JP3853912B2 - Developing roller used in non-magnetic non-contact developing device - Google Patents

Developing roller used in non-magnetic non-contact developing device Download PDF

Info

Publication number
JP3853912B2
JP3853912B2 JP18361097A JP18361097A JP3853912B2 JP 3853912 B2 JP3853912 B2 JP 3853912B2 JP 18361097 A JP18361097 A JP 18361097A JP 18361097 A JP18361097 A JP 18361097A JP 3853912 B2 JP3853912 B2 JP 3853912B2
Authority
JP
Japan
Prior art keywords
developing roller
rubber layer
conductive rubber
roller
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18361097A
Other languages
Japanese (ja)
Other versions
JPH1124387A (en
Inventor
和義 三村
八洲男 伏木
健二 小林
洋 大越
丞 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP18361097A priority Critical patent/JP3853912B2/en
Publication of JPH1124387A publication Critical patent/JPH1124387A/en
Application granted granted Critical
Publication of JP3853912B2 publication Critical patent/JP3853912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真方式の複写機、プリンターあるいはファクシミリ受信装置に用いる現像装置のうち、特に非磁性トナーを用い、現像ローラと感光体とが非接触である方式の現像装置に組み込む現像ローラに関する。
【0002】
【従来の技術】
電子写真方式の複写機、プリンターあるいはファクシミリ受信装置には、現像ローラを備えた現像装置が組み込まれている。図2に示すように、現像ローラ1はトナーボックス10に収容したトナー11を感光体12に渡す機能を有するが、その方法は様々であり、例えば作用力として磁気的吸引力と電気的吸引力の両方を用いるもの、電気的吸引力のみを用いるもの等がある。
また、このような利用する作用力の相違によって現像ローラを感光体に接触させる場合と非接触とする場合とがある。
このような多様な形態がある中で、非磁性非接触現像装置が最近注目されている。これは非磁性トナーはカラー化が容易であるとともに、モノクロにおいてもハーフトーン画像を容易且つ良好に現像できる利点を有し、一方、現像ローラと感光体とを接触させない非接触方式はトナーに対するストレスが少なくトナーの繰り返し使用における耐久性に優れる利点を有することに着目したものであり、両者を組み合わせることによって両利点を併せ持った非磁性非接触現像装置を実現できる可能性があるからである。
【0003】
この方式では、現像ローラ表面へのトナー11の堆積厚を規制する規制ブレード13と現像ローラ表面との間でトナーを摩擦帯電させるために、加圧力によりトナーが割れやすく、このためトナーの割れを防止すべく柔軟なゴム材料をシャフト上に被覆した現像ローラを用いることが検討されている。ゴム層はそのまま表面露出させることもあるが、トナー帯電を制御する観点から表面に薄い被覆層を設けることも多い。
【0004】
【発明が解決しようとする課題】
しかしながら、ゴム材料は線膨張係数が大きく環境によってローラ外径が変わりやすい。ローラ外径が変化すると感光体表面と現像ローラ表面との距離が変わって現像条件が一定せず、トナー挙動を制御することが困難となり、例えば、20℃60%RH環境下では良好な画像が得られても35℃85%RH環境下では良好な画像が得られない等の問題が発生する。またゴム層の外側に被覆層が設けられている場合には前記ゴム層の層厚変動に加えて被覆層の層厚変動も問題となる。
本発明は、温度・湿度環境変化があってもローラ外径が変化せず、常に同じ現像条件を維持できる現像ローラを提供せんとするものである。
【0005】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意検討した結果、導電性ゴム層を薄くすればローラの外径変化を小さく出来ることを見出すにいたった。導電性ゴム層は薄いほど温度・湿度変化に伴う寸法変動は小さいが、あまり薄すぎると柔軟性が失われ、ゴム層を設けた意味がない。温度・湿度変化において前記問題の発生のない適正範囲はローラ外径と導電性支持体直径との径差が0.1mm以上4mm以下、より好ましくは0.1mm以上2mm以下となる範囲である。ここで適正範囲をゴム層の層厚で規定せずにローラ外径と導電性支持体直径との径差で規定したのは、層厚変動が無視できない被覆層が存在する場合をも想定したためである。現像ローラには導電性ゴム層の外側に抵抗調整や表面保護、更にはトナーの帯電調整を目的とした被覆層を1層〜4層積層する場合が多いが、これら被覆層の層厚が比較的厚い場合には、この被覆層の層厚変動もローラ外径の変動要素となる。一般的には被覆層は数ミクロン〜数十ミクロンオーダーの薄層であり、またその線膨張係数もゴム層に比して小さいから、被覆層が存在する場合であっても、その層厚変動は無視できる。しかしながら被覆層の層厚変動が無視できない場合も想定され、このような事情を総合的に勘案すると、ローラ外径の変動抑制の議論は、ローラ外径と導電性支持体直径との径差の変動抑制の問題として捉えることが適切と判断される。
【0006】
前述したようにローラ外径と導電性支持体直径との径差の、より好ましい範囲は0.1mm以上2mm以下である。
【0007】
導電性ゴム層が硬すぎると、トナーの繰り返し使用の過程でトナー割れが発生し画像不良が発生することから、導電性ゴムにはトナー割れを生じない程度の柔らかさが必要である。この観点から導電性ゴム層の硬度はJIS A硬度で30°以下となすことが適している。
【0008】
また導電性ゴム層には無機フィラ−を充填するとローラ外径の変動はより小さくなる。無機フィラ−の充填量の好ましい範囲は20重量%以上である。充填量の上限は成形性及び硬度の観点から適宜決めればよい。
【0009】
このような構成の現像ローラはトナー割れを起こさない表面柔軟性を有しつつ、温度・湿度変化に対するローラ外径の変動も小さい。したがって、ローラ外径の変化、即ち、感光体と現像ローラとの距離の変化による感光体表面電位と現像ローラ表面電位の変動が少なくなり良好な現像特性が得られるようになる。また柔軟である場合にはトナー割れによる画像耐久性の低下も防ぐことができる。
【0010】
【発明の実施の形態】
本発明にかかる現像ローラは導電性支持体の外側に導電性ゴム層を被覆し、必要に応じてその外側に抵抗調整や表面保護、更にはトナーの帯電調整等を目的とした被覆層を1層〜4層積層した構成である。導電性支持体としては金属シャフトや内部を空洞化した金属スリーブが使用できる。
【0011】
図1として示すものは本発明の現像ローラの一実施例の構造を示している。この現像ローラは、SUS製のシャフト2の外側に導電性ゴム層3、被覆層4を配した構成であり、ローラ外径は20℃で5mm〜40mmの範囲内である。
現像ローラのローラ抵抗はシャフトの両端に500Kgの垂直荷重を加えた状態でDC100Vを印加したときに104 〜1010オーム、好ましくは106 〜109 オームとなるよう調整する。抵抗調整はカーボンブラック等の充填量を調整することで行えばよい。
【0012】
導電性ゴム層は、その硬度をJIS A硬度で30°以下にする。30°を超えるとゴム層の柔軟性が失われ、トナー割れの原因となる。導電性ゴム層の主成分である樹脂成分はウレタン、EPDM、シリコーン、NBR等が使用できる。導電性ゴム層にシリカ、金属酸化物等の無機フィラ−を充填すると温度・湿度変化に対する寸法安定性がより高まる。無機フィラ−は20重量%以上充填させることが好ましい。20重量%未満では寸法安定性を高める効果が十分でない。
【0013】
被覆層は、表面保護、抵抗調整、帯電調整等を目的とするもので、ナイロン樹脂、ウレタン系樹脂、フッ素系樹脂、ポリカーボネートウレタン樹脂等によって形成している。層厚は通常10〜50μmの範囲であるが、必要に応じてより厚くする場合もある。本実施例では被覆層は1層であるが、複数層設けてもよい。
【0014】
本発明の現像ローラは、このような構成を前提にして、導電性ゴム層を薄くしたことが最大の特徴である。また、その層厚変動を無視できない被覆層が存在する場合には導電性ゴム層と被覆層との合計層厚を薄くすることが特徴である。導電性ゴム層の層厚は薄いほど温度・湿度変化に対する寸法安定性には優れるが、薄すぎるとゴム層としての柔軟性が失われ、トナー割れを起こす。
【0015】
トナー割れを起こさず、ローラ外径変動を許容範囲内に収めるために本発明では、ローラ外径と導電性支持体直径との径差を0.1mm以上4mm以下、より好ましくは0.1mm以上2mm以下に設定する。
【0016】
【実施例】
本発明の効果を確かめるために、本実施例の現像ローラと比較例の現像ローラをそれぞれ複数種作製したうえ、温度・湿度環境を変化させてそれぞれの現像画像を評価した(5000枚まで)。また補助データとして35℃85%RHでの耐久性(20000枚)の評価を実施した。ここで耐久性というのは現像装置を連続運転させたときの画質安定性を意味している。耐久性の低下の主たる要因はトナー割れにあると推測される。以下、評価試験の具体的内容について説明する。
【0017】
10mm、19mm、21mm、23mmの4種類のSUS製シャフトそれぞれに導電性ゴム層を被覆し、その上にハイムレンNPU−5(大日精化株式会社製エーテルウレタン)を約15μmの厚さで塗布して被覆層を形成し、仕上がり寸法の外径が25mmのローラを作製した。ローラ外径とシャフト径との径差はそれぞれ15mm、6mm、4mm、2mmである。また導電性ゴム層としては4種類のものを用いた。得られた現像ローラを、感光体表面との距離が20℃60%RH環境で300μmになるようにセッティングしたうえ、20℃60%RH環境と35℃85%RH環境の二つの異なる環境下で現像画像の評価を行った。画像は黒ベタで評価した。
【0018】
4種類の導電性ゴム層1〜4はそれぞれ以下の組成を有するものを各作製手順にしたがってシャフトの周りに形成した。
<導電性ゴム層No.1>
・数平均分子量(Mn)8,000、分子量分布2の末端アリル化ポリオキシプロピレン系重合体:100重量部に対して、
・ポリシロキサン系硬化剤(SiH価0.36モル/100g):6.6重量部、
・塩化白金酸の10%イソプロピルアルコール溶液:0.06重量部、
・カーボンブラック3030B(三菱化学製):7重量部
を混合し、減圧(10mmHg以下、120分)脱泡した。得られた組成物をSUS製シャフトの周りに被覆し、金型内120℃の環境下で30分間静置して硬化させ、この時点で外径25mm弱のローラを作製した。JIS K 6301A法に記載された方法に準じて測定したゴム層のみのJIS A 硬度は15°であった。
【0019】
<導電性ゴム層No.2>
・ジブチルスズラウレート触媒存在下、数平均分子量(Mn)8,000のポリプロピレングリコール(PPG)の両末端にイソホロンジイソシアネート(IPDI)を80℃、2時間反応させて、イソシアネート末端にしたプレポリマー(23℃、4rpmで350P):100部に対して、
・数平均分子量(Mn)3,000のポリオキシプロピレントリオール(PPT):25重量部、
・スズ系触媒:0.01重量部、
および
・カーボンブラック3030B:7重量部、
を含む組成物を80℃、4時間で硬化させてゴム弾性体を作製した。ゴム層のみのJIS A 硬度は約30°であった。
【0020】
<導電性ゴム層No.3>
日本ポリウレタン株式会社製のC−4190(主鎖がポリエーテルでNCO含量4.5%、粘度700cps/75℃)が100重量部、4,4′メチレンービス−2クロロアニリンが12.9重量部、ケッチェンブラックECが0.8重量部よりなる組成物を、80℃、5時間硬化させてゴム弾性体を作製した。ゴム層のみのJIS A 硬度は78°であった。
<導電性ゴム層No.4>
導電性ゴム層1の配合の中に酸化マグネシウム20重量部を添加したもの(無機フィラー分(3030B、MgO)20.2%)を作製した。JIS K 6301 A法のJIS A 硬度は17°であった。
【0021】
以上の手順により作製した導電性ゴム層1〜4を前述したように外径の異なるシャフト上に形成し、表1で示すような実施例1〜7と比較例1〜3の現像ローラを得て、これらについて画像評価と連続現像時の耐久性を5000枚、10000枚、15000枚、20000枚現像時の画質で評価した。結果を表1に示す。尚、表1中において、画像評価及び耐久性評価を示す○△×はそれぞれ次の意味である。
【0022】
【表1】

Figure 0003853912
【0023】
Figure 0003853912
【0024】
表1の結果から次の事が分かる。
ローラ外径と導電性支持体直径との径差が4mmを超える比較例1、2、3の現像ローラは、20℃60%RH環境下では画像は良好ではあったものの35℃85%RH環境下では画像不良が発生している。これに対してローラ外径と導電性支持体直径との径差を0.1mm以上4mm以下に設定した本実施例1〜7の現像ローラでは、径差が4mmである実施例2、4、6において温度・湿度変化による画像不良の兆候がやや見られるものの、その他のものは温度・湿度変化による画像不良はなく、温度・湿度変化に対する画像安定性に優れていることがわかる。また実施例2、4、6と同じように径差が4mmである実施例7では温度・湿度変化による画像不良の発生はなかったことから、径差4mmでもゴム層の材料選択により画像不良は克服できると推測される。
また本実施例1〜7の現像ローラは5000枚までの連続現像に対してはいずれも画像は良好であったが、15000枚を超えると硬いゴム層を使用した実施例5、6の現像ローラには画質低下が見られるようになった。このことから長期にわたって画質を安定させるにはゴム層は柔らかいほうが有利であるとの結論を得た。
【0025】
【発明の効果】
本発明の現像ローラは、ローラ外径と導電性支持体直径との径差を0.1mm以上2mm以下に設定し、導電性ゴム層を薄くしたから、温度・湿度環境変化に対する寸法安定性が優れている。しかも、導電性ゴム層のJIS A硬度を30°以下となして、ゴム層の柔軟性を高めていることから、ゴム層はより薄くでき、寸法安定性を一層高めることができるとともに、トナー割れを起こさない程度の柔軟性は確保しているから、トナーの繰り返し使用における耐久性低下の問題もなく、したがって温度・湿度環境が変化するような環境下でも現像条件を安定させることができるとともに長期にわたって良好な現像を維持できる。
【0026】
請求項2記載のように導電性ゴム層に無機フィラ−を20重量%以上含ませた場合も、寸法安定性がより高まる。
【0027】
請求項3記載のようにゴム層の外側に、抵抗調整や表面保護、更にはトナーの帯電調整等を目的とした被覆層を積層した場合でも、ローラ外径と導電性支持体直径との径差を規定してなるので、温度・湿度環境が変化するような環境下でも現像条件を安定させることができるとともに長期にわたって良好な現像を維持できる。
【0028】
請求項4記載のように、被覆層を、ナイロン樹脂、ウレタン系樹脂、フッ素系樹脂、ポリカーボネートウレタン樹脂等によって形成し、その層厚を10〜50μmの範囲内とすることで、被覆層の線膨張係数も導電性ゴム層に比して小さく、またその層厚も10〜50μmと小さいため、その層厚変動は無視できるうえ、ローラ外径と導電性支持体との径差を規定することでローラ外径の変動を抑制してなるので、被覆層を形成した現像ローラにおいても、温度・湿度環境が変化するような環境下でも現像条件を安定させることができるとともに長期にわたって良好な現像を維持できる。
【図面の簡単な説明】
【図1】 本発明の現像ローラの一実施例を示す断面説明図
【図2】 現像装置の概要を示す説明図
【符号の説明】
1 現像ローラ 2 シャフト
3 導電性ゴム層 4 被覆層
10 トナーボックス 11 トナー
12 感光体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a developing roller used in an electrophotographic copying machine, a printer, or a facsimile receiving device, and particularly to a developing roller that uses a non-magnetic toner and is incorporated in a developing device in which a developing roller and a photoreceptor are not in contact with each other.
[0002]
[Prior art]
A developing device having a developing roller is incorporated in an electrophotographic copying machine, a printer, or a facsimile receiving device. As shown in FIG. 2, the developing roller 1 has a function of transferring the toner 11 accommodated in the toner box 10 to the photosensitive member 12, but there are various methods, for example, a magnetic attractive force and an electric attractive force as acting forces. There are those using both of them, and those using only the electric attractive force.
Further, there are cases where the developing roller is brought into contact with the photoreceptor and non-contact depending on the difference in the acting force to be utilized.
Among such various forms, a non-magnetic non-contact developing device has recently attracted attention. This is because non-magnetic toner is easy to color and has the advantage that halftone images can be easily and satisfactorily developed even in monochrome. On the other hand, the non-contact method in which the developing roller and the photosensitive member are not contacted is stress on the toner. This is because there is a possibility that a non-magnetic non-contact developing device having both advantages can be realized by combining the two.
[0003]
In this method, since the toner is frictionally charged between the regulating blade 13 that regulates the deposition thickness of the toner 11 on the surface of the developing roller and the surface of the developing roller, the toner is easily cracked by the applied pressure. In order to prevent this, it has been studied to use a developing roller in which a flexible rubber material is coated on a shaft. The rubber layer may be exposed as it is, but a thin coating layer is often provided on the surface from the viewpoint of controlling toner charging.
[0004]
[Problems to be solved by the invention]
However, the rubber material has a large coefficient of linear expansion, and the roller outer diameter is likely to change depending on the environment. When the outer diameter of the roller changes, the distance between the surface of the photosensitive member and the surface of the developing roller changes, the development conditions are not constant, and it becomes difficult to control the toner behavior. For example, a good image is obtained in an environment of 20 ° C. and 60% RH. Even if it is obtained, there is a problem that a good image cannot be obtained in an environment of 35 ° C. and 85% RH. Further, when a coating layer is provided on the outer side of the rubber layer, the thickness variation of the coating layer becomes a problem in addition to the thickness variation of the rubber layer.
The present invention is intended to provide a developing roller that can maintain the same developing conditions at all times without changing the outer diameter of the roller even when the temperature / humidity environment changes.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the change in the outer diameter of the roller can be reduced by reducing the thickness of the conductive rubber layer. The thinner the conductive rubber layer, the smaller the dimensional variation associated with changes in temperature and humidity. However, if the conductive rubber layer is too thin, the flexibility is lost and there is no point in providing a rubber layer. An appropriate range in which the above-described problem does not occur in the temperature / humidity change is a range in which the difference between the outer diameter of the roller and the diameter of the conductive support is 0.1 mm or more and 4 mm or less , more preferably 0.1 mm or more and 2 mm or less . The reason why the appropriate range is defined not by the thickness of the rubber layer but by the difference between the outer diameter of the roller and the diameter of the conductive support is because it is assumed that there is a coating layer in which the layer thickness variation cannot be ignored. It is. The developing roller often has one to four coating layers on the outside of the conductive rubber layer for resistance adjustment, surface protection, and toner charge adjustment. When the thickness is too thick, the thickness variation of the coating layer also becomes a variation factor of the outer diameter of the roller. In general, the coating layer is a thin layer on the order of several microns to several tens of microns, and its linear expansion coefficient is smaller than that of the rubber layer, so even if a coating layer is present, the layer thickness varies. Can be ignored. However, it is also assumed that the layer thickness variation of the coating layer cannot be ignored, and considering these circumstances comprehensively, the discussion of suppressing the variation in the outer diameter of the roller is the difference between the outer diameter of the roller and the diameter of the conductive support. It is judged appropriate to consider it as a problem of fluctuation control.
[0006]
As described above , a more preferable range of the difference in diameter between the roller outer diameter and the conductive support diameter is 0.1 mm or more and 2 mm or less.
[0007]
If the conductive rubber layer is too hard, toner cracks occur in the process of repeated use of the toner and image defects occur. Therefore, the conductive rubber needs to be soft enough not to cause toner cracks. From this viewpoint, it is suitable that the conductive rubber layer has a JIS A hardness of 30 ° or less.
[0008]
Further, when the conductive rubber layer is filled with an inorganic filler, the fluctuation of the roller outer diameter becomes smaller. A preferable range of the filling amount of the inorganic filler is 20% by weight or more. The upper limit of the filling amount may be appropriately determined from the viewpoints of moldability and hardness.
[0009]
The developing roller having such a configuration has a surface flexibility that does not cause toner cracking, and also has a small variation in the roller outer diameter with respect to temperature and humidity changes. Therefore, the change in the outer diameter of the roller, that is, the change in the distance between the photosensitive member and the developing roller is less caused by fluctuations in the photosensitive member surface potential and the developing roller surface potential, and good development characteristics can be obtained. In the case of flexibility, it is possible to prevent a decrease in image durability due to toner cracking.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the developing roller according to the present invention, a conductive rubber layer is coated on the outer side of the conductive support, and a coating layer for the purpose of adjusting resistance, protecting the surface, and further adjusting the charge of the toner is provided on the outer side as necessary. It is the structure which laminated | stacked layers-4 layers. As the conductive support, a metal shaft or a metal sleeve having a hollow inside can be used.
[0011]
FIG. 1 shows the structure of an embodiment of the developing roller of the present invention. This developing roller has a configuration in which a conductive rubber layer 3 and a coating layer 4 are arranged outside a shaft 2 made of SUS, and the outer diameter of the roller is in a range of 5 mm to 40 mm at 20 ° C.
The roller resistance of the developing roller is adjusted to be 10 4 to 10 10 ohms, preferably 10 6 to 10 9 ohms when DC 100 V is applied with a vertical load of 500 kg applied to both ends of the shaft. The resistance adjustment may be performed by adjusting the filling amount of carbon black or the like.
[0012]
The conductive rubber layer has a JIS A hardness of 30 ° or less. If it exceeds 30 °, the flexibility of the rubber layer is lost, which causes toner cracking. Urethane, EPDM, silicone, NBR, etc. can be used as the resin component which is the main component of the conductive rubber layer. When the conductive rubber layer is filled with an inorganic filler such as silica or metal oxide, the dimensional stability against changes in temperature and humidity is further increased. The inorganic filler is preferably filled at 20% by weight or more. If it is less than 20% by weight, the effect of improving dimensional stability is not sufficient.
[0013]
The coating layer is intended for surface protection, resistance adjustment, charge adjustment, and the like, and is formed of nylon resin, urethane resin, fluorine resin, polycarbonate urethane resin, or the like. The layer thickness is usually in the range of 10 to 50 μm, but may be thicker if necessary. In this embodiment, the coating layer is one layer, but a plurality of layers may be provided.
[0014]
The developing roller of the present invention is characterized in that the conductive rubber layer is thinned on the premise of such a configuration. In addition, when there is a coating layer in which the layer thickness variation cannot be ignored, the total layer thickness of the conductive rubber layer and the coating layer is reduced. The thinner the conductive rubber layer, the better the dimensional stability against changes in temperature and humidity. However, if the conductive rubber layer is too thin, the rubber layer loses its flexibility and causes toner cracking.
[0015]
In the present invention, the difference between the outer diameter of the roller and the diameter of the conductive support is 0.1 mm or more and 4 mm or less, more preferably 0.1 mm or more in order to keep the toner outer diameter variation within an allowable range without causing toner cracking. Set to 2 mm or less.
[0016]
【Example】
In order to confirm the effect of the present invention, a plurality of types of the developing roller of this example and the developing roller of the comparative example were prepared, and each developed image was evaluated by changing the temperature / humidity environment (up to 5000 sheets). In addition, durability (20000 sheets) at 35 ° C. and 85% RH was evaluated as auxiliary data. Here, durability means image quality stability when the developing device is continuously operated. It is presumed that the main cause of the decrease in durability is toner cracking. The specific contents of the evaluation test will be described below.
[0017]
Each of the four types of SUS shafts of 10 mm, 19 mm, 21 mm, and 23 mm is coated with a conductive rubber layer, and then Heimlen NPU-5 (ether urethane manufactured by Dainichi Seika Co., Ltd.) is applied to a thickness of about 15 μm. Then, a coating layer was formed to produce a roller having a finished dimension outer diameter of 25 mm. The difference in diameter between the roller outer diameter and the shaft diameter is 15 mm, 6 mm, 4 mm, and 2 mm, respectively. Four types of conductive rubber layers were used. The obtained developing roller was set so that the distance from the surface of the photoconductor was 300 μm in a 20 ° C. and 60% RH environment, and under two different environments of 20 ° C. and 60% RH environment and 35 ° C. and 85% RH environment. The developed image was evaluated. Images were evaluated with solid black.
[0018]
Four types of conductive rubber layers 1 to 4 each having the following composition were formed around the shaft in accordance with each production procedure.
<Conductive rubber layer No. 1>
-Number average molecular weight (Mn) 8,000, terminal allylated polyoxypropylene polymer having molecular weight distribution 2: 100 parts by weight
Polysiloxane curing agent (SiH value 0.36 mol / 100 g): 6.6 parts by weight
-10% isopropyl alcohol solution of chloroplatinic acid: 0.06 parts by weight,
Carbon black 3030B (Mitsubishi Chemical): 7 parts by weight were mixed and degassed under reduced pressure (10 mmHg or less, 120 minutes). The obtained composition was coated around a shaft made of SUS and allowed to stand for 30 minutes in a mold at 120 ° C. for curing for 30 minutes. At this point, a roller having an outer diameter of less than 25 mm was produced. The JIS A hardness of only the rubber layer measured in accordance with the method described in JIS K 6301A method was 15 °.
[0019]
<Conductive rubber layer No. 2>
-In the presence of a dibutyltin laurate catalyst, a prepolymer (23) obtained by reacting isophorone diisocyanate (IPDI) at both ends of polypropylene glycol (PPG) having a number average molecular weight (Mn) of 8,000 at 80 ° C. for 2 hours. At 350 ° C. and 4 rpm): for 100 parts,
-Number average molecular weight (Mn) 3,000 polyoxypropylene triol (PPT): 25 parts by weight
-Tin-based catalyst: 0.01 parts by weight,
And carbon black 3030B: 7 parts by weight,
A rubber elastic body was produced by curing the composition containing at 80 ° C. for 4 hours. The JIS A hardness of only the rubber layer was about 30 °.
[0020]
<Conductive rubber layer No. 3>
C-4190 manufactured by Nippon Polyurethane Co., Ltd. (main chain is polyether, NCO content is 4.5%, viscosity is 700 cps / 75 ° C.) is 100 parts by weight, 4,4′methylene-bis-2-chloroaniline is 12.9 parts by weight, A composition comprising 0.8 parts by weight of ketjen black EC was cured at 80 ° C. for 5 hours to prepare a rubber elastic body. The JIS A hardness of only the rubber layer was 78 °.
<Conductive rubber layer No. 4>
What added 20 weight part of magnesium oxide in the mixing | blending of the conductive rubber layer 1 (inorganic filler part (3030B, MgO) 20.2%) was produced. The JIS A hardness of the JIS K 6301 A method was 17 °.
[0021]
The conductive rubber layers 1 to 4 produced by the above procedure are formed on shafts having different outer diameters as described above, and the developing rollers of Examples 1 to 7 and Comparative Examples 1 to 3 as shown in Table 1 are obtained. Thus, the image evaluation and durability during continuous development were evaluated by the image quality at the time of developing 5000 sheets, 10,000 sheets, 15000 sheets, and 20000 sheets. The results are shown in Table 1. In Table 1, ◯ Δ × indicating image evaluation and durability evaluation has the following meanings.
[0022]
[Table 1]
Figure 0003853912
[0023]
Figure 0003853912
[0024]
From the results in Table 1, the following can be understood.
The developing rollers of Comparative Examples 1, 2, and 3 in which the difference between the outer diameter of the roller and the diameter of the conductive support exceeds 4 mm showed a good image in a 20 ° C. and 60% RH environment, but the 35 ° C. and 85% RH environment. Below, there is an image defect. On the other hand, in the developing rollers of Examples 1 to 7 in which the diameter difference between the outer diameter of the roller and the diameter of the conductive support is set to 0.1 mm or more and 4 mm or less, Examples 2 and 4 in which the diameter difference is 4 mm In FIG. 6, although signs of image defects due to temperature / humidity changes are slightly seen, other images do not have image defects due to temperature / humidity changes, and are excellent in image stability against temperature / humidity changes. In addition, as in Examples 2, 4 and 6, in Example 7 where the diameter difference was 4 mm, there was no image defect due to temperature / humidity changes. It is estimated that it can be overcome.
The developing rollers of Examples 1 to 7 had good images for continuous development up to 5000 sheets, but the developing rollers of Examples 5 and 6 used a hard rubber layer when exceeding 15000 sheets. Image quality has been reduced. From this, it was concluded that a softer rubber layer is more advantageous for stabilizing image quality over a long period of time.
[0025]
【The invention's effect】
Since the developing roller of the present invention has a diameter difference between the roller outer diameter and the conductive support diameter of 0.1 mm or more and 2 mm or less and the conductive rubber layer is thinned, the dimensional stability with respect to temperature / humidity environmental changes is improved. Are better. Moreover , the conductive rubber layer JIS Since the hardness of A is 30 ° or less and the flexibility of the rubber layer is increased, the rubber layer can be made thinner, the dimensional stability can be further improved , and the flexibility that does not cause toner cracking is because secured, it can maintain a good development over the long term it is possible also to stabilize the developing conditions in an environment, such as problems of reduction in durability in repeated use of the toner even rather than, therefore the temperature and humidity environment is changed .
[0026]
As described in claim 2, when the conductive rubber layer contains 20% by weight or more of inorganic filler, the dimensional stability is further improved.
[0027]
Even when a coating layer for the purpose of resistance adjustment, surface protection, and toner charge adjustment is laminated on the outside of the rubber layer as described in claim 3 , the diameter of the roller outer diameter and the conductive support diameter Since the difference is defined, the development conditions can be stabilized even in an environment where the temperature / humidity environment changes, and good development can be maintained over a long period of time.
[0028]
As described in claim 4, the coating layer is formed of nylon resin, urethane resin, fluorine resin, polycarbonate urethane resin, etc., and the layer thickness is within the range of 10 to 50 μm. Since the expansion coefficient is also smaller than that of the conductive rubber layer and the layer thickness is as small as 10 to 50 μm, fluctuations in the layer thickness can be ignored, and the difference in diameter between the roller outer diameter and the conductive support should be specified. In this way, development conditions can be stabilized even in environments where the temperature and humidity environment changes, and good development can be achieved over a long period of time. Can be maintained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing an embodiment of a developing roller of the present invention. FIG. 2 is an explanatory view showing an outline of a developing device.
DESCRIPTION OF SYMBOLS 1 Developing roller 2 Shaft 3 Conductive rubber layer 4 Covering layer 10 Toner box 11 Toner 12 Photoconductor

Claims (4)

非磁性一成分トナーを用い、感光体ドラムと現像ローラとが非接触である電子写真方式の現像装置に用いられる現像ローラであって、少なくとも導電性支持体の外側に導電性ゴム層を同軸状に被覆した構造を含み、前記ローラ外径と導電性支持体直径との径差が0.1mm以上2mm以下、かつ前記導電性ゴム層のJIS A硬度が30°以下である現像ローラ。A developing roller used in an electrophotographic developing device using a non-magnetic one-component toner and in which the photosensitive drum and the developing roller are not in contact with each other. A developing roller having a diameter difference between the outer diameter of the roller and the diameter of the conductive support of 0.1 mm to 2 mm and a JIS A hardness of the conductive rubber layer of 30 ° or less. 導電性ゴム層は無機フィラ−を20重量%以上含む請求項1記載の現像ローラ。  2. The developing roller according to claim 1, wherein the conductive rubber layer contains 20% by weight or more of an inorganic filler. 導電性ゴム層の外側に被覆層を積層してなる請求項1又は2記載の現像ローラ。  The developing roller according to claim 1, wherein a coating layer is laminated on the outside of the conductive rubber layer. 被覆層が、ナイロン樹脂、ウレタン系樹脂、フッ素系樹脂、ポリカーボネートウレタン樹脂等によって形成され、その層厚が10〜50μmの範囲内である請求項3記載の現像ローラ。  The developing roller according to claim 3, wherein the coating layer is formed of nylon resin, urethane resin, fluorine resin, polycarbonate urethane resin, or the like, and the layer thickness is in the range of 10 to 50 μm.
JP18361097A 1997-07-09 1997-07-09 Developing roller used in non-magnetic non-contact developing device Expired - Fee Related JP3853912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18361097A JP3853912B2 (en) 1997-07-09 1997-07-09 Developing roller used in non-magnetic non-contact developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18361097A JP3853912B2 (en) 1997-07-09 1997-07-09 Developing roller used in non-magnetic non-contact developing device

Publications (2)

Publication Number Publication Date
JPH1124387A JPH1124387A (en) 1999-01-29
JP3853912B2 true JP3853912B2 (en) 2006-12-06

Family

ID=16138814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18361097A Expired - Fee Related JP3853912B2 (en) 1997-07-09 1997-07-09 Developing roller used in non-magnetic non-contact developing device

Country Status (1)

Country Link
JP (1) JP3853912B2 (en)

Also Published As

Publication number Publication date
JPH1124387A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
US8968168B2 (en) Electrically conductive roller and image-forming device
US6685612B2 (en) Developing roller
US6360069B1 (en) Roller for electrophotographic systems having surface roughness adjusted by fine particles
JP5623067B2 (en) Conductive roller and image forming apparatus
KR101687304B1 (en) Developing roller, developing device, and image formation device
EP0911704B1 (en) Developing roller
JP5143355B2 (en) Developing roll
US20040030032A1 (en) Semiconductive resin composition and semiconductive member
EP1014215B1 (en) Developing roller
JP2008058622A (en) Conductive roller and image forming apparatus
JP3832057B2 (en) Developing roller manufacturing method
JP3899756B2 (en) Roller for electrophotography
JP3853912B2 (en) Developing roller used in non-magnetic non-contact developing device
JP3651199B2 (en) Intermediate transfer member and method for producing the same
JP4803771B1 (en) Developing roller, developing device, and image forming apparatus
JP4208765B2 (en) Developing roller, process cartridge, and image forming apparatus
JP3155093B2 (en) Developing roller
JP5577207B2 (en) Conductive roller, manufacturing method thereof, developing device, and image forming apparatus
JP4265770B2 (en) Developing roller for electrophotographic apparatus
JP3194692B2 (en) Developing roller and developing device
JP2000330372A (en) Developing roller

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees