JP3854211B2 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP3854211B2
JP3854211B2 JP2002266959A JP2002266959A JP3854211B2 JP 3854211 B2 JP3854211 B2 JP 3854211B2 JP 2002266959 A JP2002266959 A JP 2002266959A JP 2002266959 A JP2002266959 A JP 2002266959A JP 3854211 B2 JP3854211 B2 JP 3854211B2
Authority
JP
Japan
Prior art keywords
antenna device
substrate
circuit
cylindrical reflector
side surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002266959A
Other languages
Japanese (ja)
Other versions
JP2004104682A (en
Inventor
正佳 新宅
一郎 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
NTT Docomo Inc
Original Assignee
Denki Kogyo Co Ltd
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd, NTT Docomo Inc filed Critical Denki Kogyo Co Ltd
Priority to JP2002266959A priority Critical patent/JP3854211B2/en
Publication of JP2004104682A publication Critical patent/JP2004104682A/en
Application granted granted Critical
Publication of JP3854211B2 publication Critical patent/JP3854211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば移動通信システム等の基地局に使用されるアンテナ装置であって、水平偏波および垂直偏波を用い、かつその水平面指向性が無指向性である偏波共用アンテナ装置に関する。
【0002】
【従来の技術】
陸上移動通信システムでの基地局アンテナ装置の形態の一つとして、無指向性アンテナ装置が選択される場合がある。これは、一般に加入者容量が小さい場所にゾーンを形成する場合等がこれにあたる。
従来、この種のアンテナ装置においては、例えば、コリニアアンテナ等の水平面が無指向性で、垂直面がビーム幅の狭い、垂直偏波を用いたアンテナ装置を使用することが多かった。
近年の移動通信の普及による加入者の増加とともに、さらなる通信品質の向上が求められている。このため、電波の受信効率を上げるため、ダイバーシチ受信方式が採用されている。
スペースダイバーシチが、同じ2つのアンテナを距離をおいて設置する必要があるのに対して、偏波ダイバーシチの場合には、2つのアンテナを距離をおいて設置する必要がなく、図5のように、水平偏波用アンテナと垂直偏波用アンテナを上段と下段に重ね、一つのレドームに収納し、1つのアンテナ装置とすることが可能である。
【0003】
しかしながら、水平偏波用と垂直偏波用の別個のアンテナを上下段に一つにまとめる方法では、アンテナの長さが2倍となってしまうため、実際には個々のアンテナの長さを十分長くすることができず、したがって、利得も高くすることができなかった。
また、コリニアアンテナ等に代表される水平面無指向性アンテナ装置においては、垂直方向に配列された各アンテナ素子への給電は、いわゆる直列給電であり、VSWRや指向性の周波数特性をもつことが知られている。
また、直列給電ゆえに各アンテナ素子への電力分布を任意に与えることが困難であるため、ゾーン構成に関係する垂直面指向性のビーム成形を行うことが困難である。
さらに、垂直面指向性のチルト角度は固定であり、アンテナ設置後に垂直面指向性のチルト角を変えてゾーンを再構築することが不可能である。
チルト角制御を行うために、無理にコリニアアンテナをブロック化し、各ブロックを給電するケーブルを接続すれば、下方のブロックにおいてアンテナ素子の近くをケーブルが通ることによって、その影響により水平面無指向性が乱されることになる。
【0004】
【発明が解決しようとする課題】
前記のように水平偏波用アンテナと垂直偏波用アンテナを上段と下段に重ねる従来の方法では、アンテナ長を長くできないため、高利得を得るのが困難であった。
また、従来のコリニアアンテナ等の水平面無指向性アンテナ装置は直列給電方式であるため、VSWRや指向性の周波数特性をもつとともに、垂直面指向性のビーム成形を行うことが困難であった。
さらに、垂直面指向性のチルト角度が固定であり、設置後に垂直面チルト角度を変えてゾーンを再構築することが不可能であった。
本発明はかかる点に鑑みなされたもので、その目的は前記問題点を解消し、高利得かつ垂直面指向性のビーム成形およびチルト角度変更が可能であり、チルト可変のためのブロック給電ケーブルの存在による水平面の無指向性への影響を取り除いた水平および垂直偏波共用水平面無指向性アンテナ装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のアンテナ装置は、鉛直方向を長手方向とし、4側面をもつ略四角柱形状の筒状反射板と、該筒状反射板上に配置した複数の誘電体素子基板を備え、前記筒状反射板上に給電回路を形成し、前記複数の誘電体素子基板は、前記筒状反射板の4側面に対して垂直に取り付けられ、それぞれに分岐回路および水平偏波用素子または垂直偏波用素子を前記筒状反射板に対し、囲むように複数配置し、前記筒状反射板上の前記給電回路に接続し、前記水平偏波用素子を備えた誘電体素子基板である水平偏波用素子基板と前記垂直偏波用素子を備えた誘電体素子基板である垂直偏波用素子基板とを鉛直方向に上下に交互に配置したことを特徴とする。
本発明のアンテナ装置は、更に、前記水平偏波用素子基板および前記垂直偏波用素子基板の1または複数の組を備えた箇所を1つのブロックとし、該ブロックを鉛直方向に上下に複数重ねた構造とする。
本発明のアンテナ装置は、更に、前記各ブロックの前記給電回路に接続され給電を行う給電ケーブルを前記筒状反射板の内側内に配置した構造とする。また、前記ブロックの上または下に配置された別の前記ブロックに給電するための前記給電ケーブルを前記筒状反射板の内側内に収容する。
本発明のアンテナ装置は、更に、前記各ブロックへの給電ケーブルを一箇所に集合し、該給電ケーブルに移相器を接続し、前記各ブロックへ給電する電力を制御することにより垂直面指向性のビームチルト制御を行う。
【0006】
本発明は、以上のように、水平および垂直偏波素子基板のうち、同じ偏波基板同士を単一偏波のアンテナの同等の素子間隔で、かつ異なる偏波素子基板を交互に配置することにより、単一偏波アンテナと同じ長さで同等の利得を得ることができる。
また、筒状反射板上に素子基板への給電回路をある一定の面積内に形成することができるため、直列給電方式ではなく、並列給電方式の給電回路が形成でき、よってVSWRおよび指向性の周波数特性を抑えることができる。
さらに、並列給電方式によって、給電回路の設計の容易さにより、各アンテナ素子への電力分布を自由に設定できるので、垂直面指向性の成形が可能となる。また、水平および垂直偏波用素子の数組を1ブロックとし、これを多段化することにより高利得を得ることができるとともに、各ブロックへの給電ケーブルを筒状反射板の空洞内を通すことにより、給電ケーブルが指向性に与える影響をなくすことができる。
また、この給電ケーブルを最下段に集合させ、移相器を接続することにより、垂直面指向性のチルト角度を制御することが可能となる。
【0007】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の形態を詳しく説明する。
図1および図2は本発明の水平および垂直偏波共用アンテナ装置の一実施の形態を示す図である。
図1は、水平偏波素子基板および垂直偏波素子基板がそれぞれ2枚ずつ交互に配置された1ブロックの構成例を示し、図2はその断面であり、水平偏波素子部を示す図である。
4側面をもつ筒状反射板に配置された給電回路は2枚1組となっており、それぞれの組は水平偏波用と垂直偏波用に対応しており、その2組が互いに向かい合わせで配置されている。筒状反射板上の給電回路はマイクロストリップ線路で形成され、2分配回路により、上下それぞれの素子基板への給電の役目をしている。
素子基板への給電は、筒状反射板の端と素子基板との交点から行われ、ここで、素子基板上に形成された平衡ストリップ線路に接続される。
このストリップ線路はこの接続点において2分岐しており、2つのダイポール素子に接続している。
ダイポール素子は素子基板上に4つ形成されており、そのうちの2つは前述の一方の筒状反射板上のマイクロストリップ給電回路から給電されたものであり、残りの2つのダイポール素子はもう一方の筒状反射板上のマイクロストリップ給電回路から給電されたものである。
この筒状給電反射板上のマイクロストリップ給電回路および、素子基板の形状は筒状反射板の中心軸に対して点対称である。
ダイポール素子の配置方向は水平偏波の場合は水平方向に配置し、垂直偏波の場合は垂直方向に配置する。
なお、素子基板上のダイポール素子は筒状反射板の周りを囲むように配置しており、さらに、それらのダイポール素子は同振幅同位相で給電されているので、ダイポール素子の合成指向性は水平面で無指向性となる。
【0008】
図3は、水平および垂直偏波の水平面指向性の実測値を示している。
どちらの偏波においても、偏差の少ない無指向性が得られている。
それぞれの筒状反射板上のマイクロストリップ給電回路には、筒状反射板の空洞内を通して給電ケーブルが接続されており、それぞれ対となる給電ケーブル同士を分配器でまとめている。
これを1ブロックとし、これを多段化することができる。
多段化した場合は図4に示すようにそれぞれのブロックの給電ケーブルは下方のブロックの筒状反射板の空洞内を通して、最下段まで延ばすことができ、そこで、移相器を接続することができる。
【0009】
また、上記の例では、1ブロック内の素子基板組数は2組としたが、垂直面指向性の設計に応じて、1ブロック内の素子基板組数は任意に設定することができる。
また、上記の例では、素子基板上に4つのダイポール素子を配置したが、筒状反射板の大きさが波長に比して小さい場合には2つのダイポール素子で水平面無指向性を得ることができる。
また、本発明の技術は前記実施の形態における技術に限定されるものではなく、同様な機能を果たす他の態様の技術によってもよく、また、本発明の技術は前記構成の範囲内において種々の変更、付加が可能である。
【0010】
【発明の効果】
以上の説明から明らかなように本発明の水平および垂直偏波共用水平面無指向性アンテナ装置によれば、水平および垂直偏波素子基板のうち、同じ偏波基板同士を単一偏波のアンテナの同等の素子間隔で、かつ異なる偏波素子基板を上下方向に交互に配置することにより、単一偏波のアンテナと同じ長さで同等の利得を得ることができる。
また、筒状反射板上に素子基板への給電回路をある一定の面積内に形成することができるため、直列給電方式ではなく、並列給電方式の給電回路が形成でき、よってVSWRおよび指向性の周波数特性を抑えることができる。
さらに、並列給電方式によって、給電回路の設計の容易さにより、各アンテナ素子への電力分布を自由に設定できるので、垂直面指向性の成形が可能となる。また、水平および垂直偏波用素子の数組を1ブロックとし、これを多段化することにより高利得化がねらえるとともに、各ブロックへの給電ケーブルを筒状反射板の空洞内を通すことにより、給電ケーブルが指向性に与える影響をなくすことができる。
また、この給電ケーブルを最下段に集合させ、移相器を接続することにより、垂直面指向性のチルト角度を制御することが可能となるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明のアンテナ装置の1ブロックの構成を示す図。
【図2】本発明のアンテナ装置の断面図。
【図3】本発明のアンテナ装置の水平面指向性を示す図。
【図4】本発明のアンテナ装置を多段化し、移相器を接続したアンテナ装置の構成を示す図。
【図5】従来の偏波共用水平面無指向性アンテナの構成を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antenna device used in a base station such as a mobile communication system, for example, which uses a horizontally polarized wave and a vertically polarized wave and has a horizontal plane directivity that is non-directional.
[0002]
[Prior art]
An omnidirectional antenna device may be selected as one form of a base station antenna device in a land mobile communication system. This is generally the case when a zone is formed in a place where the subscriber capacity is small.
Conventionally, in this type of antenna device, for example, an antenna device using vertically polarized waves, such as a collinear antenna, in which a horizontal plane is omnidirectional and a vertical plane has a narrow beam width, is often used.
With the increase in subscribers due to the spread of mobile communication in recent years, further improvement in communication quality is required. For this reason, a diversity reception system is employed in order to increase radio wave reception efficiency.
While space diversity requires the same two antennas to be installed at a distance, in the case of polarization diversity, there is no need to install the two antennas at a distance, as shown in FIG. The antenna for horizontal polarization and the antenna for vertical polarization can be stacked on the upper stage and the lower stage and housed in one radome to form one antenna device.
[0003]
However, the method of combining separate antennas for horizontal polarization and vertical polarization into one on the upper and lower stages doubles the length of the antenna, so the length of each individual antenna is actually sufficient. The length could not be increased, and therefore the gain could not be increased.
Further, in a horizontal omnidirectional antenna device represented by a collinear antenna or the like, the feeding to each antenna element arranged in the vertical direction is a so-called series feeding, and it is known that it has VSWR and directivity frequency characteristics. It has been.
In addition, since it is difficult to arbitrarily give power distribution to each antenna element due to series feeding, it is difficult to perform beam shaping with directivity related to the zone configuration.
Further, the tilt angle of the vertical plane directivity is fixed, and it is impossible to reconstruct the zone by changing the tilt angle of the vertical plane directivity after the antenna is installed.
In order to control the tilt angle, if the collinear antennas are forcibly blocked and the cables that feed power to each block are connected, the cables pass near the antenna elements in the lower block. It will be disturbed.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional method in which the horizontally polarized antenna and the vertically polarized antenna are overlapped on the upper and lower stages, it is difficult to obtain a high gain because the antenna length cannot be increased.
In addition, since a conventional horizontal omnidirectional antenna device such as a collinear antenna is a series feeding method, it has a frequency characteristic of VSWR and directivity, and it is difficult to perform beam shaping of vertical plane directivity.
Furthermore, the tilt angle of the vertical surface directivity is fixed, and it is impossible to reconstruct the zone by changing the vertical surface tilt angle after installation.
The present invention has been made in view of the above points, and the object of the present invention is to eliminate the above-mentioned problems, enable high gain and vertical plane directivity beam shaping and tilt angle change, and block feed cable for variable tilt. An object of the present invention is to provide a horizontal and vertical polarization horizontal plane omnidirectional antenna device that eliminates the influence of the presence on the horizontal plane omnidirectionality.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an antenna device according to the present invention includes a substantially rectangular prism-shaped cylindrical reflector having a vertical direction as a longitudinal direction and a plurality of dielectrics arranged on the cylindrical reflector. An element substrate, and a feeder circuit is formed on the cylindrical reflector. The plurality of dielectric element substrates are attached perpendicular to four side surfaces of the cylindrical reflector, and each includes a branch circuit and a horizontal bias. A dielectric having a plurality of wave elements or vertically polarized elements arranged to surround the cylindrical reflector, connected to the feeder circuit on the cylindrical reflector, and having the horizontally polarized elements The element substrate for horizontal polarization which is an element substrate and the element substrate for vertical polarization which is a dielectric element substrate provided with the element for vertical polarization are alternately arranged in the vertical direction.
The antenna device according to the present invention further includes a portion having one or a plurality of sets of the horizontal polarization element substrate and the vertical polarization element substrate as one block, and a plurality of the blocks are vertically stacked in the vertical direction. Structure.
The antenna device according to the present invention further has a structure in which a power feeding cable that is connected to the power feeding circuit of each block and feeds power is arranged inside the cylindrical reflector. Further, the power supply cable for supplying power to another block arranged above or below the block is accommodated inside the cylindrical reflector.
The antenna device according to the present invention further has a vertical plane directivity by collecting power supply cables to each block at one place, connecting a phase shifter to the power supply cable, and controlling power supplied to each block. The beam tilt control is performed.
[0006]
As described above, according to the present invention, of the horizontal and vertical polarization element substrates, the same polarization substrates are arranged at equal element intervals of a single polarization antenna, and different polarization element substrates are alternately arranged. Thus, an equivalent gain can be obtained with the same length as that of the single polarization antenna.
In addition, since the power supply circuit to the element substrate can be formed on the cylindrical reflector within a certain area, a parallel power supply system can be formed instead of a series power supply system, and thus VSWR and directivity can be formed. Frequency characteristics can be suppressed.
Furthermore, the parallel power feeding method allows the power distribution to each antenna element to be freely set due to the ease of designing the power feeding circuit, so that the vertical plane directivity can be formed. Also, several sets of horizontal and vertical polarization elements are made into one block, and a high gain can be obtained by multi-stage this, and the power supply cable to each block is passed through the cavity of the cylindrical reflector. Thus, the influence of the feeding cable on the directivity can be eliminated.
In addition, it is possible to control the tilt angle of the vertical plane directivity by collecting the feeding cables at the lowest stage and connecting a phase shifter.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 and FIG. 2 are views showing an embodiment of the horizontal and vertical polarization antenna apparatus of the present invention.
FIG. 1 shows a configuration example of one block in which two horizontal polarization element substrates and two vertical polarization element substrates are alternately arranged, and FIG. 2 is a cross-sectional view showing a horizontal polarization element portion. is there.
There are two pairs of feeding circuits arranged on a cylindrical reflector with four sides. Each pair corresponds to horizontal polarization and vertical polarization, and the two sets face each other. Is arranged in. The power supply circuit on the cylindrical reflector is formed of a microstrip line, and serves to supply power to the upper and lower element substrates by the two distribution circuits.
Electric power is supplied to the element substrate from the intersection of the end of the cylindrical reflector and the element substrate, where it is connected to a balanced strip line formed on the element substrate.
This strip line is branched into two at this connection point, and is connected to two dipole elements.
Four dipole elements are formed on the element substrate, two of which are fed from the aforementioned microstrip feeding circuit on one of the cylindrical reflectors, and the other two dipole elements are the other. Power is supplied from the microstrip power supply circuit on the cylindrical reflector.
The shapes of the microstrip feeding circuit and the element substrate on the cylindrical feeding reflector are point-symmetric with respect to the central axis of the cylindrical reflector.
The dipole elements are arranged in the horizontal direction in the case of horizontal polarization, and in the vertical direction in the case of vertical polarization.
The dipole elements on the element substrate are arranged so as to surround the cylindrical reflector, and furthermore, since these dipole elements are fed with the same amplitude and phase, the combined directivity of the dipole elements is horizontal. Becomes omnidirectional.
[0008]
FIG. 3 shows measured values of horizontal plane directivity of horizontal and vertical polarization.
In both polarizations, omnidirectionality with little deviation is obtained.
A power supply cable is connected to the microstrip power supply circuit on each cylindrical reflecting plate through the cavity of the cylindrical reflecting plate, and the paired power supply cables are collected by a distributor.
This can be made into one block and can be multi-staged.
In the case of multiple stages, as shown in FIG. 4, the feeding cable of each block can be extended to the lowest stage through the hollow of the cylindrical reflector of the lower block, and a phase shifter can be connected there. .
[0009]
In the above example, the number of element substrate groups in one block is two, but the number of element substrate groups in one block can be arbitrarily set in accordance with the design of the vertical plane directivity.
In the above example, four dipole elements are arranged on the element substrate. However, when the size of the cylindrical reflector is smaller than the wavelength, two plane dipole elements can be used to obtain horizontal plane omnidirectionality. it can.
In addition, the technology of the present invention is not limited to the technology in the above-described embodiment, and may be based on the technology of another aspect that performs the same function, and the technology of the present invention may be various within the scope of the above configuration. Changes and additions are possible.
[0010]
【The invention's effect】
As is clear from the above description, according to the horizontal and vertical polarization horizontal plane omnidirectional antenna apparatus of the present invention, the same polarization substrate among the horizontal and vertical polarization element substrates is connected to the single polarization antenna. By alternately disposing different polarization element substrates in the vertical direction at equal element intervals, it is possible to obtain an equal gain with the same length as that of a single polarization antenna.
In addition, since the power supply circuit to the element substrate can be formed on the cylindrical reflector within a certain area, a parallel power supply system can be formed instead of a series power supply system, and thus VSWR and directivity can be formed. Frequency characteristics can be suppressed.
Furthermore, the parallel power feeding method allows the power distribution to each antenna element to be freely set due to the ease of designing the power feeding circuit, so that the vertical plane directivity can be formed. Moreover, several sets of horizontal and vertical polarization elements are made into one block, and by aiming at high gain by making this multi-stage, by passing the feeding cable to each block through the cavity of the cylindrical reflector, The influence of the feeding cable on the directivity can be eliminated.
Further, by gathering the power supply cables at the lowest stage and connecting a phase shifter, there is an excellent effect that the tilt angle of the vertical plane directivity can be controlled.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of one block of an antenna device of the present invention.
FIG. 2 is a cross-sectional view of the antenna device of the present invention.
FIG. 3 is a diagram showing horizontal plane directivity of the antenna device of the present invention.
FIG. 4 is a diagram showing a configuration of an antenna device in which the antenna device of the present invention is multistaged and a phase shifter is connected.
FIG. 5 is a diagram showing a configuration of a conventional polarization-shared horizontal plane omnidirectional antenna.

Claims (5)

鉛直方向を長手方向とし、4側面をもつ略四角柱形状の筒状反射板と、該筒状反射板上に垂直方向に配列配置した複数の誘電体素子基板を備え、
前記筒状反射板上にマイクロストリップ線路から成る給電回路を形成し、
前記複数の誘電体素子基板は、筒状反射板の4側面に対して垂直に取り付けられ、
前記複数の誘電体素子基板の1つは基板上に前記筒状反射板の4側面の短辺に平行な水平偏波用素子と前記給電回路からの給電信号を水平偏波用素子に分岐する分岐回路が形成された水平偏波用素子基板であり、
前記複数の誘電体素子基板の他の1つは基板上に前記筒状反射板の4側面のそれぞれの側面と対向し鉛直方向に平行な垂直偏波用素子と前記給電回路からの給電信号を垂直偏波用素子に分岐する分岐回路が形成された垂直偏波用素子基板であり、
前記水平偏波用素子基板と前記垂直偏波用素子基板とが鉛直方向に上下に交互に配置され、
前記分岐回路は平衡ストリップ線路により構成され、前記4側面の対角線上の角をそれぞれ分岐点として当該角を構成する両側面と対向する各偏波用素子に対し給電するものであり、
前記隣接する水平偏波用素子基板間で、その一方の基板における分岐回路の前記一方の対角線上の一対の分岐点と、他方の基板における分岐回路の前記他方の対角線上の一対の分岐点とをそれぞれ接続する水平偏波用給電回路が、前記4側面の一方の対向する側面にそれぞれ形成され、それぞれ分配回路として構成され、
前記隣接する垂直偏波用素子基板間で、その一方の基板における分岐回路の前記一方の対角線上の一対の分岐点と、他方の基板における分岐回路の前記他方の対角線上の一対の分岐点とをそれぞれ接続する垂直偏波用給電回路が、前記4側面の他方の対向する側面にそれぞれ形成され、それぞれ分配回路として構成されていることを特徴とするアンテナ装置。
The vertical direction is the longitudinal direction, and includes a substantially rectangular prism-shaped cylindrical reflector having four side surfaces, and a plurality of dielectric element substrates arranged in the vertical direction on the cylindrical reflector,
Forming a feeding circuit composed of a microstrip line on the cylindrical reflector;
The plurality of dielectric element substrates are attached perpendicular to the four side surfaces of the cylindrical reflector,
One of the plurality of dielectric element substrates branches a horizontal polarization element parallel to the short sides of the four side surfaces of the cylindrical reflector on the substrate and a feed signal from the feed circuit to the horizontal polarization element. It is an element substrate for horizontal polarization in which a branch circuit is formed,
The other one of the plurality of dielectric element substrates is provided with a vertical polarization element parallel to a vertical direction facing each of the four side surfaces of the cylindrical reflector on the substrate and a feed signal from the feed circuit. It is a vertically polarized element substrate in which a branch circuit that branches to a vertically polarized element is formed,
The horizontal polarization element substrate and the vertical polarization element substrate are alternately arranged vertically in the vertical direction,
The branch circuit is configured by a balanced strip line, and feeds power to each polarization element facing both side surfaces constituting the corner, with the corners on the diagonals of the four side surfaces as branch points, respectively.
Between the adjacent horizontal polarization element substrates, a pair of branch points on the one diagonal line of the branch circuit on one substrate, and a pair of branch points on the other diagonal line of the branch circuit on the other substrate, Are respectively formed on one opposing side surface of the four side surfaces, and each configured as a distribution circuit,
Between the adjacent vertical polarization element substrates, a pair of branch points on the one diagonal of the branch circuit on one substrate, and a pair of branch points on the other diagonal of the branch circuit on the other substrate, Are respectively formed on the other opposing side surface of the four side surfaces, and each is configured as a distribution circuit.
請求項1に記載のアンテナ装置を1つのブロックとし、該ブロックを鉛直方向に上下に複数重ねたことを特徴とするアンテナ装置。An antenna device according to claim 1, wherein the antenna device according to claim 1 is used as one block, and a plurality of the blocks are vertically stacked in the vertical direction. 請求項2に記載のアンテナ装置において、
前記各ブロックの前記給電回路に接続され給電を行う給電ケーブルを前記筒状反射板の内側内に配置したことを特徴とするアンテナ装置。
The antenna device according to claim 2, wherein
An antenna device, wherein a power supply cable connected to the power supply circuit of each block for supplying power is disposed inside the cylindrical reflector.
請求項3に記載のアンテナ装置において、
前記ブロックの上または下に配置された別の前記ブロックに給電するための前記給電ケーブルを前記筒状反射板の内側内に収容したことを特徴とするアンテナ装置。
The antenna device according to claim 3, wherein
An antenna device characterized in that the feeding cable for feeding power to another block arranged above or below the block is housed inside the cylindrical reflector.
請求項3または4に記載のアンテナ装置において、
前記各ブロックへの給電ケーブルを一箇所に集合し、該給電ケーブルに移相器を接続し、前記各ブロックへ給電する電力を制御することにより垂直面指向性ビームのビームチルト制御を行うことを特徴とするアンテナ装置。
In the antenna device according to claim 3 or 4,
Collecting the power supply cables to each block in one place, connecting a phase shifter to the power supply cable, and controlling the power supplied to each block to perform beam tilt control of the vertical plane directional beam A feature antenna device.
JP2002266959A 2002-09-12 2002-09-12 Antenna device Expired - Lifetime JP3854211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266959A JP3854211B2 (en) 2002-09-12 2002-09-12 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266959A JP3854211B2 (en) 2002-09-12 2002-09-12 Antenna device

Publications (2)

Publication Number Publication Date
JP2004104682A JP2004104682A (en) 2004-04-02
JP3854211B2 true JP3854211B2 (en) 2006-12-06

Family

ID=32265626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266959A Expired - Lifetime JP3854211B2 (en) 2002-09-12 2002-09-12 Antenna device

Country Status (1)

Country Link
JP (1) JP3854211B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368609B2 (en) 2008-10-21 2013-02-05 Laird Technologies, Inc. Omnidirectional multiple input multiple output (MIMO) antennas with polarization diversity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4347002B2 (en) * 2003-09-10 2009-10-21 日本電業工作株式会社 Dual polarization antenna
JP3983237B2 (en) * 2004-09-03 2007-09-26 電気興業株式会社 Antenna device
JP4589821B2 (en) * 2005-06-21 2010-12-01 マスプロ電工株式会社 Antenna device
JP4642884B2 (en) * 2008-08-05 2011-03-02 電気興業株式会社 Omnidirectional antenna device
JP5514779B2 (en) * 2011-08-30 2014-06-04 日本電業工作株式会社 Dual polarization antenna
WO2014178494A1 (en) * 2013-04-28 2014-11-06 주식회사 굿텔 Multi-band antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498553A (en) * 1978-01-20 1979-08-03 Hitachi Cable Ltd Antenna
JPS55117307A (en) * 1979-03-01 1980-09-09 Natl Space Dev Agency Japan<Nasda> Non-directional antenna
JP3551227B2 (en) * 1998-02-27 2004-08-04 住友電気工業株式会社 Horizontally polarized omnidirectional antenna
JPH11284433A (en) * 1998-03-30 1999-10-15 Apricot:Kk Antenna device
JP2989813B1 (en) * 1998-09-14 1999-12-13 電気興業株式会社 Dual-polarization antenna device
JP3551231B2 (en) * 1998-12-28 2004-08-04 住友電気工業株式会社 Omni-directional polarization diversity antenna
JP3698580B2 (en) * 1998-12-28 2005-09-21 住友電気工業株式会社 Omni-directional polarization diversity antenna
JP4202572B2 (en) * 2000-01-07 2008-12-24 Dxアンテナ株式会社 Omnidirectional antenna
JP3623714B2 (en) * 2000-03-30 2005-02-23 株式会社エヌ・ティ・ティ・ドコモ Broadband antenna and array antenna device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368609B2 (en) 2008-10-21 2013-02-05 Laird Technologies, Inc. Omnidirectional multiple input multiple output (MIMO) antennas with polarization diversity
CN101728655B (en) * 2008-10-21 2015-04-01 莱尔德技术股份有限公司 Omnidirectional multiple input multiple output (mimo) antennas with polarization diversity

Also Published As

Publication number Publication date
JP2004104682A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US6320542B1 (en) Patch antenna apparatus with improved projection area
EP3762996A1 (en) Antenna arrays having shared radiating elements that exhibit reduced azimuth beamwidth and increased isolation
US10186778B2 (en) Wideband dual-polarized patch antenna array and methods useful in conjunction therewith
KR102172187B1 (en) Omni-directional antenna for mobile communication service
US11108137B2 (en) Compact omnidirectional antennas having stacked reflector structures
CN103503231A (en) Tri-pole antenna element and antenna array
US20100328173A1 (en) Single feed planar dual-polarization multi-loop element antenna
WO2021194832A1 (en) Radiating elements having angled feed stalks and base station antennas including same
US20210320399A1 (en) Base station antennas having arrays of radiating elements with 4 ports without usage of diplexers
CN101789548A (en) Mobile communication base station antenna
CN111819731B (en) Multiband base station antenna
KR20120078646A (en) 450 mhz donor antenna
JP3273402B2 (en) Printed antenna
KR101252244B1 (en) Multi antenna
JP3854211B2 (en) Antenna device
CN113036400A (en) Radiating element, antenna assembly and base station antenna
JP4139837B2 (en) Dual frequency dipole antenna device
JP3924267B2 (en) Dual frequency dipole antenna device
CN109616778A (en) The passive multiple-beam array device of millimeter wave and its implementation for mobile terminal
US20220311130A1 (en) Antenna feed networks and related antennas and methods
CN210430092U (en) Unit structure and array structure of mobile communication antenna
US11563271B2 (en) Antenna array with ABFN circuitry
JP3983237B2 (en) Antenna device
US20210111497A1 (en) Multi-band base station antenna
CN211045708U (en) Radiating element, antenna assembly and base station antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3854211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term