JP3853534B2 - Heating and cooling device for bending metal strip - Google Patents

Heating and cooling device for bending metal strip Download PDF

Info

Publication number
JP3853534B2
JP3853534B2 JP07481499A JP7481499A JP3853534B2 JP 3853534 B2 JP3853534 B2 JP 3853534B2 JP 07481499 A JP07481499 A JP 07481499A JP 7481499 A JP7481499 A JP 7481499A JP 3853534 B2 JP3853534 B2 JP 3853534B2
Authority
JP
Japan
Prior art keywords
bending
cooling device
metal strip
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07481499A
Other languages
Japanese (ja)
Other versions
JP2000263144A (en
Inventor
幸満 花本
重樹 岸原
司 前之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP07481499A priority Critical patent/JP3853534B2/en
Publication of JP2000263144A publication Critical patent/JP2000263144A/en
Application granted granted Critical
Publication of JP3853534B2 publication Critical patent/JP3853534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、金属管等の金属条材を誘導加熱を利用して連続的に曲げ加工する曲げ加工装置に用いる加熱、冷却装置に関する。
【0002】
【従来の技術】
従来より、金属管の曲げ加工装置として、図7に示すように、曲げ加工すべき金属管1の管軸方向の小区間を誘導子2で塑性変形容易な温度に加熱して加熱部3を形成し、その金属管1を管移動装置(図示せず)によって矢印A方向に移動させることによって、その加熱部3を管軸方向に移動させながら、同時に金属管1の先端をクランプした曲げアーム5を支点Oを中心として旋回させて加熱部3に曲げモーメントを付与しその加熱部3に曲げ変形を生じさせ、且つ曲げ変形を生じた直後の領域に誘導子2から冷却水等の冷却媒体6を吹き付けて冷却、固化させる構成の連続曲げ加工装置が使用されている。
【0003】
通常、この種の曲げ加工装置では、金属管1には全体としては曲げアーム5を旋回させる程度の圧縮力しか作用しないため、金属管の中心軸線P−Pの近傍が曲げ中立軸線(曲げ前後で管軸方向の長さが変化しない位置)となり、曲げ外側では肉厚減少が生じ、曲げ内側では肉厚増加が生じている。また、曲げ外側に生じる肉厚減少を防止するため、曲げ加工時に金属管に管軸方向の大きい圧縮力を作用させる構成としたものも知られている(例えば、特公昭54−30915号公報参照)。この種の連続曲げ加工においては、金属管の曲げ内側では曲げ変形と共に大きい圧縮力が作用してとりわけ大きい肉厚増加を生じており、圧縮により肉厚増加を生じさせるような塑性変形は不安定になり勝ちであるので、ジャバラ等の不整変形を生じることが多い。そこで、従来は加熱幅の適正化、加熱温度の適正化、安定化等を図ることで不整変形を防止していた。
【0004】
【発明が解決しようとする課題】
ところが、この種の曲げ加工において、曲げ加工の対象とする金属管の肉厚を大きくしたり、曲げ半径を小さくしたり、或いは曲げ外側の肉厚減少を抑制するため金属管に大きい圧縮力を作用させたりして、曲げ内側に生じる肉厚増加を大きくした場合(例えば、曲げ内側での管外面側への肉厚増加量が5mmを超えるような場合)に問題が生じることが判明した。すなわち、図8に示すように、曲げ加工の開始の際には、金属管1は全体が直管であるので、誘導子2を通り抜けている部分は二点鎖線1Aで示す位置にあり、この状態の金属管1に対して誘導子2を同心状に配置し、その状態で加熱及び冷却を開始し、金属管1を矢印A方向に送って曲げ加工を開始するが、その際、誘導子2を通り抜けた部分が曲げ変形するため、曲げ内側に位置する管外面1aが誘導子2の曲げ内側に位置する部分に接近する方向に変位し、しかも曲げ内側では管外面に生じる肉厚増加量が大きいので、その管外面1aが誘導子2の出口側角部2aにきわめて接近する。このため、誘導子2の曲げ内側に位置する部分から金属管1に吹き付けられる冷却媒体が不規則に跳散し、誘導子2による加熱部を不規則に部分冷却してしまい、加熱部の温度が不安定となって塑性変形抵抗が変動してしまい、曲げ変形や肉厚増加のバランスを損なって不安定化し、ジャバラ等の不安定な変形を生じてしまうという問題があった。
【0005】
これを避けるには、曲げ内側に位置する誘導子2の部分を、金属管1から十分離して配置し、曲げ変形を生じた時点でも管外面1aと誘導子2の出口側角部2aとの間に冷却媒体を良好に吹き付けるために必要な間隔を確保しうるようにすればよいが、この構成とすると、曲げ内側における誘導子2と金属管の間隔が大きくなって、曲げ内側の金属管の加熱が不足するという問題が生じ、しかも、曲げ開始時の直管状の金属管1に対する冷却媒体の吹き付け位置Bと曲げを生じた後における吹き付け位置Cとが金属管の軸線方向に大きく異なってしまうため、曲げ開始時の過渡期に冷却位置が移動し、このため冷却が不安定となってやはりジャバラ等の不安定な変形を生じるという問題が生じてしまう。
【0006】
本発明は、かかる問題点に鑑みてなされたもので、肉厚の大きい金属管等の条材に対する曲げ加工、曲げ半径の小さい曲げ加工、或いは曲げ外側の肉厚減少を防止するために大きい圧縮力を加えて行う曲げ加工等の、曲げ内側に大きい肉厚増加を伴う曲げ加工を行う装置において、不安定な変形の発生を防止して良好な曲げ加工を可能にする加熱、冷却装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記問題点を解決するため、誘導子で加熱した部分を冷却するために冷却媒体を吹き付ける冷却装置を、従来のように誘導子と一体化して設ける代わりに、誘導子とは別部品として設け、その冷却装置を誘導子に対して、曲げ平面内において少なくとも金属条材の軸線に交叉する方向に移動可能とし、更に、その冷却装置を金属条材の曲げ変形終了側の部分の変位に追従させて移動させる構成としたものである。この構成とすることにより、誘導子を曲げ加工のための加熱に適切な位置に固定した状態で、曲げ開始時の過渡期において冷却装置のみを、曲げ加工の進行に伴う金属条材の曲げ変形終了側の部分の変位に追従させるように移動させることが可能となり、常に、冷却媒体の吹き付け位置を不安定な変形が生じない位置とすることができ、良好な曲げ加工を行うことができる。
【0008】
【発明の実施の形態】
本発明の加熱、冷却装置の一実施形態は、金属管等の金属条材を連続的に曲げ加工するために用いるものであって、曲げ加工する金属条材を取り囲むように配置され、その軸線方向の小区間を加熱する環状の誘導子と、該誘導子に隣接配置され、前記誘導子による金属条材の加熱領域に隣接した位置に冷却媒体を吹き付ける環状の冷却装置であって、前記誘導子に対して曲げ平面内において少なくとも金属条材の軸線に交叉する方向に移動可能な冷却装置と、該冷却装置を前記金属条材に対して、曲げ平面内において少なくとも金属条材の軸線に交叉する方向に移動させる駆動手段とを有し、該駆動手段が、金属条材の曲げ変形終了側の曲げ外側又は曲げ内側の外面に当接し、その外面の金属条材の軸線に交叉する方向への変位に追従して移動する従動手段と、該従動手段の変位に応じて前記冷却装置を移動させるよう、前記従動手段を前記冷却装置に連結させる手段を有する構成としたものである。
【0009】
本発明の加熱、冷却装置を用いて曲げ加工を行う対象の金属条材は、通常は円形断面の金属管であるが、その他にも角筒状の金属管、H形鋼、I形鋼等の形材、丸棒、角棒等の棒材、細長い板材等任意である。これらの金属条材を加熱するための誘導子の形状は、金属条材を取り囲んで軸線方向の狭幅領域を誘導加熱しうるものであればよく、従って、本明細書に用いる用語「環状」は、円環状に限らず、条材を取り囲む形状を意味するものである。また、冷却装置についても同様である。金属条材が円形断面の金属管の場合には、加熱装置及び冷却装置は共に円環状とすることが好ましい。
【0010】
上記した加熱、冷却装置は、冷却装置を金属条材の曲げ変形終了側の部分の変位に追従して移動させる駆動手段を設けているので、金属条材の曲げ変形終了側の部分の変位に応じて冷却装置を移動させ、常に冷却媒体を好ましい冷却位置に吹き付けることが可能となり、常に安定した曲げ加工を行うことができる。
【0011】
冷却装置を移動させる駆動手段には、サーボモータ、油圧シリンダ等の駆動装置を用いず、その代わりに、金属条材の曲げ変形終了側の曲げ外側又は曲げ内側の外面に当接し、その外面の金属条材の軸線に交叉する方向への変位に追従して移動する従動手段と、該従動手段の変位に応じて前記冷却装置を移動させるよう、前記従動手段を前記冷却装置に連結させる手段を備えた構成としている。この構成としたことで、駆動手段の構成を簡単化できる。
【0013】
本発明に使用する冷却装置は全周に渡って電気的に導通した構成でもよいが、冷却装置を周方向の複数の領域に分割し、各領域間の電気的導通を遮断する構成とすることが好ましい。一般に冷却装置は、銅、鋼等の導電性材料で構成されるため、隣接した誘導子による誘導電流が発生し、環状の冷却装置が全周に渡って電気的に導通していると、その環状の冷却装置を周回する誘導電流が大量に発生して電力が無駄に消費されることとなる。そこで、絶縁材を周方向に適当な間隔で配置するなどして電気的導通を遮断することで、周回する誘導電流の発生を防止でき、誘導電流を小さく抑制できる。
【0014】
また、冷却装置は全周に渡って金属管への吹き付け用の冷却媒体が流れる構成でもよいが、周方向に複数の領域に分割し、各領域間の流れを遮断して各領域での冷却媒体吹き付け条件、例えば吹き付け量を可変とすることが好ましい。この構成とすると、曲げ内側、曲げ外側及び中間位置での冷却条件を適宜変えることができ、より安定した曲げ加工が可能となる。
【0015】
更に、冷却装置には、金属条材に吹き付ける冷却媒体を通す通路とは別に、冷却媒体を通す構成の冷却管を取り付け、冷却装置を冷却する構成とすることが好ましい。冷却装置には前記したように隣接した誘導子による誘導電流が発生して加熱されるため、冷却管による冷却を行うことで、冷却装置の過熱を防止できる。
【0016】
【実施例】
以下、本発明の実施の形態を図面に示す実施例を参照して更に詳細に説明する。図1は本発明の一実施例による加熱、冷却装置10を備えた金属管の曲げ加工装置の概略平面図であり、(a)は曲げ加工前の状態を、(b)は曲げ加工中の状態を示している。図1において、11は金属管、P−Pはその金属管11の中心軸線、Q−Qは曲げ加工装置の基準軸線である。金属管11は、その中心軸線P−Pが基準軸線Q−Q上に位置するようにセットされ、その一端(図面では左端)が管移動装置(図示せず)に保持されて矢印A方向に押されるようになっている。12は、その金属管11の管軸方向の小区間を誘導加熱して塑性変形容易な加熱部13を形成する環状の誘導子であり、接続端子を兼ねた保持部材14(図2〜図5参照)を介して高周波電流供給用のトランス(図示せず)に連結され、所定位置に保持されている。16は、金属管11を取り囲むように配置され、その全周に渡って冷却媒体(通常は冷却水)17を吹き付ける環状の冷却装置であり、従来とは異なり誘導子12とは別部品として作られ、誘導子12に対して移動可能な構成となっている。18は、冷却装置16を保持すると共にその冷却装置16を誘導子12に対して、曲げ平面内において金属管11の管軸方向に交叉する直角方向に、金属管の曲げ変形に応じて移動させる駆動手段であり、その構成については後述する。20は、金属管11の先端(図面では右端)を把持するクランプ21を備え、支点Oを中心に旋回可能な曲げアームであり、金属管11の前進によって支点Oを中心に旋回し、金属管の加熱部13に曲げモーメントを加えて曲げ変形させるものである。
【0017】
次に、誘導子12及び冷却装置16等を備えた加熱、冷却装置10を更に詳細に説明する。図2はその加熱、冷却装置10を、冷却装置16側から軸線方向に見た、且つ一部を断面で示す概略正面図、図3はその加熱、冷却装置10を、一部を断面で示す概略平面図、図4はその加熱、冷却装置10を、一部を断面で示す概略側面図、図5はその加熱、冷却装置10を、曲げ加工中の状態で示す概略水平断面図である。誘導子12は、金属管11を取り囲む円環状をなしており、金属管11に同心状に、従って基準軸線Q−Qを中心とするように配置されている。なお、誘導子12は中空構造に作られており、冷却水給排管15、15で冷却水の供給、排出が行われる構成となっている。
【0018】
冷却装置16は、全体が円環状をなしており、内周面に傾斜面16aを有し、その傾斜面16aに円周方向に一定ピッチで多数の噴射穴16bを形成し、冷却媒体17を金属管11に吹き付ける構成となっている。また、図2から良く分かるように、冷却装置16は円周方向に複数の領域に分割された構成となっており、各領域の間には絶縁材25を配して円周方向の導通を遮断している。これにより、冷却装置16に誘導子12による誘導電流が発生しようとした時に円周方向の流れが部分的に遮断され、このため誘導電流の発生が抑制され、エネルギーロスを低減できる。また、冷却装置16の各領域にはそれぞれ、冷却媒体を供給するための配管(図示せず)が接続されており、且つ各配管はそれぞれ流量を調節可能な形態で冷却媒体の供給源に接続されている。かくして、各領域からの冷却媒体17の吐出量を個別に調整可能である。図3から良く分かるように、冷却装置16内には、金属管11に吹き付ける冷却媒体の通路とは別に、冷却装置16の壁面に接触するように冷却管27が取り付けられ、その冷却管27には冷却媒体を供給する配管(図示せず)が接続されている。この冷却管27は、曲げ加工の開始前の金属管11の昇温時等において冷却装置16に金属管11へ吹き付けるための冷却媒体を通していない状態で誘導子12に通電した場合に、その誘導子12により誘導加熱される冷却装置16を冷却するために使用される。なお、冷却装置16の各領域に冷却媒体を供給するための配管及び冷却管27についても、適当な位置で導通が遮断されており、冷却装置16の円周方向に分割した各領域間の絶縁状態を損なわないようにしている。
【0019】
誘導子12には、曲げ平面(曲げ変形後の金属管11の軸線P−Pが位置する平面、図2、図4にX−Xで示す面)に直角方向の両端部に、曲げ平面に平行なガイドレール30aを備えたガイド部材30が取り付けられており、一方、冷却装置16には、そのガイドレール30aに摺動可能に係合するガイド溝32aを備えたガイド部材32がピン33及び固定ボルト34等によって取り付けられている。かくして、冷却装置16は誘導子12に対して、曲げ平面内で金属管11の軸線に直角に交叉する方向(すなわち、曲げ内側と曲げ外側を結ぶ方向、矢印D−D方向)に移動可能である。
【0020】
冷却装置16を移動させるための駆動手段18は、保持部材14に取り付けられたブラケット36と、そのブラケット36に、曲げ平面内で金属管11の軸線に直角方向に移動可能に保持された従動手段38を備えている。この従動手段38は、ブラケット36に移動可能に保持された支持ロッド39と、その支持ロッド39の先端に取り付けられた連結部材40と、その連結部材40に保持され、金属管11に接触して回転するコロ41を備えており、連結部材40は冷却装置16に対してピン43、長穴44によって連結されている。更に、ブラケット36と支持ロッド39の間には、コロ41を金属管11に押し付けるように支持ロッド39を押すコイルバネ45が設けられている。かくして、従動手段38は常に、その先端のコロ41が金属管11の曲げ変形終了側の部分(誘導子12を通りすぎた部分)で且つ曲げ外側の外面に当接しており、その部分の変位に追従して金属管11の軸線に直角方向に移動し、冷却装置16を移動させることができる。なお、支持ロッド39の先端部分には、仮保持用レバー47がピン48によって回動可能に設けられており、この仮保持用レバー47を図2に実線で示すように横向きとした場合には支持ロッド39の移動に干渉しないが、図2に二点鎖線47aで示すように、支持ロッド39の軸線方向とした場合には、先端がブラケット36に突き当たって、支持ロッド39が金属管に向かう方向に移動することを阻止する。これにより、先端のコロ41を金属管11の挿入作業に干渉しないように仮保持することができる。
【0021】
次に上記構成の加熱、冷却装置10を備えた曲げ装置による金属管の曲げ加工動作を説明する。先ず、図1(a)に示すように、曲げ加工すべき金属管11を加工軸線Q−Q上の所定位置にセットし、また、誘導子12を金属管11に対して同心状となる位置に位置決めする。なお、金属管11のセット時には駆動手段18の仮保持レバー47を図2で二点鎖線47aで示す位置とし、支持ロッド39及びそれに保持されたコロ41や冷却装置16が金属管11の挿入に干渉しない位置に仮保持している。金属管11をセットした後、仮保持レバー47を図2に実線で示す位置に回動させて、支持ロッド39の仮保持を解除し、先端のコロ41を金属管11に押し付ける。これにより、冷却装置16は、従動手段38の先端のコロ41が金属管11に接触して定まる位置に位置決めされる。ここで、この時の冷却装置16の位置は、金属管11に対して同心状となるように定められている。
【0022】
この状態で誘導子12への通電を開始し、その内側に位置する金属管11の管軸方向の小区間を加熱して加熱部13を形成し、その加熱部13が塑性変形容易な温度に昇温した時点で、冷却装置16からの冷却媒体17の噴射を開始し且つ金属管11の矢印A方向への移動を開始する。これにより、金属管11の先端をクランプした曲げアーム20が支点Oを中心として旋回を始め、その旋回によって加熱部13に曲げモーメントを付与しその加熱部13に曲げ変形を生じさせ、曲げ変形を生じた直後の領域が冷却装置16からの冷却媒体17で冷却、固化される。以後、金属管11が矢印A方向に連続的に送られることにより、図1(b)に示すように、金属管11が連続的に曲げられてゆく。この曲げ加工を開始した際に、図5にも示すように、金属管11の加熱部13よりも先端側の部分即ち曲げ変形終了側の部分は曲げアーム20によって曲げられるため、曲げ内側の外面11a及び曲げ外側の外面11bは共に金属管11の直管部分の中心軸線P−Pに交叉する方向に、曲げ中心側に向かって変位する。特に曲げ内側では肉厚増加が伴うためその外面11aは一層曲げ中心側に変位する。ところが、図1(b)及び図5に示すように、金属管11の曲げ外側の外面11bにコロ41を介して従動手段38が押し付けられているので、その従動手段38が金属管11の外面11bの変位に追従して移動し、冷却装置16も曲げ中心側に向かって移動する。かくして、曲げ内側、曲げ外側のいずれにおいても、冷却装置16の冷却媒体の噴射穴16bと金属管外面11a、11bとの間に安定した冷却を可能とするための間隔が確保され、この状態で曲げ加工が継続される。このようにして、曲げ加工中常に良好な冷却を行うことができ、安定した曲げ加工が行われる。
【0023】
ここで、冷却装置16の移動量は、従動手段38のコロ41が金属管外面に接触する位置(誘導子12からの軸線方向の距離)によって決まるので、この位置を調整することで冷却装置16の移動量を調整できる。一般に、金属管11の曲げ加工を安定して行うには、曲げ内側の冷却を安定させることが必要である。すなわち、曲げ内側では曲げに伴って圧縮され、増肉を生じているため、ジャバラ等の不安定な変形を生じがちであり、この不安定な変形を防止するため冷却が重要となる。従って、冷却装置16の移動量の設定に当たっては、曲げ内側での良好な冷却を行うことができるような、冷却装置16の冷却媒体の噴射穴16bと金属管外面11aとの間隔を実験等で求め、その間隔が確保されるように設定すればよい。
【0024】
なお、上記実施例では、金属管11の曲げ外側の外面11bに従動手段38を追従させる構成であるが、この代わりに曲げ内側の外面11aに追従させる構成としてもよい。また、従動手段38を動きを直接冷却装置16に伝達しているが、この代わりに、従動手段38の動きを拡大或いは縮小させて冷却装置16に伝達する構成としてもよい。
【0025】
上記実施例は、冷却装置16を誘導子12に対して平行に移動させる構成であるが、図6に示すように、冷却装置16を誘導子12に対して曲げ平面内において傾斜ないしは金属条材の軸線に沿って移動させることができる構成とすることも可能である。すなわち、冷却装置16の誘導子12に対する角度θと軸線方向の距離を調整可能とすることも可能である。この角度θを変えると、曲げ内側と曲げ外側における加熱幅を独立に調整することができ、この調整によっても曲げ変形を安定化させることができる。なお、このように冷却装置16の誘導子12に対する角度θ等を調整可能とする場合、この調整は手動調整のみで行う構成としてもよいし、適当な駆動手段によって移動させる構成としてもよい。また、角度θを調整可能とする場合においても、その冷却装置16を金属管11の軸線P−Pに交叉する方向にも移動可能な構成としてよい。
【0026】
【発明の効果】
以上に説明したように、本発明は、冷却装置を誘導子に対して、曲げ平面内において少なくとも金属条材の軸線に交叉する方向に移動可能とすると共に金属条材の曲げ変形終了側の部分の変位に追従させて移動させる構成としたことにより、誘導子を金属条材に対して曲げ加工のための加熱に適切な位置に固定した状態で、曲げ開始時の過渡期において冷却装置のみを、曲げ加工の進行に伴う金属条材の曲げ変形終了側の部分の変位に追従させるように移動させることができ、常に、冷却媒体の吹き付け位置を不安定な変形が生じない位置とすることができ、良好な曲げ加工を行うことができ、特に曲げ内側に大きい増肉が生じるような曲げ加工を安定して実施できるという効果を有している。
【図面の簡単な説明】
【図1】(a)は本発明の一実施例による加熱、冷却装置を備えた金属管の曲げ加工装置を、曲げ加工前の状態で示す概略平面図
(b)は曲げ加工中の状態で示す概略平面図
【図2】図1に示す加熱、冷却装置を、冷却装置側から見た概略正面図
【図3】図2に示す加熱、冷却装置の概略平面図
【図4】図2に示す加熱、冷却装置の概略側面図
【図5】図4に示す加熱、冷却装置を、曲げ加工中の状態で示す概略水平断面図
【図6】本発明の他の実施例による加熱、冷却装置を示す概略水平断面図
【図7】従来の曲げ加工装置を示す概略平面図
【図8】従来の装置による問題点を説明するもので、金属管の曲げ変形を生じている部分及び誘導子を示す概略断面図
【符号の説明】
10 加熱、冷却装置
11 金属管
12 誘導子
13 加熱部
14 保持部材(接続端子)
16 冷却装置
16b 噴射穴
17 冷却媒体
18 駆動手段
20 曲げアーム
21 クランプ
25 絶縁材
27 冷却管
36 ブラケット
38 従動手段
39 支持ロッド
40 連結部材
41 コロ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating and cooling device used in a bending apparatus that continuously bends a metal strip such as a metal tube using induction heating.
[0002]
[Prior art]
Conventionally, as a metal tube bending apparatus, as shown in FIG. 7, a heating section 3 is heated by heating a small section in the tube axis direction of a metal pipe 1 to be bent to a temperature at which plastic deformation is easy with an inductor 2. A bending arm in which the metal tube 1 is moved in the direction of arrow A by moving the metal tube 1 in the direction of the arrow A by a tube moving device (not shown), and at the same time the tip of the metal tube 1 is clamped while moving the heating unit 3 in the tube axis direction. 5 is pivoted about the fulcrum O to give a bending moment to the heating unit 3 to cause bending deformation in the heating unit 3, and a cooling medium such as cooling water from the inductor 2 in a region immediately after the bending deformation is generated. The continuous bending apparatus of the structure which sprays 6 and is cooled and solidified is used.
[0003]
Normally, in this type of bending apparatus, the metal tube 1 as a whole only has a compressive force that turns the bending arm 5, so that the vicinity of the central axis PP of the metal tube is a bending neutral axis (before and after bending). Thus, the thickness is reduced on the outside of the bend, and the thickness is increased on the inside of the bend. Further, in order to prevent a reduction in wall thickness that occurs outside the bend, a structure in which a large compressive force in the tube axis direction is applied to the metal tube during bending is also known (see, for example, Japanese Patent Publication No. 54-30915). ). In this type of continuous bending process, a large compressive force acts on the inner side of the bending of the metal tube along with the bending deformation, resulting in a particularly large increase in wall thickness. Plastic deformation that causes an increase in wall thickness due to compression is unstable. Therefore, irregular deformation such as bellows is often generated. Therefore, conventionally, irregular deformation is prevented by optimizing the heating width, optimizing the heating temperature, stabilizing the heating temperature, and the like.
[0004]
[Problems to be solved by the invention]
However, in this type of bending, a large compressive force is applied to the metal tube in order to increase the thickness of the metal tube to be bent, to reduce the bending radius, or to suppress the decrease in the wall thickness outside the bending. It has been found that a problem arises when the thickness increase generated on the inner side of the bend is increased by, for example, acting on the inner side of the bend (for example, when the amount of increase in the thickness toward the outer surface of the tube exceeds 5 mm). That is, as shown in FIG. 8, when the bending process is started, the entire metal tube 1 is a straight tube, so the portion passing through the inductor 2 is at the position indicated by the two-dot chain line 1A. The inductor 2 is concentrically arranged with respect to the metal tube 1 in a state, heating and cooling are started in this state, and bending is started by feeding the metal tube 1 in the arrow A direction. Since the portion passing through 2 is bent and deformed, the tube outer surface 1a located on the inner side of the bend is displaced in a direction approaching the portion located on the inner side of the inductor 2, and the thickness increase amount generated on the outer surface of the tube on the inner side of the bend. Therefore, the pipe outer surface 1a is very close to the outlet side corner 2a of the inductor 2. For this reason, the cooling medium sprayed to the metal tube 1 from the part located inside the bending of the inductor 2 irregularly scatters, and the heating part by the inductor 2 is partially and irregularly cooled, and the temperature of the heating part However, there is a problem that the plastic deformation resistance fluctuates and the balance of bending deformation and increase in wall thickness is lost, resulting in instability and unstable deformation such as bellows.
[0005]
In order to avoid this, the portion of the inductor 2 located on the inner side of the bend is arranged so as to be separated from the metal tube 1, and even when bending deformation occurs, the outer surface 1a of the tube and the outlet side corner portion 2a of the inductor 2 are separated. It is only necessary to ensure a necessary space for blowing the cooling medium between them. However, with this configuration, the space between the inductor 2 and the metal tube on the inner side of the bend increases, and the metal tube on the inner side of the bend. In addition, there is a problem that the heating of the metal tube 1 is insufficient, and the spraying position B of the cooling medium to the straight tubular metal tube 1 at the start of bending and the spraying position C after bending are greatly different in the axial direction of the metal tube. Therefore, the cooling position moves in the transition period at the start of bending, which causes the problem that the cooling becomes unstable and unstable deformation such as bellows occurs.
[0006]
The present invention has been made in view of such a problem, and is designed to prevent bending of a strip such as a metal tube having a large thickness, bending with a small bending radius, or reduction in thickness on the outside of the bending. Providing heating and cooling devices that prevent bending and prevent bending in devices that perform bending with a large increase in wall thickness, such as bending with force. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a cooling device that sprays a cooling medium to cool a portion heated by the inductor, instead of being provided integrally with the inductor as in the prior art. Provided as a part, the cooling device is movable with respect to the inductor in a direction intersecting at least the axis of the metal strip in the bending plane, and the cooling device is a portion on the end of the bending deformation of the metal strip. It is made to move according to the displacement of . With this configuration, with the inductor fixed at an appropriate position for heating for bending, only the cooling device is used in the transition period at the start of bending, and bending deformation of the metal strip as the bending progresses. It is possible to move so as to follow the displacement of the end side portion, and the spray position of the cooling medium can always be set to a position where unstable deformation does not occur, and favorable bending can be performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the heating and cooling device of the present invention is used for continuously bending a metal strip such as a metal tube, and is arranged so as to surround the metal strip to be bent, and its axis An annular inductor that heats a small section in a direction, and an annular cooling device that is disposed adjacent to the inductor and sprays a cooling medium to a position adjacent to a heating region of the metal strip by the inductor, A cooling device movable in a direction intersecting at least the axis of the metal strip in the bending plane with respect to the child , and the cooling device crosses at least the axis of the metal strip in the bending plane with respect to the metal strip. A driving means for moving in a direction in which the metal strip is in contact with the outer surface of the outer side of the bending or inner side of the bending of the metal strip and crossing the axis of the outer surface of the metal strip. Follow the displacement of the A driven means for, to move the cooling device according to the displacement of the driven means, in which a structure having means for connecting said driven means to said cooling device.
[0009]
The metal strip to be bent using the heating and cooling device of the present invention is usually a metal tube having a circular cross section, but other than that, a rectangular tube-shaped metal tube, H-shaped steel, I-shaped steel, etc. Any shape material, round bar, square bar, etc., elongated plate, etc. are optional. The shape of the inductor for heating these metal strips may be any shape that surrounds the metal strip and can induction-heat a narrow region in the axial direction. Therefore, the term “annular” used in this specification is used. Means not only an annular shape but also a shape surrounding a strip. The same applies to the cooling device. When the metal strip is a metal tube having a circular cross section, both the heating device and the cooling device are preferably annular.
[0010]
The heating and cooling device described above is provided with driving means for moving the cooling device in accordance with the displacement of the bending deformation end portion of the metal strip , so that the bending deformation end portion of the metal strip is displaced. Accordingly, the cooling device can be moved, and the cooling medium can always be sprayed to the preferred cooling position, so that stable bending can always be performed.
[0011]
The drive means for moving the cooling device does not use a drive device such as a servo motor or a hydraulic cylinder. Instead, it comes into contact with the outer surface of the bending end or the inner side of the bending end of the metal strip, and A follower that moves following a displacement in a direction crossing the axis of the metal strip, and a means for connecting the follower to the cooling device so as to move the cooling device according to the displacement of the follower. It has a configuration with. With this configuration, the configuration of the driving means can be simplified.
[0013]
The cooling device used in the present invention may be configured to be electrically conductive over the entire circumference, but the cooling device is divided into a plurality of regions in the circumferential direction and the electrical conduction between the regions is cut off. Is preferred. In general, the cooling device is made of a conductive material such as copper or steel. Therefore, when an induced current is generated by an adjacent inductor and the annular cooling device is electrically connected over the entire circumference, A large amount of induced current that circulates around the annular cooling device is generated, and power is wasted. Therefore, by interrupting the electrical continuity by disposing an insulating material at an appropriate interval in the circumferential direction, it is possible to prevent the induction current from circulating and to suppress the induction current to be small.
[0014]
The cooling device may be configured so that the cooling medium for spraying the metal pipe flows over the entire circumference, but the cooling device is divided into a plurality of regions in the circumferential direction, and the flow between the regions is blocked to cool the respective regions. It is preferable that the medium spraying condition, for example, the spraying amount is variable. If it is set as this structure, the cooling conditions in a bending inner side, a bending outer side, and an intermediate position can be changed suitably, and the more stable bending process will be attained.
[0015]
Furthermore, it is preferable that the cooling device is configured to cool the cooling device by attaching a cooling pipe configured to pass the cooling medium separately from the passage through which the cooling medium sprayed on the metal strip is passed . As described above, since the induction current generated by the adjacent inductor is generated and heated in the cooling device, the cooling device can be prevented from being overheated by cooling with the cooling pipe.
[0016]
【Example】
Hereinafter, embodiments of the present invention will be described in more detail with reference to examples shown in the drawings. FIG. 1 is a schematic plan view of a metal pipe bending apparatus equipped with a heating / cooling apparatus 10 according to an embodiment of the present invention. FIG. 1 (a) shows a state before bending, and FIG. Indicates the state. In FIG. 1, 11 is a metal tube, PP is a central axis of the metal tube 11, and QQ is a reference axis of the bending apparatus. The metal tube 11 is set so that its central axis PP is positioned on the reference axis QQ, and one end (the left end in the drawing) is held by a tube moving device (not shown) in the direction of arrow A. It is supposed to be pushed. Reference numeral 12 denotes an annular inductor that forms a heating section 13 that is easily plastically deformed by induction heating of a small section in the tube axis direction of the metal tube 11, and a holding member 14 that also serves as a connection terminal (FIGS. 2 to 5). And a transformer for supplying high-frequency current (not shown) via a reference), and held at a predetermined position. Reference numeral 16 denotes an annular cooling device that is arranged so as to surround the metal tube 11 and blows a cooling medium (usually cooling water) 17 over the entire circumference thereof. Therefore, it is configured to be movable with respect to the inductor 12. 18 holds the cooling device 16 and moves the cooling device 16 with respect to the inductor 12 in a bending plane of the metal tube in a direction perpendicular to the tube axis direction of the metal tube 11 in the bending plane. It is a drive means, The structure is mentioned later. Reference numeral 20 denotes a bending arm that includes a clamp 21 that holds the tip of the metal tube 11 (the right end in the drawing) and that can pivot about the fulcrum O. The metal tube 11 pivots about the fulcrum O as the metal tube 11 advances. A bending moment is applied to the heating unit 13 to bend and deform.
[0017]
Next, the heating and cooling device 10 including the inductor 12 and the cooling device 16 will be described in more detail. FIG. 2 is a schematic front view of the heating and cooling device 10 viewed in the axial direction from the cooling device 16 side, and a part thereof is shown in section. FIG. 3 is a part of the heating and cooling device 10 in section. FIG. 4 is a schematic side view showing a part of the heating / cooling device 10 in section, and FIG. 5 is a schematic horizontal sectional view showing the heating / cooling device 10 in a state of bending. The inductor 12 has an annular shape surrounding the metal tube 11 and is disposed concentrically with the metal tube 11 and thus centered on the reference axis QQ. The inductor 12 is formed in a hollow structure, and the cooling water supply and discharge pipes 15 and 15 supply and discharge the cooling water.
[0018]
The cooling device 16 has an annular shape as a whole, and has an inclined surface 16a on the inner peripheral surface, and a plurality of injection holes 16b are formed in the inclined surface 16a at a constant pitch in the circumferential direction. The metal tube 11 is sprayed. Further, as can be seen from FIG. 2, the cooling device 16 is divided into a plurality of regions in the circumferential direction, and an insulating material 25 is disposed between the regions to provide conduction in the circumferential direction. It is shut off. Thereby, when the induced current by the inductor 12 is generated in the cooling device 16, the circumferential flow is partially interrupted, so that the generation of the induced current is suppressed and the energy loss can be reduced. Also, piping (not shown) for supplying a cooling medium is connected to each region of the cooling device 16, and each piping is connected to a cooling medium supply source in a form in which the flow rate can be adjusted. Has been. Thus, the discharge amount of the cooling medium 17 from each region can be individually adjusted. As can be clearly understood from FIG. 3, a cooling pipe 27 is attached in the cooling device 16 so as to be in contact with the wall surface of the cooling device 16 separately from the passage of the cooling medium sprayed on the metal pipe 11. Is connected to a pipe (not shown) for supplying a cooling medium. When the inductor 12 is energized without passing through the cooling medium for spraying the metal pipe 11 to the cooling device 16 at the time of raising the temperature of the metal pipe 11 before starting the bending process, the cooling pipe 27 is inserted into the inductor 12. 12 is used to cool the cooling device 16 that is induction-heated. Note that the piping for supplying the cooling medium to each region of the cooling device 16 and the cooling pipe 27 are also cut off at appropriate positions, and the insulation between the regions divided in the circumferential direction of the cooling device 16 is performed. The state is not damaged.
[0019]
The inductor 12 has a bending plane at both ends perpendicular to the bending plane (the plane on which the axis P-P of the metal tube 11 after bending deformation is located, the plane indicated by XX in FIGS. 2 and 4). A guide member 30 having parallel guide rails 30a is attached. On the other hand, in the cooling device 16, a guide member 32 having a guide groove 32a slidably engaged with the guide rail 30a is provided with a pin 33 and It is attached by a fixing bolt 34 or the like. Thus, the cooling device 16 is movable with respect to the inductor 12 in a direction intersecting at right angles to the axis of the metal tube 11 in the bending plane (that is, a direction connecting the bending inner side and the bending outer side, the direction of the arrow DD). is there.
[0020]
The driving means 18 for moving the cooling device 16 includes a bracket 36 attached to the holding member 14 and follower means held by the bracket 36 so as to be movable in a direction perpendicular to the axis of the metal tube 11 in the bending plane. 38. The follower 38 includes a support rod 39 that is movably held by the bracket 36, a connecting member 40 that is attached to the tip of the support rod 39, and is held by the connecting member 40 and contacts the metal tube 11. A rotating roller 41 is provided, and the connecting member 40 is connected to the cooling device 16 by a pin 43 and a long hole 44. Further, a coil spring 45 that presses the support rod 39 so as to press the roller 41 against the metal tube 11 is provided between the bracket 36 and the support rod 39. Thus, the follower means 38 is always in contact with the outer surface of the bending outer side of the bending end of the metal tube 11 (the portion that has passed through the inductor 12), and the displacement of that portion. The cooling device 16 can be moved by moving in the direction perpendicular to the axis of the metal tube 11 following the above. A temporary holding lever 47 is rotatably provided at the tip of the support rod 39 by a pin 48. When the temporary holding lever 47 is turned sideways as shown by a solid line in FIG. Although it does not interfere with the movement of the support rod 39, as indicated by a two-dot chain line 47a in FIG. Stop moving in the direction. Thereby, the roller 41 at the tip can be temporarily held so as not to interfere with the insertion operation of the metal tube 11.
[0021]
Next, the bending operation of the metal tube by the bending apparatus provided with the heating and cooling apparatus 10 having the above configuration will be described. First, as shown in FIG. 1A, the metal tube 11 to be bent is set at a predetermined position on the machining axis QQ, and the inductor 12 is concentric with the metal tube 11. Position to. When the metal tube 11 is set, the temporary holding lever 47 of the driving means 18 is set to a position indicated by a two-dot chain line 47a in FIG. 2, and the support rod 39 and the rollers 41 and the cooling device 16 held by the support rod 39 are used for inserting the metal tube 11. Temporarily held at a position where it does not interfere. After setting the metal tube 11, the temporary holding lever 47 is rotated to the position indicated by the solid line in FIG. 2 to release the temporary holding of the support rod 39, and the tip roller 41 is pressed against the metal tube 11. As a result, the cooling device 16 is positioned at a position where the roller 41 at the tip of the follower 38 is in contact with the metal tube 11. Here, the position of the cooling device 16 at this time is determined to be concentric with the metal tube 11.
[0022]
In this state, energization of the inductor 12 is started, and a heating section 13 is formed by heating a small section in the tube axis direction of the metal tube 11 located inside thereof, and the heating section 13 is set to a temperature at which plastic deformation is easy. When the temperature rises, injection of the cooling medium 17 from the cooling device 16 is started and movement of the metal tube 11 in the direction of arrow A is started. As a result, the bending arm 20 that clamps the tip of the metal tube 11 starts to turn around the fulcrum O, and the turning applies a bending moment to the heating unit 13 to cause the heating unit 13 to bend and deform. The region immediately after the generation is cooled and solidified by the cooling medium 17 from the cooling device 16. Thereafter, as the metal tube 11 is continuously fed in the direction of arrow A, the metal tube 11 is continuously bent as shown in FIG. When this bending process is started, as shown in FIG. 5, the portion on the tip side of the heating portion 13 of the metal tube 11, that is, the portion on the bending deformation end side is bent by the bending arm 20. Both the outer surface 11b and the outer surface 11b of the bending are displaced toward the bending center side in a direction crossing the central axis PP of the straight tube portion of the metal tube 11. In particular, since the wall thickness increases along the inside of the bend, the outer surface 11a is further displaced toward the bend center. However, as shown in FIGS. 1B and 5, the follower 38 is pressed against the outer surface 11 b of the metal tube 11 through the roller 41, so that the follower 38 is the outer surface of the metal tube 11. It moves following the displacement of 11b, and the cooling device 16 also moves toward the bending center side. Thus, on both the inner side and the outer side of the bend, an interval for enabling stable cooling is ensured between the injection hole 16b of the cooling medium of the cooling device 16 and the outer surface 11a, 11b of the metal tube. Bending is continued. In this way, good cooling can always be performed during the bending process, and a stable bending process is performed.
[0023]
Here, the amount of movement of the cooling device 16 is determined by the position (the distance in the axial direction from the inductor 12) where the roller 41 of the driven means 38 contacts the outer surface of the metal tube. The amount of movement can be adjusted. Generally, in order to perform the bending process of the metal tube 11 stably, it is necessary to stabilize the cooling inside the bending. In other words, the inner side of the bend is compressed along with the bend, resulting in an increase in the thickness. Therefore, unstable deformation such as bellows tends to occur, and cooling is important to prevent this unstable deformation. Therefore, when setting the amount of movement of the cooling device 16, the distance between the cooling medium injection hole 16b of the cooling device 16 and the outer surface 11a of the metal tube so that good cooling inside the bend can be performed through experiments or the like. What is necessary is just to set so that the space | interval may be obtained.
[0024]
In addition, in the said Example, although it is the structure which makes the follower 38 follow the outer surface 11b of the bending outer side of the metal tube 11, it is good also as a structure to follow the outer surface 11a of a bending inner side instead. Further, the movement of the driven means 38 is directly transmitted to the cooling device 16, but instead, the movement of the driven means 38 may be enlarged or reduced and transmitted to the cooling device 16.
[0025]
Although the said Example is a structure which moves the cooling device 16 in parallel with respect to the inductor 12, as shown in FIG. 6, the cooling device 16 is inclined with respect to the inductor 12 in a bending plane, or a metal strip. It is also possible to adopt a configuration that can be moved along the axis. In other words, the angle θ of the cooling device 16 with respect to the inductor 12 and the distance in the axial direction can be adjusted. By changing this angle θ, the heating width on the inner side and the outer side of the bending can be adjusted independently, and the bending deformation can also be stabilized by this adjustment. When the angle θ or the like of the cooling device 16 with respect to the inductor 12 can be adjusted as described above, this adjustment may be performed only by manual adjustment, or may be configured to be moved by appropriate driving means. Further, even when the angle θ can be adjusted, the cooling device 16 may be configured to be movable in the direction crossing the axis line PP of the metal tube 11.
[0026]
【The invention's effect】
As described above, according to the present invention, the cooling device can be moved in the bending plane at least in the direction crossing the axis of the metal strip with respect to the inductor, and the bending deformation end portion of the metal strip. In the state where the inductor is fixed at a position suitable for heating for bending with respect to the metal strip, only the cooling device is used in the transition period at the start of bending. The metal strip can be moved to follow the displacement of the end of the bending deformation of the metal strip as the bending progresses, and the cooling medium spraying position should always be a position where unstable deformation does not occur. It is possible to perform a satisfactory bending process, and in particular, it is possible to stably carry out a bending process in which a large thickness increase occurs inside the bending.
[Brief description of the drawings]
FIG. 1A is a schematic plan view showing a bending apparatus for a metal tube provided with a heating and cooling device according to an embodiment of the present invention, in a state before bending, and FIG. FIG. 2 is a schematic front view of the heating and cooling device shown in FIG. 1 as viewed from the cooling device side. FIG. 3 is a schematic plan view of the heating and cooling device shown in FIG. Fig. 5 is a schematic side view of the heating and cooling apparatus shown in Fig. 5. Fig. 6 is a schematic horizontal sectional view of the heating and cooling apparatus shown in Fig. 4 in a state during bending. FIG. 7 is a schematic plan view showing a conventional bending apparatus. FIG. 8 is a diagram for explaining a problem caused by the conventional apparatus. Schematic cross section shown 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 10 Heating and cooling apparatus 11 Metal pipe 12 Inductor 13 Heating part 14 Holding member (connection terminal)
16 Cooling device 16b Injection hole 17 Cooling medium 18 Driving means 20 Bending arm 21 Clamp 25 Insulating material 27 Cooling pipe 36 Bracket 38 Drive means 39 Support rod 40 Connecting member 41 Roller

Claims (4)

曲げ加工する金属条材を取り囲むように配置され、その軸線方向の小区間を加熱する環状の誘導子と、該誘導子に隣接配置され、前記誘導子による金属条材の加熱領域に隣接した位置に冷却媒体を吹き付ける環状の冷却装置であって、前記誘導子に対して曲げ平面内において少なくとも金属条材の軸線に交叉する方向に移動可能な冷却装置と、該冷却装置を前記金属条材に対して、曲げ平面内において少なくとも金属条材の軸線に交叉する方向に移動させる駆動手段とを有し、該駆動手段が、金属条材の曲げ変形終了側の曲げ外側又は曲げ内側の外面に当接し、その外面の金属条材の軸線に交叉する方向への変位に追従して移動する従動手段と、該従動手段の変位に応じて前記冷却装置を移動させるよう、前記従動手段を前記冷却装置に連結させる手段を有することを特徴とする曲げ加工用加熱、冷却装置。Arranged so as to surround the metal strip to be bent, an annular inductor for heating a small section in the axial direction thereof, a position adjacent to the inductor, and a position adjacent to the heating area of the metal strip by the inductor an annular cooling device for blowing cooling medium to a cooling device movable in a direction intersecting at least the axis of the metal strip material in a plane bending with respect to the inductor, the cooling device to the metal strip material On the other hand, it has a drive means for moving in the direction intersecting at least the axis of the metal strip in the bending plane, and the drive means hits the outer side of the bending outer side or the inner side of the bending of the metal strip. A follower that moves in accordance with a displacement in a direction intersecting the axis of the metal strip on the outer surface of the metal strip, and the follower is moved in accordance with the displacement of the follower. Connected to Heating bending and having a means for a cooling device. 前記冷却装置が周方向の複数の領域に分割されると共に各領域間の電気的導通が遮断されていることを特徴とする請求項1記載の金属条材の曲げ加工用加熱、冷却装置。 The heating and cooling device for bending a metal strip according to claim 1, wherein the cooling device is divided into a plurality of regions in the circumferential direction and electrical conduction between the regions is interrupted . 前記冷却装置が周方向に複数の領域に分割され、各領域での冷却媒体吹き付け条件を可変としていることを特徴とする請求項1又は2記載の金属条材の曲げ加工用加熱、冷却装置。 The heating and cooling device for bending a metal strip according to claim 1 or 2, wherein the cooling device is divided into a plurality of regions in the circumferential direction, and cooling medium spraying conditions in each region are variable . 前記冷却装置に、金属条材に吹き付ける冷却媒体を通す通路とは別に、冷却媒体を通す構成の冷却管が取り付けられ、冷却装置を冷却する構成であることを特徴とする請求項1から3のいずれか1項記載の金属条材の曲げ加工用加熱、冷却装置。 4. The cooling device according to claim 1, wherein a cooling pipe configured to pass a cooling medium is attached to the cooling device separately from a passage through which the cooling medium sprayed on the metal strip is passed, and the cooling device is cooled. A heating / cooling device for bending a metal strip according to any one of the preceding claims.
JP07481499A 1999-03-19 1999-03-19 Heating and cooling device for bending metal strip Expired - Fee Related JP3853534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07481499A JP3853534B2 (en) 1999-03-19 1999-03-19 Heating and cooling device for bending metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07481499A JP3853534B2 (en) 1999-03-19 1999-03-19 Heating and cooling device for bending metal strip

Publications (2)

Publication Number Publication Date
JP2000263144A JP2000263144A (en) 2000-09-26
JP3853534B2 true JP3853534B2 (en) 2006-12-06

Family

ID=13558168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07481499A Expired - Fee Related JP3853534B2 (en) 1999-03-19 1999-03-19 Heating and cooling device for bending metal strip

Country Status (1)

Country Link
JP (1) JP3853534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209191B2 (en) * 2006-07-24 2013-06-12 新日鐵住金株式会社 Control method and control device for hot bending apparatus of metal material, manufacturing method of hot bending product using these, hot bending product
CN106270043A (en) * 2016-08-31 2017-01-04 上海奥林汽车安全系统有限公司 A kind of bend system for hydraulic pipe bender
JP7238660B2 (en) * 2019-07-22 2023-03-14 日本製鉄株式会社 Hollow bending part manufacturing method, hollow bending part manufacturing apparatus, and hollow bending part

Also Published As

Publication number Publication date
JP2000263144A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
US3047712A (en) Method and apparatus for welding striplike material to curved surfaces
US4705580A (en) Cutting method to be applied to producing helical springs by cold-forming thick high-strength wire
JP3853534B2 (en) Heating and cooling device for bending metal strip
EP0157894B2 (en) Method and apparatus for increasing thickness of tubular member
KR101751031B1 (en) Movable heater for heating pipe
US3359402A (en) Welding by high frequency resistance heating
KR20070030229A (en) Improvements in welding hollow flange members
US3288980A (en) Heat stress relieving apparatus
JP3136345B2 (en) High frequency heating equipment
JP3814420B2 (en) Metal tube bending machine
JP4784278B2 (en) Steel plate post-heating equipment
JPH0577033A (en) Method for soldering heat exchanger
FI72749C (en) ANORDNING OCH FOERFARANDE FOER LOKALGLOEDGNING AV ROERMATERIAL.
JPH11329702A (en) Coil device for induction heating
JP2502138Y2 (en) High frequency heating coil with adjustable heating zone length
JP3052547B2 (en) ERW pipe manufacturing equipment
KR100204211B1 (en) Steel pipe welded end-part guide device for butt seam welding
JP2636301B2 (en) Pipe heating equipment
JPS6134909B2 (en)
JP2595447Y2 (en) High frequency heating coil device
JP3070725B2 (en) High frequency heating equipment
JPH031913Y2 (en)
WO1997048515A1 (en) Method and installation for butt welding two sheet sections, and coil for use therewith
SU1393494A1 (en) Arrangement for straightening flat parts
JPH054952Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees