JP3853509B2 - Induction heating roller device - Google Patents

Induction heating roller device Download PDF

Info

Publication number
JP3853509B2
JP3853509B2 JP09513398A JP9513398A JP3853509B2 JP 3853509 B2 JP3853509 B2 JP 3853509B2 JP 09513398 A JP09513398 A JP 09513398A JP 9513398 A JP9513398 A JP 9513398A JP 3853509 B2 JP3853509 B2 JP 3853509B2
Authority
JP
Japan
Prior art keywords
magnetic flux
roller
motor
induction heating
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09513398A
Other languages
Japanese (ja)
Other versions
JPH11251052A (en
Inventor
良夫 北野
幸三 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP09513398A priority Critical patent/JP3853509B2/en
Publication of JPH11251052A publication Critical patent/JPH11251052A/en
Application granted granted Critical
Publication of JP3853509B2 publication Critical patent/JP3853509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導発熱ローラ装置に関するものである。
【0002】
【従来の技術】
周知のように誘導発熱ローラ装置は、回転可能の円筒状のローラと、その中空内部に配置された固定の磁束発生機構とにより主に構成されており、磁束発生機構は、通常、磁性鋼板を巻回して構成した巻鉄心に誘導コイルを巻装して形成されている。そして、誘導コイルに交流電流を印加することにより、誘導コイルと鎖交する鉄心とローラとからなる磁気回路に交番磁束が発生し、この交番磁束によってローラに誘導電流が発生し、この誘導電流によってローラはジュール発熱して高温となる。
【0003】
この場合、磁束発生機構はローラの内部の近傍位置に配置されているので、ローラからの輻射および空気の熱伝導によって徐々に高温となり、更に磁束発生機構自体も自己の鉄損や銅損により発熱して高温化する傾向にある。たとえばローラの設定温度を摂氏250度とした場合、磁束発生機構の温度も摂氏250度〜350度と高温化する。
【0004】
ところで、誘導発熱ローラ装置には、たとえば合成繊維などの糸を熱延伸するために使用する場合のようにローラ表面に糸を導き巻き付ける必要から、ローラを回転駆動するモータにローラおよび磁束発生機構を片持ち状に固定保持しなければならないものがある。この場合、磁束発生機構の熱がモータに伝達されると、その熱によってモータの回転ベアリングやコイルの寿命を縮めることとなる。そのために磁束発生機構のモータへ固定保持には、磁束発生機構からモータへの熱伝達をできるだけ避けるようにする必要がある。
【0005】
図6はこのような場合の誘導発熱ローラ装置の構成を示すもので、この図において、1は有底円筒状のローラ、4は円筒状の巻鉄心3に誘導コイル2を巻回して形成された磁束発生機構、5はローラ1を回転駆動するモータ、6は磁性円板(コイルフランジ)、7は断熱ブロックである。モータ5は円筒状の巻鉄心3の中空内部に伸びる回転軸5aとこれを支持する軸受5cとを有し、端部に磁束発生機構4を取り付けるためのモータフランジ5bが形成されている。
【0006】
有底筒状のローラ1は、その底部中央部で内部に伸びる軸嵌合部1aが形成されており、この軸嵌合部1aをモータ5の回転軸5aの先端部に嵌合させて締結固定されている。磁束発生機構4はモータ5側の端部に巻鉄心3とローラ1とが少ない隙間の磁路を形成し、かつモータ側に漏れ磁束が流れないように(モータ側に漏れ磁束が流れると、その部位にジュール熱を発生して加熱される。)磁性体からなるコイルフランジ6が取付金具8により取り付けられている。
【0007】
そして、コイルフランジ6とモータフランジ5bとの間に断熱ブロック7を挿入し、コイルフランジ6とモータフランジ5bとの接触面積を少なくして熱伝達を低減し、コイルフランジ6とモータフランジ5bとをボルト9により締結固定する。これにより磁束発生機構4がモータ5に固定保持される。なお、符号10は誘導コイル2に交流の電力を供給するリード線である。
【0008】
すなわち、このような誘導発熱ローラ装置では、磁束発生機構4をモータ5側の端部にコイルフランジ6を設けてモータ側に漏れ磁束が流れないようにするとともに、コイルフランジ6とモータフランジ5bとの間に断熱ブロック7を挿入して断熱し、片持ちでモータ5に固定するようにしている。
【0009】
【発明が解決しようとする課題】
ところで、合成繊維などの熱延伸などでは生産速度が4000m/min〜6000m/minと高速であり、その速度を満たす周速でローラ1を回転させる必要がある。そのために磁束発生機構4のモータ5への取付けを強固にする必要がある。この取付けが弱いと、磁束発生機構4は機械的に低い共振周波数が形成されることになり、軸受5cやローラ1の加工精度の限界などにより回転速度に応じて発生するローラ1の回転速度での振動と共振し、回転軸5aや軸受5cが共振破壊するといった不具合につながる。
【0010】
しかし、従来の磁束発生機構4の固定保持構造では、このような高速回転が安定して得られるほど強固なものにすることができず(鉄心3を例えば支持金具により軸受5cの端部でも固定保持すれば取付けは強固になるが、鉄心3が巻鉄心で構成されており、磁束が軸受5cを流れて軸受5cが加熱されるのでこのような取付けはできない。)、したがって、モータ5の回転軸5aの強度を高めなければならないという問題がある。
【0011】
本発明は、このような実情に鑑みなされたもので、磁束発生機構のモータへの取付け構造の簡素化を図ることができ、かつモータの回転軸の強度を高めることなく安定したより高速の回転が得られる誘導発熱ローラ装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、底部中央部に内側に突出する軸嵌合部を有する有底円筒状のローラと、前記ローラの中空内部に同心状に配置され前記ローラを発熱する円筒状の磁束発生機構と、前記磁束発生機構の中空内部に挿入され先端部が前記ローラの軸嵌合部に嵌合される回転軸を有するモータとを備えてなる誘導発熱ローラ装置において、前記回転軸を支持する軸受部を前記円筒状の磁束発生機構の中空内部に前記磁束発生機構の重心近傍位置まで延設するとともに、前記磁束発生機構を、湾曲部を有する鉄心鋼板を放射状に配列積層した円筒状鉄心と前記円筒状鉄心に巻回してなる誘導コイルとにより形成し、該磁束発生機構を前記延設した軸受部の先端に固定保持してなることを主要な特徴とする。
【0013】
磁束発生機構の鉄心を湾曲部、すなわちインボリュート曲線等を有する鉄心鋼板で構成し、また鉄心のモータ側端部でローラとの間に間隙を設けることができるので、鉄心の表面から半径方向に貫通して放出される漏れ磁束数は増加するが、鉄心内を通過する主磁束数が減じられ、磁束発生機構によるモータ側への磁束の影響を少なくすることができ、また磁束発生機構の熱は該間隙によってモータ側への伝導は低減される。したがって、従来のようなコイルフランジやスペーサを省略することができ、その分磁束発生機構およびローラをよりモータ側に接近して保持する、すなわちローラの重心位置とモータ内部の軸受ベアリング位置との距離を短かくでき、回転軸に生じる応力の低減ならびに回転軸の危険速度の増加を図ることができる。
【0014】
また、磁束発生機構を円筒状鉄心の中空内部に伸びるモータの回転軸の軸受部の先端と基部の2点で固定保持する(請求項2)と、この固定によって磁束発生機構のモータへの取付けをさらに強固にすることができ、回転軸の強度を高めることなく安定したより高速の回転が得られる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図を参照して説明する。図1は実施の形態に係る誘導発熱ローラ装置の断面図、図2は図1に示す誘導発熱ローラ装置の鉄心の斜視図、図3は図2に示す鉄心の部分拡大平面図、図4は他の実施の形態に係る誘導発熱ローラ装置の断面図、図5はさらに他の実施の形態に係る誘導発熱ローラ装置の断面図である。なお、各図において同一部分には同一の符号を付している。
【0016】
図1において、11は有底円筒状のローラ、14は円筒状の鉄心13に誘導コイル12を巻回して形成された磁束発生機構、15はローラ11を回転駆動するモータである。有底円筒状のローラ11およびモータ15は図6に示す従来と同様に構成され、ローラ11はテーパー面に形成された軸嵌合部11aをモータ15の回転軸15aの先端部に形成されたテーパー面と嵌合させて締結固定することによりモータ15に取り付けられている。なお、20は誘導コイル12に交流電力を供給するリード線である。
【0017】
磁束発生機構14は、鉄心13が、図2および図3に示すように、半径方向に例えばインボリュート曲線状に湾曲された湾曲部13aと、この湾曲部13aに連続して屈曲角度θ、例えば30度で形成された屈曲部13bとによって形成された鉄心鋼板13cを、屈曲部13bの端縁を円筒状内周に、また、湾曲部13aの端縁を円筒状外周に沿うように放射状に配列積層して円筒状に形成されており、この鉄心13に誘導コイル12が巻回されて構成されている。
【0018】
そして、磁束発生機構14はローラ11のモータ15側の端部内で適宜の間隙16を形成するようにローラ11よりも短く形成され、支持金具21によりモータ15の軸受15cの先端部の磁束発生機構14の重心近傍位置で固定保持されている。この固定により磁束発生機構14は機械的に高い共振周波数となり、ローラ11の回転速度を高めることができる。
【0019】
このように磁束発生機構14を形成する鉄心13を湾曲部、すなわちインボリュート曲線を有する鉄心鋼板13cで形成し、モータ側端部において鉄心13とローラ11との磁路内に間隙16を設けると、この間隙16を大きくするほど磁気抵抗が大きくなり鉄心13内を通過する主磁束数が減じられる。つまりモータ15側への漏れ磁束が減じられ、従来のようなコイルフランジを省略することができる。
【0020】
一方、この間隙16を設けることにより、鉄心13の表面から半径方向に貫通して放出される磁束数は増加する。しかし、鉄心13はインボリュート曲線を有する鉄心鋼板13cを放射状に配列積層して構成されているので、その磁束による渦電流損、つまり鉄損が低く抑えられ磁束発生機構14自体の自己発熱は防止される。また、ローラ11からの輻射、対流による伝熱で磁束発生機構14は高温化するが、この間隙16によってモータ15側への伝熱を低減することができる。これにより従来のような断熱ブロックを省略することができ、組立部品点数の低減が図れる。
【0021】
以上の実施の形態では、磁束発生機構14はモータ15の軸受15cの先端部で支持金具21により固定保持しているが、この固定保持は図4に示すように、モータ15の端部の軸受15cの基部22の外径を大きくし、磁束発生機構14のモータ15側の端部をその基部22に嵌入し、この嵌入による嵌合固定とモータ15の軸受15cの先端部の支持金具21による固定とにより保持するようにしても良い。この場合、磁束発生機構14をより強固にモータ15に固定支持することができ、ローラ11のより安定な高速回転が可能になる。
【0022】
また、図5に示すように、磁束発生機構14の端部に取付け金具17を取付け、この取付け金具17をモータフランジ15bに当て、ボルト18で締結して固定保持するようにしても良い。
【0023】
【発明の効果】
以上詳述したように、本発明によれば、磁束発生機構を形成する鉄心をインボリュート曲線等の湾曲部を有する鉄心鋼板で形成し、モータ側端部において鉄心とローラとの磁路内に適宜の間隙を設けることができるので、磁束発生機構のモータ側への磁束の影響および伝熱による影響が少なく、従来のようなコイルフランジや断熱ブロックを設けることなくローラおよび磁束発生機構をモータに接近させて固定することができ、ローラの重心位置とモータ内部の軸受ベアリング位置との距離を短くすることができ、磁束発生機構のモータへの取付けを強固にすることができる。
【0024】
これにより、モータの回転軸に要する強度が減じられ、低級の材料で軸径も小さくでき、設計の自由度が広げられコストの低減が図れるとともに、危険速度(機械的共振周波数)も高く設計でき高速であっても安定的に回転させることができるようになる。また、従来必要としたコイルフランジや断熱ブロックも不要となるので、磁束発生機構のモータへの取付け構造の簡素化が図れ、その製作コストや組み込みコストの低減が図れる。
【0025】
また、磁束発生機構を円筒状鉄心の中空内部に伸びるモータの回転軸の軸受端部でその一端あるいは両端を固定保持するようにすると、磁束発生機構はモータフランジとは遊離するので、磁束発生機構からモータフランジへの伝熱をより防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る誘導発熱ローラ装置の断面図である。
【図2】図1に示す誘導発熱ローラ装置の鉄心の斜視図である。
【図3】図3は図2に示す鉄心の部分拡大平面図である。
【図4】本発明の他の実施の形態に係る誘導発熱ローラ装置の断面図である。
【図5】本発明のさらに他の実施の形態に係る誘導発熱ローラ装置の断面図である。
【図6】従来の誘導発熱ローラ装置の断面図である。
【符号の説明】
11 ローラ
11a 軸嵌合部
12 誘導コイル
13 円筒状鉄心
13a 湾曲部
13b 屈曲部
13c 鉄心鋼板
14 磁束発生機構
15 モータ
15a 回転軸
15b モータフランジ
15c 軸受
16 間隙
17 取付金具
18 ボルト
21 支持金具
22 軸受の基部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heat roller device.
[0002]
[Prior art]
As is well known, the induction heating roller device is mainly composed of a rotatable cylindrical roller and a fixed magnetic flux generating mechanism disposed inside the hollow, and the magnetic flux generating mechanism is usually made of a magnetic steel plate. It is formed by winding an induction coil around a wound iron core. And by applying an alternating current to the induction coil, an alternating magnetic flux is generated in a magnetic circuit composed of an iron core and a roller linked to the induction coil, and this alternating magnetic flux generates an induced current in the roller. The roller becomes Joule heat and becomes high temperature.
[0003]
In this case, since the magnetic flux generating mechanism is disposed in the vicinity of the inside of the roller, the temperature gradually increases due to radiation from the roller and heat conduction of the air, and the magnetic flux generating mechanism itself generates heat due to its own iron loss and copper loss. Tend to increase in temperature. For example, when the set temperature of the roller is 250 degrees Celsius, the temperature of the magnetic flux generation mechanism is increased to 250 degrees to 350 degrees Celsius.
[0004]
By the way, in the induction heating roller device, since it is necessary to guide and wind the yarn around the surface of the roller as in the case where the yarn such as synthetic fiber is used for hot drawing, a roller and a magnetic flux generating mechanism are provided in the motor that rotationally drives the roller. Some must be fixed in a cantilevered manner. In this case, when the heat of the magnetic flux generation mechanism is transmitted to the motor, the life of the rotary bearing and the coil of the motor is shortened by the heat. Therefore, in order to fix and hold the magnetic flux generation mechanism to the motor, it is necessary to avoid heat transfer from the magnetic flux generation mechanism to the motor as much as possible.
[0005]
FIG. 6 shows the structure of the induction heating roller device in such a case. In this figure, 1 is a cylindrical roller with a bottom, 4 is formed by winding an induction coil 2 around a cylindrical wound core 3. The magnetic flux generating mechanism, 5 is a motor that rotationally drives the roller 1, 6 is a magnetic disk (coil flange), and 7 is a heat insulating block. The motor 5 has a rotating shaft 5a extending into the hollow interior of the cylindrical wound core 3 and a bearing 5c that supports the rotating shaft 5a, and a motor flange 5b for attaching the magnetic flux generating mechanism 4 is formed at the end.
[0006]
The bottomed cylindrical roller 1 is formed with a shaft fitting portion 1a extending inwardly at the center of the bottom portion. The shaft fitting portion 1a is fitted to the tip of the rotating shaft 5a of the motor 5 and fastened. It is fixed. The magnetic flux generation mechanism 4 forms a magnetic path with a small gap between the wound core 3 and the roller 1 at the end on the motor 5 side, and prevents leakage magnetic flux from flowing on the motor side (when leakage magnetic flux flows on the motor side, The portion is heated by generating Joule heat.) A coil flange 6 made of a magnetic material is attached by a mounting bracket 8.
[0007]
And the heat insulation block 7 is inserted between the coil flange 6 and the motor flange 5b, the contact area of the coil flange 6 and the motor flange 5b is reduced, heat transfer is reduced, and the coil flange 6 and the motor flange 5b are connected. Fastened and fixed with bolts 9. As a result, the magnetic flux generation mechanism 4 is fixedly held by the motor 5. Reference numeral 10 denotes a lead wire for supplying AC power to the induction coil 2.
[0008]
That is, in such an induction heating roller device, the magnetic flux generating mechanism 4 is provided with the coil flange 6 at the end portion on the motor 5 side to prevent leakage magnetic flux from flowing on the motor side, and the coil flange 6 and the motor flange 5b. Insulating block 7 is inserted between them to insulate, and cantilever is fixed to motor 5.
[0009]
[Problems to be solved by the invention]
By the way, in the thermal drawing of synthetic fibers or the like, the production speed is as high as 4000 m / min to 6000 m / min, and it is necessary to rotate the roller 1 at a peripheral speed that satisfies the speed. Therefore, it is necessary to firmly attach the magnetic flux generation mechanism 4 to the motor 5. If this attachment is weak, the magnetic flux generating mechanism 4 will form a mechanically low resonance frequency, and at the rotational speed of the roller 1 generated according to the rotational speed due to the limit of the processing accuracy of the bearing 5c and the roller 1, etc. Resonance with the vibration of the rotation leads to a problem that the rotary shaft 5a and the bearing 5c break down due to resonance.
[0010]
However, the conventional fixed holding structure of the magnetic flux generation mechanism 4 cannot be so strong that such high-speed rotation can be stably obtained (the iron core 3 is also fixed to the end of the bearing 5c by a support bracket, for example). If it is held, the attachment becomes strong, but the iron core 3 is composed of a wound iron core, and the magnetic flux flows through the bearing 5c and the bearing 5c is heated, so that such attachment cannot be performed. There is a problem that the strength of the shaft 5a must be increased.
[0011]
The present invention has been made in view of such circumstances, and can simplify the structure for attaching the magnetic flux generation mechanism to the motor, and can achieve stable and high-speed rotation without increasing the strength of the rotating shaft of the motor. It is an object of the present invention to provide an induction heating roller device that can obtain the above.
[0012]
[Means for Solving the Problems]
The present invention includes a bottomed cylindrical roller having a shaft fitting portion that protrudes inwardly at a bottom center portion, a cylindrical magnetic flux generation mechanism that is disposed concentrically inside the hollow of the roller and generates heat from the roller, in Ete comprising induction heating roller apparatus Bei a motor having a rotary shaft hollow interior is inserted into the distal end portion is fitted to the shaft fitting portion of the roller of said magnetic flux generating mechanism, a bearing portion for supporting the rotary shaft The cylindrical magnetic core is formed by extending the hollow magnetic flux generating mechanism to a position near the center of gravity of the magnetic flux generating mechanism, and the magnetic flux generating mechanism includes a cylindrical iron core in which iron core steel plates having a curved portion are radially arranged and stacked. The main feature is that it is formed by an induction coil wound around an iron core, and the magnetic flux generation mechanism is fixedly held at the tip of the extended bearing portion.
[0013]
Bend the iron core of the magnetic flux generating mechanism, i.e. composed of core steel plates having an involute curve or the like, and because it is Rukoto provided a gap between the rollers at the motor side end of the iron core, radially from the surface of the core Although the number of leakage magnetic fluxes penetrating through increases, the number of main magnetic fluxes passing through the iron core is reduced, and the influence of the magnetic flux on the motor side by the magnetic flux generation mechanism can be reduced, and the heat of the magnetic flux generation mechanism can be reduced. The conduction to the motor side is reduced by the gap. Therefore, the conventional coil flange and spacer can be omitted, and the magnetic flux generating mechanism and the roller are held closer to the motor side accordingly, that is, the distance between the position of the center of gravity of the roller and the position of the bearing in the motor. Thus, the stress generated on the rotating shaft can be reduced and the critical speed of the rotating shaft can be increased.
[0014]
The fixed and held at two points of the tip and base of the bearing portion of the rotating shaft of the motor extending the magnetic flux generating mechanism into the hollow interior of the cylindrical core and (Claim 2), to the motor of this fixed into Thus magnetic flux generation mechanism Can be further strengthened, and stable and higher-speed rotation can be obtained without increasing the strength of the rotating shaft.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a cross-sectional view of the induction heating roller device according to the embodiment, FIG. 2 is a perspective view of the iron core of the induction heating roller device shown in FIG. 1, FIG. 3 is a partially enlarged plan view of the iron core shown in FIG. FIG. 5 is a cross-sectional view of an induction heat roller device according to another embodiment, and FIG. 5 is a cross-sectional view of an induction heat roller device according to another embodiment. In the drawings, the same parts are denoted by the same reference numerals.
[0016]
In FIG. 1, reference numeral 11 denotes a bottomed cylindrical roller, 14 denotes a magnetic flux generation mechanism formed by winding an induction coil 12 around a cylindrical iron core 13, and 15 denotes a motor that rotationally drives the roller 11. The bottomed cylindrical roller 11 and the motor 15 are configured in the same manner as the conventional one shown in FIG. 6, and the roller 11 has a shaft fitting portion 11 a formed on a tapered surface formed at the tip of the rotating shaft 15 a of the motor 15. It is attached to the motor 15 by being fitted and fixed to the tapered surface. Reference numeral 20 denotes a lead wire for supplying AC power to the induction coil 12.
[0017]
As shown in FIGS. 2 and 3, the magnetic flux generating mechanism 14 includes a bending portion 13a in which the iron core 13 is bent in an involute curve shape in the radial direction, and a bending angle θ, for example, 30 continuously with the bending portion 13a. The core steel plate 13c formed by the bent portion 13b formed at a degree is arranged radially so that the edge of the bent portion 13b is along the cylindrical inner periphery and the end edge of the curved portion 13a is along the cylindrical outer periphery. They are laminated and formed in a cylindrical shape, and an induction coil 12 is wound around the iron core 13.
[0018]
The magnetic flux generation mechanism 14 is formed shorter than the roller 11 so as to form an appropriate gap 16 in the end portion of the roller 11 on the motor 15 side, and the magnetic flux generation mechanism at the front end portion of the bearing 15c of the motor 15 by the support fitting 21. 14 is held at a position near the center of gravity. By this fixing, the magnetic flux generation mechanism 14 has a mechanically high resonance frequency, and the rotation speed of the roller 11 can be increased.
[0019]
Thus, when the iron core 13 forming the magnetic flux generation mechanism 14 is formed of a curved portion, that is, an iron core steel plate 13c having an involute curve, and a gap 16 is provided in the magnetic path between the iron core 13 and the roller 11 at the motor side end, As the gap 16 is increased, the magnetic resistance is increased and the number of main magnetic fluxes passing through the iron core 13 is reduced. That is, the magnetic flux leakage to the motor 15 side is reduced, and the conventional coil flange can be omitted.
[0020]
On the other hand, by providing the gap 16, the number of magnetic fluxes emitted through the surface of the iron core 13 in the radial direction increases. However, since the iron core 13 is constructed by radially arranging and laminating iron core steel plates 13c having involute curves, the eddy current loss due to the magnetic flux, that is, iron loss is suppressed low, and self-heating of the magnetic flux generating mechanism 14 itself is prevented. The Further, although the magnetic flux generating mechanism 14 is heated by heat transfer by radiation and convection from the roller 11, heat transfer to the motor 15 side can be reduced by the gap 16. Thereby, the conventional heat insulation block can be omitted, and the number of assembly parts can be reduced.
[0021]
In the above embodiment, the magnetic flux generating mechanism 14 is fixedly held by the support fitting 21 at the tip of the bearing 15c of the motor 15, but this fixed holding is performed at the end of the motor 15 as shown in FIG. The outer diameter of the base 22 of 15c is enlarged, the end of the magnetic flux generation mechanism 14 on the motor 15 side is fitted into the base 22, and the fitting is fixed by this fitting and the support fitting 21 at the tip of the bearing 15c of the motor 15 is used. You may make it hold | maintain by fixation. In this case, the magnetic flux generation mechanism 14 can be fixedly supported on the motor 15 and the roller 11 can be rotated more stably at a high speed.
[0022]
Further, as shown in FIG. 5, a mounting bracket 17 may be attached to the end portion of the magnetic flux generation mechanism 14, and the mounting bracket 17 may be applied to the motor flange 15b and fastened with a bolt 18 to be fixedly held.
[0023]
【The invention's effect】
As described above in detail, according to the present invention, the iron core forming the magnetic flux generating mechanism is formed of the iron core steel plate having a curved portion such as an involute curve, and the motor side end portion is appropriately placed in the magnetic path between the iron core and the roller. it is possible to provide the gap, there is little influence due to impact and heat transfer of the magnetic flux to the motor side of the magnetic flux generating mechanism, approach the roller and the magnetic flux generation mechanism in the motor without providing a coil flange and insulating block as in the prior art The distance between the position of the center of gravity of the roller and the bearing position in the motor can be shortened, and the attachment of the magnetic flux generating mechanism to the motor can be strengthened.
[0024]
As a result, the strength required for the rotating shaft of the motor is reduced, the shaft diameter can be reduced with lower materials, the degree of freedom of design can be expanded, the cost can be reduced, and the critical speed (mechanical resonance frequency) can be increased. It becomes possible to rotate stably even at high speed. In addition, since the conventionally required coil flange and heat insulation block are not required, the structure for mounting the magnetic flux generation mechanism to the motor can be simplified, and the manufacturing cost and installation cost can be reduced.
[0025]
Also, if one end or both ends of the magnetic flux generating mechanism are fixedly held at the bearing end of the rotating shaft of the motor extending into the hollow interior of the cylindrical iron core, the magnetic flux generating mechanism is separated from the motor flange. Heat transfer from the motor flange to the motor flange can be further prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an induction heat roller device according to an embodiment of the present invention.
2 is a perspective view of an iron core of the induction heat roller device shown in FIG. 1. FIG.
3 is a partially enlarged plan view of the iron core shown in FIG. 2. FIG.
FIG. 4 is a cross-sectional view of an induction heat roller device according to another embodiment of the present invention.
FIG. 5 is a cross-sectional view of an induction heating roller device according to still another embodiment of the present invention.
FIG. 6 is a cross-sectional view of a conventional induction heating roller device.
[Explanation of symbols]
11 Roller 11a Shaft fitting portion 12 Inductive coil 13 Cylindrical iron core 13a Bending portion 13b Bending portion 13c Iron core steel plate 14 Magnetic flux generation mechanism 15 Motor 15a Rotating shaft 15b Motor flange 15c Bearing 16 Gap 17 Mounting bracket 18 Bolt 21 Support bracket 22 Bearing base

Claims (2)

底部中央部に内側に突出する軸嵌合部を有する有底円筒状のローラと、前記ローラの中空内部に同心状に配置され前記ローラを発熱する円筒状の磁束発生機構と、前記磁束発生機構の中空内部に挿入され先端部が前記ローラの軸嵌合部に嵌合される回転軸を有するモータとを備えてなる誘導発熱ローラ装置において、前記回転軸を支持する軸受部を前記円筒状の磁束発生機構の中空内部に前記磁束発生機構の重心近傍位置まで延設するとともに、前記磁束発生機構を、湾曲部を有する鉄心鋼板を放射状に配列積層した円筒状鉄心と前記円筒状鉄心に巻回してなる誘導コイルとにより形成し、該磁束発生機構を前記延設した軸受部の先端に固定保持してなることを特徴とする誘導発熱ローラ装置。A bottomed cylindrical roller having a shaft fitting portion protruding inward at the center of the bottom, a cylindrical magnetic flux generation mechanism that is concentrically disposed inside the hollow of the roller and generates heat from the roller, and the magnetic flux generation mechanism hollow interior is inserted into the tip in Ete becomes induction heating roller apparatus Bei a motor having a rotary shaft fitted to the shaft fitting portion of the roller bearing unit said cylindrical supporting the rotary shaft of the as well as extended to near the center of gravity position of the magnetic flux generating mechanism in the hollow interior of the magnetic flux generating mechanism, wherein the magnetic flux generating mechanism, winding core steel sheet having a curved portion and a cylindrical iron core arranged stacked radially to the cylindrical core An induction heating roller device, characterized in that the magnetic flux generation mechanism is fixedly held at the tip of the extended bearing portion. 磁束発生機構を延設した軸受部の先端と前記軸受部の基部に固定してなる請求項1記載の誘導発熱ローラ装置。The induction heating roller device according to claim 1, wherein the induction heating roller device is fixed to a distal end of a bearing portion provided with a magnetic flux generation mechanism and a base portion of the bearing portion.
JP09513398A 1998-03-03 1998-03-03 Induction heating roller device Expired - Lifetime JP3853509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09513398A JP3853509B2 (en) 1998-03-03 1998-03-03 Induction heating roller device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09513398A JP3853509B2 (en) 1998-03-03 1998-03-03 Induction heating roller device

Publications (2)

Publication Number Publication Date
JPH11251052A JPH11251052A (en) 1999-09-17
JP3853509B2 true JP3853509B2 (en) 2006-12-06

Family

ID=14129332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09513398A Expired - Lifetime JP3853509B2 (en) 1998-03-03 1998-03-03 Induction heating roller device

Country Status (1)

Country Link
JP (1) JP3853509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104951A1 (en) 2010-02-24 2011-09-01 住友電気工業株式会社 Peak power suppression circuit, and communication device provided with said circuit
WO2011104955A1 (en) 2010-02-24 2011-09-01 住友電気工業株式会社 Signal processing circuit and communication device containing said circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603602B2 (en) * 2010-01-18 2014-10-08 トクデン株式会社 Annular iron core and iron core steel plate for induction heating roller device
WO2019077914A1 (en) 2017-10-17 2019-04-25 Tmtマシナリー株式会社 Induction heating roller and spun yarn drawing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104951A1 (en) 2010-02-24 2011-09-01 住友電気工業株式会社 Peak power suppression circuit, and communication device provided with said circuit
WO2011104955A1 (en) 2010-02-24 2011-09-01 住友電気工業株式会社 Signal processing circuit and communication device containing said circuit
KR20130009945A (en) 2010-02-24 2013-01-24 스미토모덴키고교가부시키가이샤 Peak power suppression circuit, and communication device provided with said circuit
KR20130009948A (en) 2010-02-24 2013-01-24 스미토모덴키고교가부시키가이샤 Signal processing circuit and communication device containing said circuit
US8744002B2 (en) 2010-02-24 2014-06-03 Sumitomo Electric Industries, Ltd. Peak power suppressing circuit and communication device having the same
US8787495B2 (en) 2010-02-24 2014-07-22 Sumitomo Electric Industries, Ltd. Signal processing circuit and communication device having the same

Also Published As

Publication number Publication date
JPH11251052A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
JP3853509B2 (en) Induction heating roller device
CN102560798A (en) A godet roller for guiding, heating and transporting filaments
JP4877579B2 (en) Rotor manufacturing method, rotor manufactured by this method, and motor using this rotor
JP2007277753A (en) Yarn heating apparatus
JP5919462B2 (en) Induction heating coil manufacturing method
JP2007323887A (en) Induction heating device
JP4106277B2 (en) Godet
JP3756261B2 (en) Induction heating roller device
JP3317154B2 (en) Fixing device
JP3497444B2 (en) Image forming device
JP5083891B2 (en) Cantilever induction heating roller device
JP2586216B2 (en) Roll device
JP4221227B2 (en) Godet
JPH11316509A (en) Fixing device
JP3798308B2 (en) Induction heating roller device
JP2001023766A (en) Induction heating roller apparatus
CN218352290U (en) Wiring structure of stator winding lead wire, outer rotor motor and outer rotor electric roller
JP3962757B2 (en) Electromagnetic cooker
JPH06295784A (en) Roll device
JP4039638B2 (en) Induction core of heatable godet roll and inductor and induction heatable godet roll
JP3447677B2 (en) Image forming device
KR100767480B1 (en) Single sided heating roll
JP4092363B2 (en) Electromagnetic cooker
US20230247735A9 (en) Induction heated roll apparatus
JPS6349877B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140915

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term