
【0031】
・上記実施形態では図1(B)の工程において金属パイプ材10の両端部を偏平状に押し潰したが、金属パイプ材10の端部を封止するための加工方法はこれに限定されるものではない。例えば図4(A)及び(B)に示すように、金属パイプ材10の端部11を横断面半円形の凹んだ湾曲形状となるように押し潰してもよい。この場合、図4(A)に示すように半円弧状の端縁部分に溶接を施して、金属パイプ材内部の気密性を確保することになる。
【0032】
・金属パイプ材10の端部11を押し潰すのではなく、例えば図5に示すように、端部11に対しその先端部が先細りとなるような絞り加工を施してもよい。この場合、先細った先端部分に孔が残ることが避けられないため、その先端の孔を塞ぐべく当該先端部にMIG溶接又はTIG溶接を施して、金属パイプ材内部の気密性を確保することになる。
【0033】
・上記実施形態では、図1(A)から(C)の一連の工程を経た結果、金属パイプ材10の内部に大気圧相当の空気を封入したが、端部11を封止する前の金属パイプ材10内に適量の液体(例えば水)を入れておき、その状態で金属パイプ材10の両端部11,11を封止してもよい。この場合には、金属パイプ材10の加熱によって液体が気化し、加熱温度に応じた蒸気圧の内圧がパイプ内に生じる。つまり、液体の封入量を調節することで加熱時及び熱間プレス時の内圧制御が可能となる。
【0034】
・本発明に用いる出発材料(金属パイプ材)の材質として、高張力鋼以外の金属が用いられてもよい。
【0035】
・本発明の適用対象はドア用のリインフォースメントに限定されるものではなく、その他の車輌用衝突補強材(例えばバンパーリインフォースメントやセンターピラー部材)の製造に適用されてもよい。なお、本明細書でいう「衝突補強材」とは、車輌の衝突時その他の事故時に車内の乗員を保護するために車輌の各部に取り付けられる部材を指し、それ単独で保護機能を発揮するものであるか他部材と協働して保護機能を発揮するものであるかを問わない。
【0036】
【発明の効果】
以上詳述したように、各請求項に記載のパイプ状衝突補強材の製造方法によれば、金属パイプ材に対する正確な曲げ形状付与と焼き入れとを同時に行うことができ、少ない工程数でパイプ状衝突補強材を製造することができる。
【図面の簡単な説明】
【図1】(A)〜(D)はパイプ状衝突補強材の製造手順の一例を示す図。
【図2】(E)及び(F)はパイプ状衝突補強材の製造手順の一例(図1の続き)を示す図。
【図3】図1及び図2の手順で作られたパイプ状衝突補強材の斜視図。
【図4】(A)はパイプ状衝突補強材の端部の変更例を示す斜視図、(B)はその変更例に係るパイプ状衝突補強材の端面図。
【図5】パイプ状衝突補強材の端部の変更例を示す断面図。
【符号の説明】
10…金属パイプ材、11…端部、13…蓋、21…固定型(プレス型)、22…可動型(プレス型)、23…付形室、24,25…冷却水用の通路(強制冷却機構)、W…端部における溶接箇所。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a pipe-shaped collision reinforcing material.
[0002]
[Prior art and problems to be solved by the invention]
Inserting a pipe-shaped collision reinforcing material into the center pillar or door of the vehicle is an extremely effective measure for ensuring the strength of the vehicle and improving the collision safety. For this reason, bending work is applied to the high-tensile steel pipe material or the ultra-high-strength steel pipe material after quenching to give a curved shape that is convenient for mounting inside the center pillar and inside the door, and this is used to reinforce the pipe-like collision. There are attempts to use it as a material.
[0003]
However, pipes made of hard materials such as high-strength steel should be bent to fit the installation space due to the effect of springback even if they are bent cold by a bender or press. However, there is a drawback that bending accuracy is extremely low. In order to increase the accuracy of the bending process while accepting the springback, there is a method of increasing the number of processes by setting the bending process in multiple stages, but this does not meet the manufacturing cost. In addition, when mere quenching is performed after bending, there is a problem that the product is likely to be distorted, and the shape of the final product is not stable even when an accurate shape is given during bending.
[0004]
The present invention has been made in view of such circumstances. An object of the present invention is to provide a method for producing a pipe-shaped impact reinforcement capable of simultaneously producing an accurate bending shape and quenching a metal pipe material and capable of producing a pipe-shaped collision reinforcement with a small number of steps. Is to provide.
[0005]
[Means for Solving the Problems]
The invention of claim 1 makes welding so that the upper inner wall and the lower inner wall at each end of the metal pipe material extending straightly are in contact with each other and the gap between the upper and lower inner walls in contact with each other is completely filled. a sealing step of sealing the space of the interior of the metal pipe by sealing both ends of the metal pipe member, a heating process of the internal heat the enclosed space of metal pipe material, which is the heating A pipe-shaped collision characterized by comprising a pressing process for imparting a desired bending shape to a metal pipe material by pressing using a press mold relatively cooler than the metal pipe material It is a manufacturing method of a reinforcing material.
[0006]
The invention of claim 2 By crushing both ends of the metal pipe material extending straight or the vicinity thereof and welding the crushed portion, the both ends of the metal pipe material or the vicinity thereof are sealed and the inside of the metal pipe material A sealing process for forming a sealed space, a heating process for heating the metal pipe material in which the inside is sealed, and a press at a relatively lower temperature than the metal pipe material for the heated metal pipe material. It is a manufacturing method of the pipe-shaped impact reinforcement characterized by including the press process which provides a desired bending shape by giving a press work using a type | mold.
[0007]
According to the method of claim 1 or 2, in the sealing step, by sealing both ends of the metal pipe material extending straight or in the vicinity thereof, the metal is contained in the state where the air is confined in the metal pipe material. The inside of the pipe material is made into a sealed space (in addition, the gas confined inside can be changed to an inert gas by performing the sealing step in an inert gas atmosphere such as nitrogen). By heating the metal pipe material in the subsequent heating step, the gas pressure of air or the like confined in the metal pipe material is increased, and the metal pipe material is softened. In the subsequent pressing step, the metal pipe material softened by heating is pressed using a press die corresponding to the desired bending shape, whereby the desired bending shape is imparted to the metal pipe material all at once. This press work is hot forming, and the metal pipe material undergoes plastic deformation during pressing, so there is almost no rebound (ie spring back) when the product is removed from the press die after pressing, and the metal pipe material has the desired bending shape. Can be accurately given. Further, at the time of pressing, the shape of the pipe material is maintained by a high gas pressure inside the metal pipe material, so that a large shape collapse does not occur despite the press on the softened hollow body (metal pipe material). Further, in this pressing process, a press mold having a temperature lower than that of the heated metal pipe material is used. Therefore, the metal pipe material is quenched at the same time as the bending shape is imparted by the press, and the pressed product (pipe shape) The strength of the impact reinforcement is dramatically improved compared to before pressing. As described above, according to the method of the present invention, a desired bending shape can be imparted to the metal pipe material with high dimensional accuracy by a single press work, and a high strength can be imparted by simultaneous quenching.
[0008]
The temperature of the press die may be “relatively lower than the heated metal pipe material”, but the temperature difference between the temperature of the metal pipe material in the heated state immediately before pressing and the temperature of the press die is Needless to say, the larger the value, the higher the quenching effect. Therefore, the temperature of the press die is preferably room temperature or room temperature (for example, 25 ° C.) or lower. Moreover, it is preferable to provide a forced cooling mechanism so that the press mold | type installed in the continuous production line can always maintain the state of "relatively lower temperature than the heated metal pipe material".
[0009]
In particular, according to the method of claim 2, since both ends of the metal pipe material or the vicinity thereof are crushed and then welded to the crushed portion, the airtightness of the metal pipe is improved, and the inside of the metal pipe is reliably secured. It is possible to make a sealed space. In addition, the shape when crushing both ends of the metal pipe material or the vicinity thereof may be any of “flat”, “curved”, or other shapes.
[0010]
According to a third aspect of the present invention, in the method of manufacturing a pipe-shaped collision reinforcing material according to the first or second aspect, in the heating step, the temperature of the metal pipe material is set to 850 ° C. or higher and lower than the melting point of the metal pipe material. While heating, in the said press process, said press processing is given with respect to the metal pipe material in a heating state of 850 degreeC or more, It is characterized by the above-mentioned .
[0011]
According to the third aspect, by applying the above pressing to the metal pipe material in a heated state of 850 ° C. or higher, it is possible to effectively achieve a desired curved shape and simultaneous quenching. In addition, when the temperature of the metal pipe material at the time of press is less than 850 degreeC, there exists a possibility that the hardening effect by a relatively low-temperature press type | mold may be small and sufficient intensity | strength improvement cannot be aimed at. Further, the metal pipe material is only elastically deformed by the press work, and there is a possibility that a spring back is generated. The reason why the heating temperature of the metal pipe material in the heating process is kept below the melting point is to avoid the deformation of the metal pipe material due to the temperature.
[0012]
Invention of Claim 4 is the manufacturing method of the pipe-shaped collision reinforcement material as described in any one of Claims 1-3. WHEREIN: When the said metal pipe material extended straight consists of high-tensile steel, the said heating process Then, while heating a metal pipe material to the temperature of 850 degreeC or more and 1050 degrees C or less, said press process is given with respect to the metal pipe material in a heating state of 850 degreeC or more in the said press process.
[0013]
According to the fourth aspect, by applying the above pressing to the metal pipe material in a heated state of 850 ° C. or higher, it is possible to effectively achieve a desired curved shape and simultaneous quenching. In addition, when the temperature of the metal pipe material at the time of press is less than 850 degreeC, there exists a possibility that the hardening effect by a relatively low-temperature press type | mold may be small and sufficient intensity | strength improvement cannot be aimed at. Further, the metal pipe material is only elastically deformed by the press work, and there is a possibility that a spring back is generated. The reason why the heating temperature of the metal pipe material in the heating process was kept below 1050 ° C is that when high-tensile steel is heated above 1050 ° C, the coarsening of the metal crystals is promoted and the bonding of the crystal structure becomes coarser, and the strength is improved. This is because there is a risk that it will not be possible.
[0014]
The high-strength steel referred to in claim 4 includes 0.18 to 0.25 wt% carbon, 0.15 to 0.35 wt% silicon, and 1.15 to 1.40 wt% as components other than iron. It is preferably an iron-based material containing at least manganese, 0.15-0.25 wt% chromium, and 0.01-0.03 wt% titanium. More preferably, it is a high-tensile steel having a melting point of 1300 to 1400 ° C.
[0015]
Invention of Claim 5 is a manufacturing method of the pipe-shaped collision reinforcement material as described in any one of Claims 1-4. WHEREIN: In the said sealing process, the predetermined amount of liquid was put into the inside of the said metal pipe material. The inside of the metal pipe material is sealed in a state .
[0016]
According to the method of claim 5, the liquid sealed in the metal pipe material is vaporized during heating to increase the internal pressure, contributing to the maintenance of the pipe shape during hot pressing. In particular, it is possible to freely control the internal pressure of the pipe material in the heating process and the pressing process by adjusting the amount of liquid put into the metal pipe material.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in a method for manufacturing a reinforcement for a vehicle door frame, which is a kind of collision reinforcing material, will be described with reference to the drawings.
[0018]
(Contained space for metal pipe materials)
As shown in FIG. 1 (A), the starting material is a straight pipe member 10 having a circular cross section that is cut into a required length (in FIG. 1, the pipe material has a single thickness). Simplified display with a line.) The pipe material 10 is made of an iron-based material (referred to as “steel material A”) classified as high-tensile steel. In the steel material A, the quality control ranges of additive elements other than iron are carbon: 0.18 to 0.25 wt% (weight percent), silicon: 0.15 to 0.35 wt%, and manganese: 1.15 to 1, respectively. .40 wt%, chromium: 0.15 to 0.25 wt%, and titanium: 0.01 to 0.03 wt%. The melting point of the steel material A is approximately 1300 to 1400 ° C.
[0019]
As shown in FIG. 1 (B), both ends 11 and 11 of the metal pipe material 10 are pressed by a press machine (not shown) to flatten each end. Each of the flattened end portions 11 is constructed by bringing the upper inner wall and the lower inner wall that originally formed the circular inner peripheral wall into contact with each other and integrating them into a flat plate shape. However, with this degree of press work, sealing (or ensuring airtightness) of the end 11 of the metal pipe material does not occur. Therefore, as shown in FIG. 1C, seam welding (a kind of resistance welding) is performed on a part (W) of each flattened end portion 11 so as to cross the flat plate shape. As a result, the minute gap between the upper inner wall and the lower inner wall that are in contact with each other is completely filled, and the inside of the metal pipe member 10 is closed.
[0020]
(Heating and pressing metal pipe materials)
Subsequently, as shown in FIG. 1 (D), the metal pipe member 10 with the inside made into a sealed space was transferred to a heating device and heated to a predetermined target temperature (900 ° C. in the present embodiment). In the present embodiment, an electric heating furnace is used as a heating device, and the inside of the electric heating furnace is set to an inert gas atmosphere (for example, a nitrogen gas atmosphere). The temperature was maintained. Due to the heating to 900 ° C. (1173 K), the pressure of the air sealed in the metal pipe member 10 reaches about four times the normal temperature pressure (ie, atmospheric pressure).
[0021]
Next, the metal pipe material 10 heated to the target temperature was conveyed at high speed from the heating device between the fixed die 21 and the movable die 22 (see FIG. 2E) of the shaping press machine, and immediately subjected to press working. That is, the time until the metal pipe material 10 is taken out of the heating device, set in the shaping press and the pressing operation is started is within 5 seconds, so that the temperature of the metal pipe material 10 immediately before pressing does not fall below 850 ° C. Considered.
[0022]
As shown in FIG. 2 (E), the press machine for shaping is composed of a fixed die 21 and a movable die 22, and a shaping chamber 23 corresponding to the desired bending shape of the pipe material is obtained by matching the dies 21 and 22. Built. Cooling water passages 24 and 25 are secured inside the fixed mold 21 and the movable mold 22 so that both molds 21 and 22 can be forcibly cooled. This gives a corresponding temperature difference between the metal pipe material 10 in the high temperature state and the cold press dies 21 and 22, and when the metal pipe material 10 in the high temperature state contacts the cold press dies 21 and 22, It is intended that effective quenching is performed simultaneously with the provision of a desired curved shape.
[0023]
The pressing of the metal pipe material 10 in the press dies 21 and 22 is held for about 10 to 20 seconds, and after the stabilization of the shape of the metal pipe material 10 and the completion of quenching are expected, the movable die 22 is separated from the fixed die 21. The product was taken out (see FIG. 2F). The temperature of the product immediately after taking out from the press dies 21 and 22 was around 250 ° C., but after that, the product was allowed to cool naturally for several minutes, and reached a room temperature.
[0024]
Through the series of steps as described above, a pipe-like reinforcement 10 having a desired bending shape as shown in FIG. 2 (F) and FIG. 3 can be obtained. In addition, about the flat both ends 11 and 11 of the pipe-shaped reinforcement 10, it is also possible to utilize as the attachment interposition part (what is called a bracket) at the time of attaching the said reinforcement to a door frame.
[0025]
In addition, the preferable range of the target temperature at the time of the heating is a temperature at which the temperature when the press die is charged when the heated metal pipe material 10 is conveyed to the press dies 21 and 22 at a high speed becomes 850 ° C. or more and 1050 ° C. or less. When the temperature at the time of pressing the press die is less than 850 ° C., the temperature difference when pressing with the cold press die becomes small, and the strength improvement by quenching may be insufficient. On the other hand, if the temperature when the press mold is charged is higher than 1050 ° C., the strength may rather decrease (or the strength may tend to peak). The reason for this is that if the heating temperature in the heating device is set too high in order to increase the temperature at the time of charging the press die, the coarsening of the metal crystal is promoted in the heating stage, and the connection of the crystal structure becomes coarse instead. It is. In this way, the metal pipe material is pre-heated so that the temperature of the metal pipe material when the press die is charged is from 850 ° C. to the nearest temperature of the melting point of the metal pipe material, more preferably from 850 ° C. to 1050 ° C. Is preferred.
[0026]
According to the present embodiment, after sealing both ends of the metal pipe material 10 as a starting material, the metal pipe material whose inside is hermetically sealed is preheated, and the press die is cooled in a high temperature state. By adopting a method of using and pressing (hot stamp method), the following effects can be obtained.
[0027]
(A) When the high-temperature metal pipe material 10 is shaped by the press dies 21 and 22, the high internal pressure of the metal pipe material 10 facilitates maintaining the shape of the softened hollow metal pipe material. To do.
[0028]
(B) For the metal pipe member 10 that extends straight as a starting material, it is possible to simultaneously perform shaping with a gently curved shape and quenching. This makes it possible not only to improve the strength of the final product by quenching, but also to simplify the manufacturing process of the impact reinforcement and improve productivity.
[0029]
(C) Unlike conventional cold bending and cold pressing, there is no mold return due to springback even after the product is taken out of the press dies 21 and 22, and the shape stability of the final product is excellent. In addition, it is extremely easy to impart a “curve shape with a gentle curve”, which is difficult to impart with the conventional cold working method.
[0030]
(Modification) The embodiment of the present invention may be modified as follows.
In the above embodiment, laser welding may be used instead of seam welding in the process of FIG.
[0031]
In the above embodiment, both ends of the metal pipe material 10 are flattened in the step of FIG. 1B, but the processing method for sealing the end of the metal pipe material 10 is limited to this. It is not a thing. For example, as shown in FIGS. 4A and 4B, the end 11 of the metal pipe member 10 may be crushed so as to have a concave curved shape with a semicircular cross section. In this case, as shown in FIG. 4 (A), the semicircular arc-shaped edge portion is welded to ensure the airtightness inside the metal pipe material.
[0032]
Instead of crushing the end portion 11 of the metal pipe material 10, for example, as shown in FIG. 5, the end portion 11 may be drawn so that the tip end portion thereof is tapered. In this case, since it is unavoidable that a hole is left in the tapered tip portion, MIG welding or TIG welding is performed on the tip portion so as to close the hole at the tip portion, thereby ensuring airtightness inside the metal pipe material. become.
[0033]
In the above embodiment, as a result of the series of steps shown in FIGS. 1A to 1C, air corresponding to atmospheric pressure is sealed inside the metal pipe material 10, but the metal before the end 11 is sealed An appropriate amount of liquid (for example, water) may be placed in the pipe material 10, and both end portions 11 of the metal pipe material 10 may be sealed in that state. In this case, the liquid is vaporized by heating the metal pipe member 10, and an internal pressure of vapor pressure corresponding to the heating temperature is generated in the pipe. That is, it is possible to control the internal pressure during heating and hot pressing by adjusting the amount of liquid enclosed.
[0034]
-Metals other than high-tensile steel may be used as the material of the starting material (metal pipe material) used in the present invention.
[0035]
-The application object of this invention is not limited to the reinforcement for doors, You may apply to manufacture of the collision reinforcement for other vehicles (for example, bumper reinforcement and a center pillar member). As used herein, the term “collision reinforcement” refers to a member that is attached to each part of a vehicle in order to protect passengers in the vehicle in the event of a vehicle collision or other accident, and that independently exhibits a protective function. It does not matter whether the protective function is exhibited in cooperation with other members.
[0036]
【The invention's effect】
As described above in detail, according to the method for manufacturing a pipe-shaped collision reinforcing material described in each claim, it is possible to perform accurate bending shape formation and quenching on a metal pipe material at the same time, and to reduce the number of processes. Can be produced.
[Brief description of the drawings]
FIGS. 1A to 1D are diagrams showing an example of a manufacturing procedure of a pipe-shaped collision reinforcing material.
FIGS. 2E and 2F are diagrams illustrating an example of a manufacturing procedure of a pipe-shaped collision reinforcing material (continuation of FIG. 1).
FIG. 3 is a perspective view of a pipe-shaped collision reinforcing material made by the procedure of FIGS. 1 and 2;
4A is a perspective view showing a modified example of the end portion of the pipe-shaped collision reinforcing material, and FIG. 4B is an end view of the pipe-shaped collision reinforcing material according to the modified example.
FIG. 5 is a cross-sectional view showing a modified example of an end portion of a pipe-shaped collision reinforcing material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Metal pipe material, 11 ... End part, 13 ... Cover, 21 ... Fixed type (press type), 22 ... Movable type (press type), 23 ... Shaping chamber, 24, 25 ... Passage for cooling water (forced) Cooling mechanism), W ... welded portion at the end.

Claims (5)

真っ直ぐに延びた金属パイプ材の各端部における上内壁と下内壁とを相互接触させ、相互接触した上下内壁間の隙間が完全に埋まるように溶接を施すことにより、当該金属パイプ材の両端部を封止して当該金属パイプ材の内部を密閉空間化する密閉化工程と、
前記内部が密閉空間化された金属パイプ材を加熱する加熱工程と、
前記加熱された金属パイプ材に対し、その金属パイプ材よりも相対的に低温のプレス型を用いてプレス加工を施すことにより所望の曲げ形状を付与するプレス工程とを備えてなることを特徴とするパイプ状衝突補強材の製造方法。
Both ends of the metal pipe material are welded so that the upper inner wall and the lower inner wall at each end of the straightly extending metal pipe material are brought into mutual contact and the gap between the upper and lower inner walls that are in contact with each other is completely filled. a sealing step of sealing the space of the inside of the metal pipe material sealed sealed,
A heating step of heating the metal pipe material in which the inside is sealed space;
A pressing step of imparting a desired bending shape to the heated metal pipe material by pressing using a press mold having a temperature lower than that of the metal pipe material. A method for manufacturing a pipe-shaped collision reinforcing material.
真っ直ぐに延びた金属パイプ材の両端部又はその近傍を押し潰すと共にその押し潰した部位に溶接を施すことにより、当該金属パイプ材の両端部又はその近傍を封止して当該金属パイプ材の内部を密閉空間化する密閉化工程と、By crushing both ends of the metal pipe material extending straight or the vicinity thereof and welding the crushed portion, the both ends of the metal pipe material or the vicinity thereof are sealed and the inside of the metal pipe material A sealing process for creating a sealed space;
前記内部が密閉空間化された金属パイプ材を加熱する加熱工程と、A heating step of heating the metal pipe material in which the inside is sealed space;
前記加熱された金属パイプ材に対し、その金属パイプ材よりも相対的に低温のプレス型を用いてプレス加工を施すことにより所望の曲げ形状を付与するプレス工程とを備えてなることを特徴とするパイプ状衝突補強材の製造方法。A pressing step of imparting a desired bending shape to the heated metal pipe material by pressing using a press mold having a temperature lower than that of the metal pipe material. A method of manufacturing a pipe-shaped collision reinforcing material.
前記加熱工程では、金属パイプ材を850℃以上であってその金属パイプ材の融点未満の温度に加熱すると共に、前記プレス工程では、850℃以上の加熱状態にある金属パイプ材に対して上記のプレス加工を施すことを特徴とする請求項1又は2に記載のパイプ状衝突補強材の製造方法。 In the heating step, the metal pipe material is heated to a temperature of 850 ° C. or higher and lower than the melting point of the metal pipe material, and in the pressing step, the metal pipe material is heated to 850 ° C. or higher. 3. The method for producing a pipe-shaped collision reinforcing material according to claim 1, wherein pressing is performed . 前記真っ直ぐに延びた金属パイプ材が高張力鋼からなる場合において、前記加熱工程では、金属パイプ材を850℃以上1050℃以下の温度に加熱すると共に、前記プレス工程では、850℃以上の加熱状態にある金属パイプ材に対して上記のプレス加工を施すことを特徴とする請求項1〜3のいずれか一項に記載のパイプ状衝突補強材の製造方法。 In the case where the straightly extending metal pipe material is made of high-tensile steel, in the heating step, the metal pipe material is heated to a temperature of 850 ° C. or higher and 1050 ° C. or lower, and in the pressing step, the heating state is 850 ° C. or higher. The method for producing a pipe-shaped collision reinforcing material according to any one of claims 1 to 3, wherein the press working is performed on the metal pipe material . 前記密閉化工程では、前記金属パイプ材の内部に所定量の液体を入れた状態で金属パイプ材の内部を密閉空間化することを特徴とする請求項1〜4のいずれか一項に記載のパイプ状衝突補強材の製造方法。The said sealing process WHEREIN: The inside of a metal pipe material is made into sealed space in the state which put the predetermined amount of liquid in the inside of the said metal pipe material , As described in any one of Claims 1-4 characterized by the above-mentioned. A method of manufacturing a pipe-shaped impact reinforcement.
JP2001349603A 2001-11-15 2001-11-15 Manufacturing method of pipe-shaped impact reinforcement Expired - Fee Related JP3856687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349603A JP3856687B2 (en) 2001-11-15 2001-11-15 Manufacturing method of pipe-shaped impact reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349603A JP3856687B2 (en) 2001-11-15 2001-11-15 Manufacturing method of pipe-shaped impact reinforcement

Publications (2)

Publication Number Publication Date
JP2003145220A JP2003145220A (en) 2003-05-20
JP3856687B2 true JP3856687B2 (en) 2006-12-13

Family

ID=19162249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349603A Expired - Fee Related JP3856687B2 (en) 2001-11-15 2001-11-15 Manufacturing method of pipe-shaped impact reinforcement

Country Status (1)

Country Link
JP (1) JP3856687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058625A1 (en) * 2003-12-17 2005-06-30 Sumitomo Metal Industries Ltd. Metal tube for reinforcing vehicle body and member for reinforcing vehicle body using the same
CN100413613C (en) * 2005-07-01 2008-08-27 郑坚地 Heat pipe sealing structure, and its pressing method and special mould
CN109182717B (en) * 2018-08-29 2020-05-15 荆州市江汉众力实业有限公司 Bending heat treatment process for bracket pipe fitting of aircraft engine

Also Published As

Publication number Publication date
JP2003145220A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
JP3389562B2 (en) Method of manufacturing collision reinforcing material for vehicles
JP4829774B2 (en) Warm drawing method for Al-Mg alloy members
JP4316842B2 (en) Method for manufacturing tailored blank press molded products
US6524404B2 (en) B-column for motor vehicle
CN110446649B (en) Cap member and method for manufacturing same
JP4833323B2 (en) Vehicle member manufacturing method and side member using the same
KR101714121B1 (en) Method for tailor welded blanks
US20090155615A1 (en) Designed orientation for welded automotive structural components made of press hardened steel
CN107257762B (en) For manufacturing the method and vehicle bridge subframe of the sheet metal forming part in the region with multiple wall thickness different from each other
US20030075951A1 (en) Body frame structure for a vehicle and method for manufacturing thereof
KR101190396B1 (en) Taylor welded hot stamping method and steel parts using the same
JP2001506543A (en) Method of manufacturing a metal sheet molded member by molding
KR101035753B1 (en) Hot stamping molding product for using the taylor welded blank method and its manufacturing method
JP6288378B2 (en) Panel-shaped molded product, vehicle door, and method for manufacturing panel-shaped molded product
JP2007014979A (en) Method and apparatus for producing formed body
US20100050730A1 (en) Method of making tempered shaped part
JP3856687B2 (en) Manufacturing method of pipe-shaped impact reinforcement
JP2005145168A (en) Method of manufacturing vehicle skeleton member
JP3975382B2 (en) Manufacturing method of press-molded parts
CN105665576A (en) Steel forming method and forming component
CN109865941A (en) The method for manufacturing tailor welded
KR101116633B1 (en) Method for fabricating a member of vehicle
KR20190120205A (en) How to make parts by further molding preformed contours
JP4140315B2 (en) Car body strength member, car body strength member structure, and car body strength member manufacturing method
JP2003094943A (en) Reinforcing beam for vehicular door, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees