JP3853157B2 - Load sensor - Google Patents

Load sensor Download PDF

Info

Publication number
JP3853157B2
JP3853157B2 JP2001001676A JP2001001676A JP3853157B2 JP 3853157 B2 JP3853157 B2 JP 3853157B2 JP 2001001676 A JP2001001676 A JP 2001001676A JP 2001001676 A JP2001001676 A JP 2001001676A JP 3853157 B2 JP3853157 B2 JP 3853157B2
Authority
JP
Japan
Prior art keywords
pressure receiving
strain
receiving portion
load
load sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001001676A
Other languages
Japanese (ja)
Other versions
JP2002206974A (en
Inventor
良一 前田
昭人 三浦
幸一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001001676A priority Critical patent/JP3853157B2/en
Priority to US10/004,902 priority patent/US6634235B2/en
Publication of JP2002206974A publication Critical patent/JP2002206974A/en
Application granted granted Critical
Publication of JP3853157B2 publication Critical patent/JP3853157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、受圧部の荷重点に加わる荷重を歪検出素子を設けた起歪部の撓み具合によって検出する荷重センサに係り、特に、歪検出素子が起歪部に印刷形成される荷重センサに関する。
【0002】
【従来の技術】
図11はこの種の荷重センサの従来技術を示す平面図、図12は図11のA−A線に沿う断面図である。これらの図において、符号1は荷重センサのベース体を総括的に示している。このベース体1は1枚の金属板を加工したもので、固定端側の取付部2と、この取付部2から隣接する開口3の両側縁に沿って延びる一対の起歪部4と、これら両起歪部4の自由端側を連結している連結部5と、この連結部5から開口3内へ舌状に突出している受圧部6とからなる。
【0003】
ベース体1の片面は平坦な印刷面となっており、この印刷面上に、図示せぬ絶縁コート層と配線パターンとが印刷形成されている。また、各起歪部4は取付部2に近い部位4aと連結部5に近い部位4bにおいて板厚が薄く形成されており、この肉薄な部位4a,4b上の前記絶縁コート層上にはそれぞれ、厚膜抵抗体からなる歪検出素子7,8が印刷形成されている。なお、計4か所に配設されている歪検出素子7,8は、前記配線パターンにより結線されてホイートストンブリッジ回路を構成している。取付部2には一対の軸孔2aが穿設されていて、各軸孔2aにはボルト9が挿通されており、このボルト9の頭部で軸孔2aの周縁部を加圧することによって、取付部2は外部の支持部材10上に固定されている。舌状の受圧部6の先端部には荷重点6aが設けられており、この荷重点6aに外部から荷重が印加されると、各起歪部4の肉薄な部位4a,4bに逆向きの曲げモーメントが発生して、各起歪部4は緩やかなS字形状に撓む。つまり、荷重点6aに上から荷重が加わると、起歪部4のうち取付部2に近い肉薄な部位4aは上に凸な形状に撓むが、連結部5に近い肉薄な部位4bは下に凸な形状に撓むので、部位4a上の歪検出素子7は引っ張り応力を検出し、部位4b上の歪検出素子8は圧縮応力を検出する。このように起歪部4に発生する歪を歪検出素子7,8によって検出すれば、その歪の大きさから、荷重点6aに作用している荷重を求めることができる。
【0004】
なお、歪検出素子を搭載した片持ち梁状の板状部材の先端部に荷重を加えるように構成した荷重センサも知られているが、このものは逆向きの曲げモーメントを発生する複数の場所で応力を検出することができないので、上述した構成のものに比べて精度の向上が図りにくいという難点がある。
【0005】
【発明が解決しようとする課題】
図11,12に示すような従来の荷重センサは、ベース体1の平坦な印刷面に配線パターンや歪検出素子7,8等を印刷形成して製造するというものなので、量産しやすく低コスト化に好適である。しかしながら、ベース体1の印刷面側を受圧部6も含めてすべて同一平面内に位置させる設計になっているため、配線パターン等を印刷形成する際の加熱工程で舌状の受圧部6に反りが生じ、荷重点6aを有する受圧部6の先端部が該印刷面よりも上に位置してしまうことがあった。その場合、受圧部6の先端部に干渉されて歪検出素子7,8の印刷が円滑に行えなくなるので、センシング精度が損なわれる恐れがあり、製造歩留まりも低下しやすくなる。
【0006】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、受圧部の反りに起因する歪検出素子の印刷不良が回避でき、品質の安定化や製造歩留まりの向上に好適な荷重センサを提供することにある。
【0007】
【課題を解決するための手段】
上述した目的を達成する解決手段として、本発明は、外部機器に固定される一端側の取付部と、この取付部に隣接する開口と、前記取付部から前記開口の側縁に沿って他端側へ延び、少なくとも片面を平坦な印刷面となした起歪部と、前記他端側で前記起歪部に連結されて前記開口内へ舌状に突出する受圧部と、前記起歪部の前記印刷面に印刷形成され、前記受圧部に印加される荷重に応じて生じる該起歪部の歪を検出する歪検出素子とを備え、前記受圧部に荷重が印加されていない状態で、該受圧部の先端部が前記印刷面を含む平面よりも板厚方向下側に位置するように構成した。
【0008】
このように、荷重点を有する受圧部の先端部を予め起歪部の印刷面を含む平面よりも板厚方向下側に位置させておけば、製造時の加熱工程で受圧部に反りが生じた場合にも、受圧部が起歪部の印刷面よりも上に位置してしまう心配がなくなるので、受圧部の反りに起因する歪検出素子の印刷不良が回避できる。
【0009】
なお、起歪部の印刷面を含む平面に対して受圧部の先端部を予め下げておくためには、例えば、受圧部の先端側の板厚を基端側の板厚よりも薄く形成したり、あるいは、板厚が均一な受圧部をその先端側が印刷面を含む平面から漸次離反するように折曲させておけばよい。
【0010】
【発明の実施の形態】
以下、発明の実施の形態について図面を参照して説明すると、図1は第1の実施形態例に係る荷重センサの側面図、図2は図1に示す荷重センサの平面図、図3は図1,2に示す荷重センサの製造時の印刷工程図、図4は図1〜図3に示す受圧部の変形例を示す断面図、図5は第2の実施形態例に係る荷重センサの斜視図、図6は図5に示す荷重センサの要部平面図、図7は図6のC−C線に沿う断面図、図8は第3の実施形態例に係る荷重センサの斜視図、図9は図8に示す荷重センサの受圧部の断面図、図10は図8,9に示す受圧部の変形例を示す断面図である。なお、これらの図において、従来技術の説明に用いた図11,12と対応する部分には同一符号を付してある。
【0011】
まず、図1〜図3を参照しつつ第1の実施形態例について説明すると、図中の符号1は荷重センサのベース体、11はベース体1上に印刷形成された絶縁コート層、12は絶縁コート層11上に印刷形成された配線パターンを示している。ベース体1はSUS等の1枚の金属板を加工したもので、固定端側の取付部2と、この取付部2から隣接する開口3の両側縁に沿って延びる一対の起歪部4と、これら両起歪部4の自由端側を連結している連結部5と、この連結部5から開口3内へ舌状に突出している受圧部6とからなり、受圧部6の先端部は測定対象物の荷重が印加される荷重点6aとなっている。図1に示すように、この受圧部6は荷重点6aが設けられた面を傾斜面とすることにより、その先端側が漸次肉薄になるように形成されており、したがって、荷重が印加されていない無負荷状態で受圧部6の先端部は開口3内に没入した位置に配置されることとなる。また、ベース体1のうち、各起歪部4は他の部分よりも板厚が薄く形成され、撓みやすくなっている。
【0012】
図3(a)に示すように、このベース体1の片面(図1の上面)には絶縁コート層11が印刷形成されており、図3(b)に示すように、この絶縁コート層11上には配線パターン12が印刷形成されている。さらに、図3(c)に示すように、各起歪部4上の所定位置には厚膜抵抗体からなる歪検出素子7,8が印刷形成されている。そして、計4か所に形成されている歪検出素子7,8が、配線パターン12により結線されてホイートストンブリッジ回路を構成している。また、取付部2には軸孔2a(図3参照)が穿設されており、この軸孔2aに挿通したボルト9が外部の支持部材10のねじ孔に強い締結力で螺着させてある。つまり、ボルト9の頭部で軸孔2aの周縁部を加圧することにより、取付部2が外部の支持部材10上に固定されている。ただし、軸孔2aの中心Pと開口3内とを通過する直線群が図2中の角度θの範囲内に限定されることを考慮して、この範囲内に歪検出素子7,8を印刷形成し、ボルト9を強く締め付けても歪検出素子7,8の特性に悪影響が及ばないようにしてある。
【0013】
この荷重センサは、受圧部6の先端部の荷重点6aに荷重が印加されると、肉薄な各起歪部4が撓む。このとき、各起歪部4は緩やかなS字形状に撓んで、取付部2の近傍と連結部5の近傍とが逆向きの曲げモーメントを発生するので、取付部2の近傍の歪検出素子7は引っ張り応力を検出し、連結部5の近傍の歪検出素子8は圧縮応力を検出する。したがって、これら歪検出素子7,8により検出した歪の大きさから、荷重点6aに作用している荷重を高精度に求めることができる。しかも、この荷重センサの場合、荷重点6aから歪検出素子7までの距離と歪検出素子8までの距離とが略同等に設定してあるので、歪検出素子7の検出する引っ張り応力の値と歪検出素子8の検出する圧縮応力の値とが略同等になる。それゆえ、歪検出素子7,8を含むホイートストンブリッジ回路は簡素な構成となっている。
【0014】
上述したように、本実施形態例においては、荷重点6aを有する受圧部6の先端部を予め開口3内に没入させてあるので、絶縁コート層11や配線パターン12を印刷形成する際の加熱工程で舌状の受圧部6に反りが生じた場合にも、受圧部6の先端部が起歪部4の印刷面を含む平面B(図1参照)よりも上に位置してしまうことはなく、それゆえ、受圧部6の反りに起因する歪検出素子7,8の印刷不良が発生する心配はない。すなわち、歪検出素子7,8は受圧部6に干渉されることなく常に円滑に印刷することができ、製造歩留まりが向上し、歪検出素子7,8のセンシング精度が損なわれる心配もない。また、本実施形態例では、各起歪部4上に印刷形成された歪検出素子7,8と取付部2の軸孔2aの中心Pとの間に開口3の一部が介在するように設計してあるので、軸孔2aの周縁部を加圧するボルト9の強い締め付け力に起因するゆがみが、開口3に遮られて歪検出素子7,8には直接影響しないように配慮されている。その結果、歪検出素子7,8の特性が製品ごとにばらつかず、信頼性の高い荷重センサとなっている。
【0015】
なお、本実施形態例では受圧部6の板厚を先端側が漸次肉薄となるように形成しているが、図4に示すように、板厚が一様な受圧部6を起歪部4の印刷面を含む平面Bから漸次離反するように折曲させることにより、受圧部6の先端部を予め該平面Bよりも下に位置させておく構成としてもよい。
【0016】
また、本実施形態例では、ベース体1が金属板からなる場合について説明しているが、ベース体1が絶縁基板であってもよく、その場合、ベース体1上に絶縁コート層11を形成する必要はなくなる。
【0017】
次に、図5〜図7に示す第2の実施形態例について説明すると、これらの図に示す荷重センサでは、舌状の受圧部6の表裏両面を傾斜面となし、板厚がくさび状に先細りの受圧部6を開口3内に突出させている。したがって、この受圧部6の先端部も第1の実施形態例と同様に、荷重が印加されていない無負荷状態で開口3内に没入した位置に配置されることになり、製造時の加熱工程で受圧部6に反りが生じたとしても、受圧部6の先端部が、起歪部4の印刷面よりも上に位置して歪検出素子7,8の印刷に支障をきたす恐れはない。
【0018】
なお、この第2の実施形態例では、ベース体1の形状が第1の実施形態例と若干異なっている。すなわち、図5,6に示すベース体1では、各起歪部4が長手方向中間部でくびれた形状にしてある。このような形状にすると、荷重が印加されたときに各起歪部4が大きく撓んで、歪検出素子7,8が大きな歪を検出することになるので、検出精度を一層向上させることができる。
【0019】
次に、図8,9に示す第3の実施形態例について説明する。これらの図に示す荷重センサでは、舌状の受圧部6の板厚が基端側(連結部5側)のみで厚く、他はすべて肉薄に形成されている。したがって、この受圧部6も第1および第2の実施形態例と同様に、荷重が印加されていない無負荷状態で、受圧部6の先端部が開口3内に没入した位置に配置されることになり、受圧部6の反りに起因する歪検出素子7,8の印刷不良が回避できる。
【0020】
また、図10に示す変形例のように、受圧部6の先端部の表裏両面に板厚方向へ突出する突起6b,6cを設け、これらの突起6b,6cの頂部を荷重点6aとなしておけば、表裏いずれの側にある測定対象物にも対応させることができるので、荷重センサの使い勝手が向上すると共に、測定対象物と荷重センサとの相対位置が板面方向に多少ずれても、測定対象物の荷重を確実に荷重点6aに加えることができるので、荷重センサの取付位置に若干の誤差があっても動作不良が回避しやすくなる。
【0021】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0022】
荷重点を有する受圧部の先端部を予め起歪部の印刷面を含む平面よりも板厚方向下側に位置させたため、製造時の加熱工程で受圧部に反りが生じた場合にも、受圧部の先端部が起歪部の印刷面よりも上に位置してしまうことはなく、それゆえ受圧部の反りに起因する歪検出素子の印刷不良が回避でき、品質の安定化や製造歩留まりの向上が図れる荷重センサを提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態例に係る荷重センサの側面図である。
【図2】図1に示す荷重センサの平面図である。
【図3】図1,2に示す荷重センサの製造時の印刷工程図である。
【図4】図1〜図3に示す受圧部の変形例を示す断面図である。
【図5】本発明の第2の実施形態例に係る荷重センサの斜視図である。
【図6】図5に示す荷重センサの要部平面図である。
【図7】図6のC−C線に沿う断面図である。
【図8】本発明の第3の実施形態例に係る荷重センサの斜視図である。
【図9】図8に示す荷重センサの受圧部の断面図である。
【図10】図8,9に示す受圧部の変形例を示す断面図である。
【図11】従来例に係る荷重センサの平面図である。
【図12】図11のA−A線に沿う断面図である。
【符号の説明】
1 ベース体
2 取付部
2a 軸孔
3 開口
4 起歪部
5 連結部
6 受圧部
6a 荷重点
7,8 歪検出素子
9 ボルト
10 支持部材
11 絶縁コート層
12 配線パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a load sensor that detects a load applied to a load point of a pressure receiving portion by a bending state of a strain generating portion provided with a strain detecting element, and particularly relates to a load sensor in which the strain detecting element is printed and formed on the strain generating portion. .
[0002]
[Prior art]
FIG. 11 is a plan view showing the prior art of this type of load sensor, and FIG. 12 is a sectional view taken along the line AA of FIG. In these drawings, reference numeral 1 generally indicates a base body of the load sensor. The base body 1 is formed by processing a single metal plate, and includes a mounting end 2 on a fixed end side, a pair of strain-generating portions 4 extending from both sides of the opening 3 adjacent to the mounting portion 2, and these It comprises a connecting part 5 that connects the free ends of both strain-generating parts 4 and a pressure receiving part 6 that projects from the connecting part 5 into the opening 3 in a tongue shape.
[0003]
One surface of the base body 1 is a flat printing surface, and an insulating coat layer and a wiring pattern (not shown) are printed on the printing surface. In addition, each strain generating portion 4 is formed thin in a portion 4a close to the attachment portion 2 and a portion 4b close to the connecting portion 5, and on the insulating coat layer on the thin portions 4a and 4b, respectively. The strain detection elements 7 and 8 made of thick film resistors are printed. The strain detection elements 7 and 8 arranged in a total of four locations are connected by the wiring pattern to constitute a Wheatstone bridge circuit. A pair of shaft holes 2a are formed in the mounting portion 2, and bolts 9 are inserted into the respective shaft holes 2a. By pressurizing the peripheral portion of the shaft hole 2a with the head of the bolt 9, The attachment portion 2 is fixed on an external support member 10. A load point 6a is provided at the tip of the tongue-shaped pressure receiving portion 6. When a load is applied to the load point 6a from the outside, the thin portions 4a and 4b of the strain-generating portions 4 are opposed to each other. A bending moment is generated, and each strain generating portion 4 is bent into a gentle S-shape. That is, when a load is applied to the load point 6a from above, the thin portion 4a near the mounting portion 2 in the strain generating portion 4 bends to a convex shape upward, but the thin portion 4b close to the connecting portion 5 is below Therefore, the strain detecting element 7 on the part 4a detects tensile stress, and the strain detecting element 8 on the part 4b detects compressive stress. Thus, if the distortion which generate | occur | produces in the strain generation part 4 is detected by the strain detection elements 7 and 8, the load which is acting on the load point 6a can be calculated | required from the magnitude | size of the distortion.
[0004]
A load sensor configured to apply a load to the tip of a cantilevered plate-like member on which a strain detection element is mounted is also known, but this sensor has a plurality of locations that generate reverse bending moments. Therefore, it is difficult to improve the accuracy as compared with the above-described configuration.
[0005]
[Problems to be solved by the invention]
The conventional load sensor as shown in FIGS. 11 and 12 is manufactured by printing and forming a wiring pattern, strain detection elements 7 and 8 on the flat printed surface of the base body 1, and is easy to mass-produce and cost-effective. It is suitable for. However, since the printing surface side of the base body 1 including the pressure receiving portion 6 is designed to be located in the same plane, the tongue-shaped pressure receiving portion 6 is warped in the heating process when a wiring pattern or the like is printed. In some cases, the tip of the pressure receiving portion 6 having the load point 6a is positioned above the printing surface. In that case, the strain detection elements 7 and 8 cannot be smoothly printed due to interference with the tip of the pressure receiving portion 6, so that the sensing accuracy may be impaired, and the manufacturing yield is likely to decrease.
[0006]
The present invention has been made in view of the situation of the prior art as described above, and its purpose is to avoid printing defects of the strain detection element due to warping of the pressure receiving portion, to stabilize quality and to improve manufacturing yield. It is to provide a suitable load sensor.
[0007]
[Means for Solving the Problems]
As a means for achieving the above-described object, the present invention provides an attachment portion on one end side fixed to an external device, an opening adjacent to the attachment portion, and the other end from the attachment portion along the side edge of the opening. A strain-generating portion extending to the side and having at least one surface formed as a flat printing surface; a pressure receiving portion connected to the strain-generating portion on the other end side and protruding in a tongue shape into the opening; and A strain detecting element that is printed on the printing surface and detects a strain of the strain-generating portion generated according to a load applied to the pressure receiving portion, and in a state where no load is applied to the pressure receiving portion, The front end portion of the pressure receiving portion is configured to be located on the lower side in the plate thickness direction than the plane including the printing surface.
[0008]
In this way, if the tip of the pressure receiving part having the load point is previously positioned below the plane including the printing surface of the strain generating part in the plate thickness direction, the pressure receiving part is warped in the heating process during manufacturing. Also in this case, since there is no concern that the pressure receiving portion is positioned above the printing surface of the strain generating portion, it is possible to avoid printing failure of the strain detection element due to warping of the pressure receiving portion.
[0009]
In order to lower the tip end of the pressure receiving portion in advance with respect to the plane including the printing surface of the strain generating portion, for example, the plate thickness on the tip end side of the pressure receiving portion is made thinner than the plate thickness on the base end side. Alternatively, the pressure receiving portion having a uniform plate thickness may be bent so that the tip side gradually separates from the plane including the printing surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 is a side view of a load sensor according to a first embodiment, FIG. 2 is a plan view of the load sensor shown in FIG. 1, and FIG. FIG. 4 is a sectional view showing a modification of the pressure receiving portion shown in FIGS. 1 to 3, and FIG. 5 is a perspective view of the load sensor according to the second embodiment. FIG. 6, FIG. 6 is a plan view of an essential part of the load sensor shown in FIG. 5, FIG. 7 is a sectional view taken along the line CC of FIG. 6, and FIG. 8 is a perspective view of the load sensor according to the third embodiment. 9 is a sectional view of the pressure receiving portion of the load sensor shown in FIG. 8, and FIG. 10 is a sectional view showing a modification of the pressure receiving portion shown in FIGS. In these drawings, parts corresponding to those in FIGS. 11 and 12 used for explaining the prior art are denoted by the same reference numerals.
[0011]
First, the first embodiment will be described with reference to FIGS. 1 to 3. Reference numeral 1 in the figure denotes a load sensor base body, 11 denotes an insulating coating layer printed on the base body 1, and 12 denotes A wiring pattern printed on the insulating coating layer 11 is shown. The base body 1 is obtained by processing a single metal plate such as SUS, and includes a mounting portion 2 on the fixed end side, and a pair of strain generating portions 4 extending from both sides of the opening 3 adjacent to the mounting portion 2. The connecting portion 5 that connects the free ends of the two strain-generating portions 4 and the pressure receiving portion 6 that protrudes in a tongue shape from the connecting portion 5 into the opening 3, the tip of the pressure receiving portion 6 is The load point 6a is applied with the load of the measurement object. As shown in FIG. 1, the pressure receiving portion 6 is formed so that the tip side is gradually thinned by making the surface on which the load point 6a is provided an inclined surface, and therefore no load is applied. In the unloaded state, the tip of the pressure receiving portion 6 is disposed at a position immersed in the opening 3. Further, in the base body 1, each strain-generating portion 4 is formed thinner than the other portions and is easily bent.
[0012]
As shown in FIG. 3 (a), an insulating coat layer 11 is printed on one surface (the upper surface of FIG. 1) of the base body 1, and as shown in FIG. 3 (b), the insulating coat layer 11 is printed. A wiring pattern 12 is printed on the top. Further, as shown in FIG. 3C, strain detection elements 7 and 8 made of thick film resistors are printed at predetermined positions on each strain generating portion 4. The strain detection elements 7 and 8 formed in a total of four locations are connected by the wiring pattern 12 to constitute a Wheatstone bridge circuit. Further, a shaft hole 2a (see FIG. 3) is formed in the mounting portion 2, and a bolt 9 inserted through the shaft hole 2a is screwed into the screw hole of the external support member 10 with a strong fastening force. . That is, the attachment portion 2 is fixed on the external support member 10 by pressurizing the peripheral portion of the shaft hole 2 a with the head of the bolt 9. However, considering that the straight line group passing through the center P of the shaft hole 2a and the opening 3 is limited to the range of the angle θ in FIG. 2, the strain detection elements 7 and 8 are printed in this range. Even if the bolts 9 are formed and tightened strongly, the characteristics of the strain detection elements 7 and 8 are not adversely affected.
[0013]
In this load sensor, when a load is applied to the load point 6a at the tip of the pressure receiving portion 6, each thin strain-generating portion 4 bends. At this time, each strain generating portion 4 is bent into a gentle S-shape, and a bending moment is generated in the vicinity of the mounting portion 2 and the vicinity of the connecting portion 5, so that the strain detecting element in the vicinity of the mounting portion 2 7 detects tensile stress, and the strain detection element 8 in the vicinity of the connecting portion 5 detects compressive stress. Therefore, the load acting on the load point 6a can be obtained with high accuracy from the magnitude of the strain detected by the strain detection elements 7 and 8. In addition, in the case of this load sensor, the distance from the load point 6a to the strain detection element 7 and the distance to the strain detection element 8 are set to be approximately equal, so that the value of the tensile stress detected by the strain detection element 7 is The value of the compressive stress detected by the strain detection element 8 is substantially the same. Therefore, the Wheatstone bridge circuit including the strain detection elements 7 and 8 has a simple configuration.
[0014]
As described above, in the present embodiment, the tip portion of the pressure receiving portion 6 having the load point 6a is immersed in the opening 3 in advance, so that heating when the insulating coat layer 11 and the wiring pattern 12 are formed by printing is performed. Even when the tongue-shaped pressure receiving portion 6 is warped in the process, the tip of the pressure receiving portion 6 is positioned above the plane B (see FIG. 1) including the printing surface of the strain generating portion 4. Therefore, there is no concern that printing defects of the strain detection elements 7 and 8 due to warping of the pressure receiving portion 6 will occur. That is, the strain detection elements 7 and 8 can always be printed smoothly without being interfered with the pressure receiving portion 6, the manufacturing yield is improved, and there is no fear that the sensing accuracy of the strain detection elements 7 and 8 is impaired. Further, in this embodiment, a part of the opening 3 is interposed between the strain detection elements 7 and 8 printed on each strain generating portion 4 and the center P of the shaft hole 2a of the mounting portion 2. Since it is designed, it is considered that the distortion caused by the strong tightening force of the bolt 9 that presses the peripheral edge of the shaft hole 2a is blocked by the opening 3 and does not directly affect the strain detection elements 7 and 8. . As a result, the characteristics of the strain detection elements 7 and 8 do not vary from product to product, and the load sensor is highly reliable.
[0015]
In this embodiment, the thickness of the pressure receiving portion 6 is formed so that the tip side is gradually thinner. However, as shown in FIG. It is good also as a structure which positions the front-end | tip part of the pressure receiving part 6 below the plane B beforehand by making it bend so that it may gradually separate from the plane B containing a printing surface.
[0016]
In this embodiment, the case where the base body 1 is made of a metal plate has been described. However, the base body 1 may be an insulating substrate, and in this case, the insulating coat layer 11 is formed on the base body 1. There is no need to do it.
[0017]
Next, the second embodiment shown in FIGS. 5 to 7 will be described. In the load sensor shown in these drawings, the front and back surfaces of the tongue-shaped pressure receiving portion 6 are inclined surfaces, and the plate thickness is wedge-shaped. A tapered pressure receiving portion 6 is projected into the opening 3. Accordingly, the tip portion of the pressure receiving portion 6 is also disposed at a position immersed in the opening 3 in a no-load state where no load is applied, as in the first embodiment, and a heating process during manufacturing is performed. Even if the pressure receiving portion 6 is warped, the tip portion of the pressure receiving portion 6 is located above the printing surface of the strain generating portion 4 and there is no possibility that the printing of the strain detecting elements 7 and 8 will be hindered.
[0018]
In the second embodiment, the shape of the base body 1 is slightly different from that in the first embodiment. That is, in the base body 1 shown in FIGS. 5 and 6, each strain generating portion 4 is constricted at the middle portion in the longitudinal direction. With such a shape, when the load is applied, each strain generating portion 4 is greatly bent and the strain detection elements 7 and 8 detect a large strain, so that the detection accuracy can be further improved. .
[0019]
Next, a third embodiment shown in FIGS. 8 and 9 will be described. In the load sensors shown in these figures, the plate-like pressure receiving portion 6 is thick only on the base end side (connecting portion 5 side), and all others are thin. Therefore, similarly to the first and second embodiments, the pressure receiving portion 6 is disposed at a position where the tip end of the pressure receiving portion 6 is immersed in the opening 3 in a no-load state where no load is applied. Thus, printing defects of the strain detection elements 7 and 8 due to the warp of the pressure receiving portion 6 can be avoided.
[0020]
Further, as in the modification shown in FIG. 10, projections 6b and 6c projecting in the thickness direction are provided on both the front and back surfaces of the tip of the pressure receiving portion 6, and the tops of these projections 6b and 6c serve as load points 6a. If it is possible, it can correspond to the measurement object on either side of the front and back, so the usability of the load sensor is improved, and even if the relative position of the measurement object and the load sensor is slightly shifted in the plate surface direction, Since the load of the measurement object can be reliably applied to the load point 6a, it is easy to avoid malfunction even if there is a slight error in the load sensor mounting position.
[0021]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0022]
Since the tip of the pressure receiving part having the load point is positioned in advance in the thickness direction lower than the plane including the printing surface of the strain generating part, the pressure receiving part can be received even when the pressure receiving part warps during the heating process during manufacturing. The tip of the part is not positioned above the printing surface of the strain generating part, and therefore printing failure of the strain detecting element due to warping of the pressure receiving part can be avoided, and the quality is stabilized and the production yield is reduced. A load sensor that can be improved can be provided.
[Brief description of the drawings]
FIG. 1 is a side view of a load sensor according to a first embodiment of the present invention.
FIG. 2 is a plan view of the load sensor shown in FIG.
FIG. 3 is a printing process diagram at the time of manufacturing the load sensor shown in FIGS.
4 is a cross-sectional view showing a modification of the pressure receiving portion shown in FIGS. 1 to 3. FIG.
FIG. 5 is a perspective view of a load sensor according to a second embodiment of the present invention.
6 is a plan view of the main part of the load sensor shown in FIG. 5. FIG.
7 is a cross-sectional view taken along the line CC of FIG.
FIG. 8 is a perspective view of a load sensor according to a third embodiment of the present invention.
9 is a cross-sectional view of a pressure receiving portion of the load sensor shown in FIG.
FIG. 10 is a cross-sectional view showing a modification of the pressure receiving portion shown in FIGS.
FIG. 11 is a plan view of a load sensor according to a conventional example.
12 is a cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base body 2 Attachment part 2a Shaft hole 3 Opening 4 Strain part 5 Connection part 6 Pressure receiving part 6a Load point 7,8 Strain detection element 9 Bolt 10 Support member 11 Insulation coat layer 12 Wiring pattern

Claims (3)

外部機器に固定される一端側の取付部と、この取付部に隣接する開口と、前記取付部から前記開口の側縁に沿って他端側へ延び、少なくとも片面を平坦な印刷面となした起歪部と、前記他端側で前記起歪部に連結されて前記開口内へ舌状に突出する受圧部と、前記起歪部の前記印刷面に印刷形成され、前記受圧部に印加される荷重に応じて生じる該起歪部の歪を検出する歪検出素子とを備え、前記受圧部に荷重が印加されていない状態で、該受圧部の先端部が前記印刷面を含む平面よりも板厚方向下側に位置するように構成したことを特徴とする荷重センサ。A mounting portion on one end fixed to an external device, an opening adjacent to the mounting portion, and extending from the mounting portion to the other end side along the side edge of the opening, at least one surface being a flat printing surface A strain generating portion, a pressure receiving portion connected to the strain generating portion on the other end side and protruding in a tongue shape into the opening, printed on the printing surface of the strain generating portion, and applied to the pressure receiving portion A strain detecting element for detecting the strain of the strain generating portion generated according to the load to be applied, and in a state where no load is applied to the pressure receiving portion, the tip portion of the pressure receiving portion is more than a plane including the printing surface. A load sensor configured to be positioned on the lower side in the thickness direction. 請求項1の記載において、前記受圧部をその先端側の板厚が基端側の板厚よりも薄い形状にしたことを特徴とする荷重センサ。2. The load sensor according to claim 1, wherein the pressure receiving portion has a shape in which a plate thickness on a distal end side thereof is thinner than a plate thickness on a proximal end side. 請求項1の記載において、前記受圧部をその先端側が前記印刷面を含む平面から漸次離反するように折曲させたことを特徴とする荷重センサ。2. The load sensor according to claim 1, wherein the pressure receiving portion is bent so that a tip end side thereof is gradually separated from a plane including the printing surface.
JP2001001676A 2000-11-30 2001-01-09 Load sensor Expired - Lifetime JP3853157B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001001676A JP3853157B2 (en) 2001-01-09 2001-01-09 Load sensor
US10/004,902 US6634235B2 (en) 2000-11-30 2001-11-07 Load sensor with strain-sensing elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001676A JP3853157B2 (en) 2001-01-09 2001-01-09 Load sensor

Publications (2)

Publication Number Publication Date
JP2002206974A JP2002206974A (en) 2002-07-26
JP3853157B2 true JP3853157B2 (en) 2006-12-06

Family

ID=18870291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001676A Expired - Lifetime JP3853157B2 (en) 2000-11-30 2001-01-09 Load sensor

Country Status (1)

Country Link
JP (1) JP3853157B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728745B2 (en) * 2013-03-27 2015-06-03 株式会社タニタ Straining body, load cell and weight measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191527A (en) * 1981-05-21 1982-11-25 Toshiba Corp Load cell
US5510581A (en) * 1994-05-18 1996-04-23 Angel; Shlomo Mass-produced flat multiple-beam load cell and scales incorporating it

Also Published As

Publication number Publication date
JP2002206974A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
EP1189045B1 (en) Load sensor equipped with platelike strain-generating member having strain elements
US9257632B2 (en) Physical quantity sensor and process for production thereof
US6062088A (en) Pressure sensor
KR100345645B1 (en) pressure sensor
JP2656566B2 (en) Semiconductor pressure transducer
US6097821A (en) Electrostatic capacitance type transducer
US20210035543A1 (en) Electronic cymbal and bell part sensor installation method
JP3853157B2 (en) Load sensor
JPH04315056A (en) Acceleration sensor
US20020062700A1 (en) Load sensor with strain-sensing elements
JPH09269258A (en) Load cell
JP2001337105A (en) Semiconductor acceleration sensor
JP3771439B2 (en) Load sensor
JP6878668B2 (en) Force sensor
JP3308368B2 (en) 3-axis piezoelectric acceleration sensor
JPH05340955A (en) Acceleration sensor
JP2001074569A (en) Planar capacitance type twist strain sensor
JP3357794B2 (en) Strain sensor
JP4072472B2 (en) Probe card
JPWO2024095460A5 (en)
US6421206B1 (en) Vertical force and stiffness enhanced disk drive suspension and method
JP2006214962A (en) Array type contact pressure sensor
JP2005516377A5 (en)
JP2010071817A (en) Semiconductor sensor built-in package
JPH0719978A (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6