JP3852496B2 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP3852496B2
JP3852496B2 JP04541097A JP4541097A JP3852496B2 JP 3852496 B2 JP3852496 B2 JP 3852496B2 JP 04541097 A JP04541097 A JP 04541097A JP 4541097 A JP4541097 A JP 4541097A JP 3852496 B2 JP3852496 B2 JP 3852496B2
Authority
JP
Japan
Prior art keywords
coupling member
scroll
support member
fixed
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04541097A
Other languages
Japanese (ja)
Other versions
JPH10238465A (en
Inventor
周二 茂木
伸治 中島
浩史 中島
昌之 角田
喜英 小川
文昭 佐野
清春 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04541097A priority Critical patent/JP3852496B2/en
Publication of JPH10238465A publication Critical patent/JPH10238465A/en
Application granted granted Critical
Publication of JP3852496B2 publication Critical patent/JP3852496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、空調用、冷凍用、冷蔵庫用のスクロール圧縮機に関するものである。
【0002】
【従来の技術】
図8は例えば特開昭59-177783号公報に示された密閉形圧縮機を示す構成図である。図8において、17は内部に圧縮要素、電動機(図示せず)等を収納する支持部材であり、外周部は結合部材18とボルト30により固定されている。結合部材18は外周部で密閉容器7の内壁に取り付けてある固定台32にボルト31により固定されている。13は密閉容器7に固定され、圧縮される前の低圧冷媒ガスを密閉容器7内に導く吸入管であり、14は密閉容器7及び支持部材17に固定され、圧縮された後の高圧冷媒ガスを密閉容器7外に排出する吐出管である。
次に運転時の動作について説明する。電動機によって発生する駆動トルクは、圧縮要素を駆動し、冷媒ガスの圧縮行程が行われる。そして吸入管13から吸入された低圧の冷媒ガスは圧縮要素で圧縮され、高圧となった冷媒ガスは吐出管14から密閉容器7外に排出される。
【0003】
ところで、圧縮機運転中は支持部材17の内部の圧縮要素、電動機に作用する力により振動が発生し、支持部材17、結合部材18、密閉容器7へと伝達し、密閉容器7から騒音が発生する。この騒音発生を抑制する為には、騒音で問題となる周波数成分の振動が結合部材18で減衰する様に結合部材18の形状および固定方法を設定する必要があり、その為には、支持部材17と支持部材17に重量が作用する全ての部品と結合部材18を合わせた系の共振周波数を問題となる周波数以下に設定する必要がある。しかし、共振周波数を下げる為に結合部材18の弾性率を下げる必要があり、結合部材18の剛性を下げる必要があるが、剛性を下げると運転中の結合部材18の強度が低下してしまい、運転中に結合部材18が破損してしまうおそれがある為、困難である。また、結合部材18の剛性を下げると、圧縮機運転中の結合部材18の変形量が大きくなり、密閉容器7と支持部材17の変位差により、密閉容器7および支持部材17に固定されている吐出管14は密閉容器7および支持部材17から反力を受ける。従って、運転中の吐出管14の強度を保持させる為、密閉容器7内で吐出管14を湾曲させて許容変形量を増加させる必要があるので、吐出管14の材料、形成、組立コストが増加してしまう。さらに、結合部材18の取り付けには、ボルト30、31を使用しているので、結合部材18を密閉容器7および支持部材17に固定する為の加工、組立コストが増加してしまい、さらには、運転中の支持部材17から受ける力や落下時の衝撃力によりボルト固定部で固定部品がずれたり、ボルトがゆるんでしまう等の危険もある。
【0004】
【発明が解決しようとする課題】
従来の技術に示した密閉形圧縮機は以上のように構成されているので、圧縮機運転中に問題となる騒音の周波数成分の振動を結合部材で減衰させる為に結合部材の剛性を下げる事は、結合部材の強度の低下による結合部材破損のおそれがある為に困難であり、さらに、運転中の吐出管の強度を保つ為、密閉容器内で吐出管を湾曲させる必要がある為、吐出管の材料、形成、組立コストが増加してしまい、また、結合部材を密閉容器および支持部材にボルト固定する為に、加工、組立コストが増加してしまい、運転中の支持部材から受ける力や落下時の衝撃力によりボルト固定部で固定部品がずれたり、ボルトがゆるんでしまう危険があるなどの問題点があった。
本発明は上記のような問題点を解消するためになされたもので、騒音で問題となる周波数成分の振動を結合部材で減衰させる構造を可能とし、かつ、結合部材が破損することなくまた変形量を小さくでき、よって吐出管の材料、形成、組立コストを低下でき、低コストで信頼性、騒音面で優れたスクロール圧縮機を得ることを目的とする。
【0005】
【課題を解決するための手段】
この発明の第1の発明に係わるスクロ−ル圧縮機は、密閉容器と、固定スクロール及び揺動スクロールを備えた圧縮要素と、電動機及び電動機の駆動力を伝達する主軸を備えた駆動要素と、主軸を支持するフレ−ムと、前記圧縮要素、前記駆動要素及び前記フレ−ムを支持する支持部材と、前記支持部材と前記密閉容器とを連結し、複数の軸方向の切欠きを有し、所定の厚さと所定の長さの中空円筒形状の結合部材とを有するものである。
【0006】
また、この発明の第2の発明に係わるスクロ−ル圧縮機は、密閉容器と、固定スクロール及び揺動スクロールを備えた圧縮要素と、電動機及び電動機の駆動力を伝達する主軸を備えた駆動要素と、主軸を支持するフレ−ムと、前記圧縮要素、前記駆動要素及び前記フレ−ムを支持する支持部材と、前記支持部材と前記密閉容器とを連結する結合部材と、前記密閉容器に固定され、前記固定スクロールあるいは固定スクロールに固定されている部品にシ−ル材を介して密封シ−ルされ、前記固定スクロールから吐出されるガスを前記密閉容器外に導く吐出管とを備えたスクロール圧縮機において、圧縮機運転中に前記密閉容器の振動周波数を低下し、かつ、前記密閉容器からの反力が前記吐出管に作用しないように前記結合部材の形状および固定方法を設定したものである。
【0007】
また、この発明の第3の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、支持部材の軸方向のほぼ重心位置に結合部材を取付けたものである。
【0008】
また、この発明の第4の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、支持部材の振動の共振周波数が1KHZ以下となるように結合部材の形状を決定したものである。
【0009】
また、この発明の第5の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、圧縮機として許容すべき落下、転倒時等の衝撃加速度に対し結合部材の発生応力を材料降伏点以下におさえるような結合部材の切欠の幅と長さを設定したものである。
【0010】
また、この発明の第6の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、支持部材と結合部材の固定及び密閉容器と前記結合部材の固定のうち少なくとも一方は圧入、焼きばめ又は溶接によって固定したものである。
【0011】
【発明の実施の形態】
実施の形態1.
図1はこの発明のスクロール圧縮機の実施の形態1の構成図である。図1において、1は固定スクロールであり、台板部1aの外周部はフレーム4に固定されており、フレーム4の外周部は支持部材17に焼ばめによって固着されている。固定スクロール1の台板部1aの中心付近には吐出ポート1cが形成されており、台板部1aの片側には板状渦巻歯1bが形成されている。2は揺動スクロールであり、台板部2aの片側には固定スクロールの板状渦巻歯と実質的に同一形状の板状渦巻歯2bを形成している。揺動スクロール2の台板部2aの板状渦巻歯2bと反対側の中心部には中空円筒状のボス部を形成しており、その中空円筒状ボス部には軸受2cを形成している。また、揺動スクロール2の台板部2aの前記中空円筒状ボス部と同じ側の外周側はスラスト面2dを形成しており、フレーム4のスラスト軸受4aと平面接触摺動可能となっている。また、揺動スクロール2のスラスト面2dの外側には1対で2箇所のオルダム案内溝2eが形成されており、オルダムリング12の上爪12aが直線方向摺動自在に係合されている。他方、フレーム4にも、揺動スクロール2のオルダム案内溝2eとおおよそ90゜の位相差をもってオルダム案内溝4bが形成されており、オルダムリング12の下爪12bが直線摺動自在に係合されている。フレーム4の中心部には、電動機10によって駆動される主軸6をラジアル方向に支持する軸受4cを形成している。電動機10は、そのステ−タが支持部材17に固着され、そのロ−タが主軸6に固着されている。電動機10に対しフレーム4と反対側にはサブフレーム15が配置され、中心部には主軸6をラジアル方向に支持する軸受15aを形成しており、外周部は焼きばめにより中空円筒状の支持部材17に固着されている。主軸6の揺動スクロール側端部には、揺動スクロール2の偏心方向と同一方向の平面部を有するピン部6aが形成されており、内側面に平面部を有するスライダ5が主軸6のピン部6aに係合されている。スライダ5の外側面は円筒形状であり、揺動スクロール2の軸受2cに回転自在に係合されている。固定スクロール1の板状渦巻歯1bと反対側には吐出マフラー8が配置されており、外周部は固定スクロール1固定されている。また、固定スクロール1の板状渦巻歯1bの先端と揺動スクロール2の台板部2a及び固定スクロール1の台板部1aと揺動スクロール2の板状渦巻歯2bの先端は組立時に所定の微小隙間になるよう設定されている。13は密閉容器7に気密固定され、圧縮される前の低圧冷媒ガスを密閉容器7内に導く吸入管であり、14は密閉容器7に気密固定され、圧縮された後の高圧冷媒ガスを密閉容器7外に排出する吐出管である。また、図2に示す通り、吐出管14は吐出マフラー8内に所定の隙間を保持して挿入されており、挿入部のシール溝14aには弾性作用のあるシール材16が組み込まれていて、吐出マフラー8内外の高低圧をシールしている。18は支持部材17と密閉容器7を連結する結合部材であり、結合部材18の密閉容器固定部18bで密閉容器7の内周部と圧入あるいは焼きばめあるいは溶接により固着されており、結合部材18の支持部材固定部18cで支持部材17の外周部と圧入あるいは焼きばめあるいは溶接により固着されている。
但し、吐出管14は、吐出マフラ−8がない場合は、固定スクロ−ル1の台板1aにシ−ル材を介して密封シ−ルし、吐出ポ−ト1cと連通するようにしてもよい。
【0012】
電動機10によって発生する駆動トルクは、主軸6を介して公転運動を行うスライダ5へと伝達される。スライダ5に伝達された駆動トルクは、軸受2cを介して揺動スクロール2を駆動し、揺動スクロール2は、オルダムリング12によってフレーム4に対しての自転ひいては固定スクロール1に対しての自転を拘束されているので、固定スクロール1に対して揺動運動を行う。そして、吸入管13から吸入された低圧の冷媒ガスは、固定スクロール1に形成された板状渦巻歯1bと揺動スクロール2に形成された板状渦巻歯2bとがかみ合って形成される一対の三ケ月状の圧縮室22に取り込まれ、この三ケ月状の圧縮室が相似的に容積を減少していくことで圧縮動作が実現する。さらに、圧縮された高圧の冷媒ガスは、固定スクロール1の吐出ポート1cを通り吐出マフラー8内に開放され、その後吐出管14から密閉容器7外に排出される。また、主軸6のピン部6aの平面部とスライダ5の内側面の平面部とは揺動スクロール2の偏心方向に直線摺動自在であるので、揺動スクロール2に遠心力等の所定の力が偏心方向に作用することで、揺動スクロール2は固定スクロール1に半径方向に押し付けられ、揺動スクロール2の板状渦巻歯2bの側面と固定スクロール1の板状渦巻歯1bの側面に隙間が生じる事を防止する。
【0013】
また、スクロール圧縮機運転中は、圧縮室22内では冷媒ガスの圧縮行程による圧力変化及び高周波成分の圧力波の発生により、固定スクロール1と揺動スクロール2にはラジアル方向、回転方向、軸方向に変動する力が作用する。さらに、固定スクロール1の板状渦巻歯1bの側面と揺動スクロール2の板状渦巻歯2bの側面はスライダ5により所定の力で押し付けられる。これら固定スクロール1と揺動スクロール2に作用する力により、固定スクロール1と揺動スクロール2には振動が発生する。また、揺動スクロール2の軸受2c、フレーム4の軸受4c、サブフレーム15の軸受15aには主軸6によりラジアル方向の力が作用する為、揺動スクロール2、フレーム4、サブフレーム15で振動が発生し、さらに電動機10には回転方向の磁気力により振動が発生する。この様にして各部品で振動が発生し、支持部材17、結合部材18、密閉容器7へと伝達し密閉容器7から騒音となって発生する。通常密閉容器7の振動の固有値は1k〜4kHzであり、圧縮機運転中密閉容器7から発生する騒音の中でもこの周波数成分が大きくなる特徴がある。この周波数成分の騒音発生を抑制して騒音値を低減させる為には、支持部材17と支持部材17に重量が作用する全ての部品と結合部材18を合わせた系の軸方向、半径方向、回転方向の振動モードの中で騒音に影響のある方向の振動の共振周波数を1kHz以下にして、この周波数以上の振動を減衰させる必要があり、その為には結合部材18の剛性を下げて、密閉容器7固定部18bと支持部材17固定部18c間の結合部材18の弾性率を所定の値に設定する必要がある。また、結合部材18の剛性を低下させると運転中の結合部材8の変形量が大きくなるが、その変形により吐出管14と吐出マフラー8が接触すると、吐出マフラー8の振動が吐出管14を経て密閉容器7へ伝達し、振動、騒音増大の原因となり、さらに、密閉容器7および吐出マフラー8から受ける反力の為、吐出管14が破損してしまうおそれがある。また、結合部材18の剛性を低下させると、結合部材18の強度の低下による結合部材18の破損のおそれがある。従って、結合部材18の形状は密閉容器7固定部18bと支持部材17固定部18c間の弾性率と運転中の変形量、応力値を考慮して設定する必要がある。
【0014】
結合部材18は図3に示す通り、所定の厚さと長さの中空円筒にして支持部材17と支持部材17に重量が作用する全ての部品と結合部材18を合わせた系の軸方向共振周波数を低下させ、特に1kHz以下とし、さらに、複数個の軸方向の切欠18aを設けて、密閉容器に伝達する振動で最も影響の大きい半径方向共振周波数を低下させ、特に1kHz以下とする形状に設定してある。
一般に中空円筒形状ののように軸に沿った断面形状が同一である弾性体の場合、軸方向の断面積が大きいほど、軸方向の弾性率は増加し、共振周波数は増加する。また、軸方向長さが長いほど、軸方向の弾性率は低下し、共振周波数は低下する。従って、結合部材の場合も外径が同じであるなら、厚さを厚くすると軸方向断面積が増加し、軸方向の共振周波数は増加する。また、密閉容器固定部〜支持部材固定部間の距離を長くすると軸方向の共振周波数は低下する。以上のことから結合部材の軸方向の共振周波数設定のため、中空円筒部の厚さと長さを決定した。
また、一般に弾性体は剛性が高いほど、弾性率(力/変位)が高くなり、共振周波数は高くなる。また、同じ弾性率の場合、重量(質量)が大きいほど共振周波数は低くなる。従って、弾性変形する部分が結合部材だけの場合を考えると切欠等により結合部材の剛性を下げて、密閉容器固定部〜支持部材固定部間の弾性率を下げると共振周波数は低下し、また結合部材と結合部材と一体となって振動する部分(図1で密閉容器7、吸入管13、吐出管14、シ−ル材17以外の部品)の総重量を大きくすると、共振周波数は低下する。以上のことから、結合部材と一体となって振動する部分の重量が決められている場合、結合部材の剛性を変えて、結合部材の共振周波数を設定する。
また、結合部材の切欠の数が多く、幅が長く、長さが長いほど、特に半径方向の剛性が低下し、共振周波数が低下する。それ以外の方向(軸方向、回転方向)の剛性も低下するが、半径方向ほど大きな変化はない。以上のことから結合部材の半径方向の共振周波数設定のため、切欠の数、幅、長さを決定した。
【0015】
また、結合部材18の形状を所定の厚さと長さの中空円筒とし、上記の密閉容器7、支持部材17への固定方法により、結合部材18を、結合部材18に対し運転中に支持部材17から作用する力と圧縮機落下、転倒等の衝撃力に耐えうる強度とし、運転中の結合部材18の変形量を吐出管14と吐出マフラ8が接触しない程度にしているが、共振周波数を低下するために結合部材18の切欠き18aの幅および長さが増加すると半径方向の共振周波数は低下するが、運転中に支持部材17から作用する力および圧縮機落下、転倒時等にかかる衝撃力による結合部材18の変形量と応力値も増加するので、これらを考慮して切欠き18aの幅と長さを設定する。
これら共振周波数、変形量及び強度を満足する結合部材18の形状の決定法の一例を次に記す。
振動する部分の所定の重量に対して、軸方向の共振周波数を低下させ、特に1KHZ以下とするために構造解析により結合部材18の中空円筒の所定の厚さと所定の長さを決定する。
ついで、所定の数量で、所定の長さの切欠きを設定し、結合部材18の径方向の共振周波数を構造解析により、低下させ、特に1KHZ以下に低下させる幅寸法を算出し、また、切欠きによる最大応力部の応力値が材料の降伏点より小となる幅寸法を算出し、強度を確保し、さらに、結合部材18の密閉容器7固定部18bと支持部材17固定部18c間の変形量が吐出管14と吐出マフラ8が接触しない程度とする幅寸法を算出する。かくして、前記三者を満足するものとして、切欠き幅寸法を選定する。
もし、前記の所定の数量、所定の長さで前記の共振周波数、応力値及び変形量を満足させる幅寸法が選定できない場合は、別に所定の数量、所定の長さを設定して幅寸法の選定を行う。
図4は、前記強度に関して幅寸法を選定するもので、横軸に結合部材18の切欠き18aの幅の大きさをとり、縦軸は、切欠き18aの前記所定の数量、所定の長さに対して、構造解析により算出した、圧縮機落下時の結合部材18の切欠き先端部の最大応力部A(図3)の応力を示したもので、結合部材18の切欠き18aの幅は最大応力部Aの応力が材料の降伏点より小となる幅寸法に選定する。
尚、結合部材18の切欠18aの幅に対する構造解析により算出した結合部材18の変形量の関係も図4と同様となり、前記接触が生じない範囲で切欠き幅を選定する。
ついで、上記構造解析により選定した結合部材18にもとずき、実験で共振周波数、強度及び変形量を確認して最終的に決定する。
【0016】
また、支持部材17と支持部材17に重量が作用する全ての部品を合わせた軸方向のほぼ重心位置に結合部材18の内周を固定部18cで固定してあるので、運転中に密閉容器7内で支持部材17が結合部材18から反力を受けても支持部材17の傾きによる変位は増大せず、密閉容器7内での吐出マフラー8の変位量も増大しないので、吐出管14と吐出マフラー8が接触する事を防止すると共に、支持部材17が密閉容器7内でふれ回るモードの振動が減少するので、密閉容器7に伝達する振動が減少する。
【0017】
以上のような結合部材18の形状と結合部材18の密閉容器7、支持部材17への固定方法により、結合部材18を、結合部材18に対し運転中に支持部材17から作用する力と圧縮機落下、転倒時等の衝撃力に耐えうる強度とし、運転中の結合部材18の変形量を吐出管14と吐出マフラー8が接触しない程度にしながらも、支持部材17と支持部材17に重量が作用する全ての部品と結合部材18を合わせた系の軸方向、半径方向の共振周波数を低下させ、特に1kHz以下とすることを可能とした。従って、密閉容器7内で、支持部材17がふれ回るモードの振動が減少し、さらに、図5は上記の如く決定した結合部材18において支持部材固定部18cから受ける力と密閉容器固定部18bに伝わる力の比である減衰率を示した図であるが、図5に示す通り結合部材18における高周波成分の振動の減衰により、1k〜4kHz付近に固有値を持った密閉容器7へ伝達する振動が大幅に減少する。図6は図1の本実施の形態のスクロール圧縮機と同じ冷凍能力を持ち支持部材17と結合部材18がない仕様のスクロール圧縮機の構造図であり、フレーム4とサブフレーム15は直接密閉容器7にアークスポット溶接により固定されており、電動機10はサブフレームに固定されている。また、図7は図1の本実施の形態のスクロール圧縮機と図6のスクロール圧縮機の騒音実測結果を示した図であり、本実施の形態のスクロール圧縮機は図6のスクロール圧縮機と比較して高周波成分の騒音が低下して騒音値が大幅に低減する事が確認されている。また、結合部材18の変形量が小さく抑えられるので、吐出管14と吐出マフラー8が接触せず、吐出管14には密閉容器7からの反力が作用せず、強度を保持させる為に吐出管を湾曲させる必要がなくなり、吐出管の材料、形成、組立コストが低下する。さらに、支持部材17と結合部材18は圧入あるいは焼きばめあるいは溶接により固着されており、密閉容器7と結合部材18も同様に圧入あるいは焼きばめあるいは溶接により固着されているので、支持部材17を結合部材18を介して密閉容器7に固定する際の加工コスト及び組立コストが低減し、取り付けの安定性も大きくなる。
【0018】
なお、支持部材17は、図1では、内部にフレ−ム4、主軸6、電動機10、サブフレ−ム15等を含む略中空円筒状の形状とし、かつ、振動発生及び伝達の要因となる固定スクロ−ル、揺動スクロ−ルを備えた圧縮要素及び電動機、主軸、フレ−ム、サブフレ−ム、軸受を備えた駆動要素の重量が作用するように支持しているが、(図1では、密閉容器7、吸入管13、吐出管14以外の部品の重量が作用するようになっている)形状としては、図1のような略中空円筒形状に限られるものではなく、要するに、振動発生及び伝達要素となる主要な部品の重量が作用するように支持し、即ち、これらの部品の重量が直接密閉容器7に作用しないようにし、かつ、中空円筒形状の結合部材により密閉容器7に結合するようにしたものであればよい。
【0019】
【発明の効果】
以上のように、第1の発明に係わるスクロ−ル圧縮機は、密閉容器と、固定スクロール及び揺動スクロールを備えた圧縮要素と、電動機及び電動機の駆動力を伝達する主軸を備えた駆動要素と、主軸を支持するフレ−ムと、前記圧縮要素、前記駆動要素及び前記フレ−ムを支持する支持部材と、前記支持部材と前記密閉容器とを連結し、複数の軸方向の切欠きを有し、所定の厚さと所定の長さの中空円筒形状の結合部材とを有するようにしたので、圧縮機運転中に問題となる騒音の周波数成分の振動が結合部材で減衰し、密閉容器から発生する騒音が低減できるとともに、結合部材の強度も確保でき信頼性の高いスクロ−ル圧縮機が得られる。
【0020】
また、第2の発明に係わるスクロ−ル圧縮機は、密閉容器と、固定スクロール及び揺動スクロールを備えた圧縮要素と、電動機及び電動機の駆動力を伝達する主軸を備えた駆動要素と、主軸を支持するフレ−ムと、前記圧縮要素、前記駆動要素及び前記フレ−ムを支持する支持部材と、前記支持部材と前記密閉容器とを連結する結合部材と、前記密閉容器に固定され、前記固定スクロールあるいは固定スクロールに固定されている部品にシ−ル材を介して密封シ−ルされ、前記固定スクロールから吐出されるガスを前記密閉容器外に導く吐出管とを備えたスクロール圧縮機において、圧縮機運転中に前記密閉容器の振動周波数を低下し、かつ、前記密閉容器からの反力が前記吐出管に作用しないように前記結合部材の形状および固定方法を設定したので、圧縮機運転中に問題となる騒音の周波数成分の振動が結合部材で減衰し、密閉容器から発生する騒音が低減しながらも、強度を保持させる為に吐出管を湾曲させる必要がなくなり、吐出管の材料、形成、組立コストが低下できるので、低コストで騒音面で優れたスクロール圧縮機が得られる。
【0021】
また、第3の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、支持部材の軸方向のほぼ重心位置に結合部材を取付けたので、運転中に密閉容器内で支持部材が結合部材から反力を受けても支持部材の傾きによる変位は増大せず、密閉容器内での吐出管が密封シ−ルされる固定スクロ−ルまたは固定スクロ−ルに固定されている部品の変位量も増大しないので、吐出管と吐出管が密封シ−ルされる固定スクロ−ルまたは固定スクロ−ルに固定されている部品が接触する事を防止でき、吐出管には反力が作用せず、強度を保持させる為に吐出管を湾曲させる必要がなくなり、吐出管の材料、形成、組立コストが低下するので、低コストで信頼性に優れたスクロール圧縮機が得られる効果があり、さらに、密閉容器内で、支持部材がふれ回るモードの振動が減少し、密閉容器に伝達する振動が減少し、密閉容器から発生する騒音は大幅に低減するので、騒音面で優れたスクロール圧縮機が得られる。
【0022】
また、第4の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、支持部材の振動の共振周波数が1KHZ以下となるように結合部材の形状を決定したので、第1又は第2の発明の効果に加えて、1k〜4kHz付近に固有値を持った密閉容器に伝達する振動の1kHz以上の周波数成分が減衰し、密閉容器から発生する騒音は大幅に低減するので、騒音面で優れたスクロール圧縮機が得られる。
【0023】
また、第5の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、圧縮機として許容すべき落下、転倒時等の衝撃加速度に対し結合部材の発生応力を材料降伏点以下におさえるような結合部材の切欠の幅と長さを設定したので、密閉容器に伝達する振動を減衰させるとともに、圧縮機運転中および圧縮機落下時に結合部材が破損する事もないので、信頼性および騒音面で優れたスクロール圧縮機が得られる。
【0024】
また、第6の発明に係わるスクロ−ル圧縮機は、第1又は第2の発明において、支持部材と結合部材の固定及び密閉容器と前記結合部材の固定のうち少なくとも一方は圧入、焼きばめ又は溶接によって固定したので、第1または第2の発明の効果に加えて、結合部材を支持部材あるいは密閉容器に固定する際の加工コスト及び組立コストが低減し、圧縮機運転中および圧縮機落下時に結合部材のボルト固定部で固定部品がずれてしまう危険性もなくなるので、低コストで信頼性に優れたスクロール圧縮機が得られる。
【図面の簡単な説明】
【図1】 この発明の一実施の形態によるスクロール圧縮機の断面図である。
【図2】 この発明の一実施の形態によるスクロール圧縮機の部分拡大図である。
【図3】 この発明の一実施の形態によるスクロール圧縮機の結合部材を示す斜視図である。
【図4】 この発明の一実施の形態によるスクロール圧縮機の結合部材の形状に対する変位、応力の関係を示す図である。
【図5】 この発明の一実施の形態によるスクロール圧縮機の結合部材の振動伝達特性を示す図である。
【図6】 この発明の一実施の形態によるスクロール圧縮機と比較の為の、同じ容量のスクロール圧縮機の断面図である。
【図7】 この発明の一実施の形態によるスクロール圧縮機の騒音低減効果を示す図である
【図8】 従来のスクロール圧縮機の断面図である。
【符号の説明】
1 固定スクロール、2 揺動スクロール、4 フレーム、6 主軸、7 密閉容器、10 電動機、14 吐出管、16 シール材、17 支持部材、18 結合部材、18a 切欠。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scroll compressor for air conditioning, freezing, and refrigerator.
[0002]
[Prior art]
FIG. 8 is a block diagram showing a hermetic compressor disclosed in, for example, Japanese Patent Laid-Open No. 59-177783. In FIG. 8, reference numeral 17 denotes a support member that accommodates a compression element, an electric motor (not shown), and the like, and an outer peripheral portion is fixed by a coupling member 18 and a bolt 30. The coupling member 18 is fixed by a bolt 31 to a fixing base 32 attached to the inner wall of the sealed container 7 at the outer peripheral portion. Reference numeral 13 denotes a suction pipe that is fixed to the sealed container 7 and guides the low-pressure refrigerant gas before being compressed into the sealed container 7. Reference numeral 14 denotes a high-pressure refrigerant gas that is fixed to the sealed container 7 and the support member 17 and is compressed. Is a discharge pipe that discharges the gas to the outside of the sealed container 7.
Next, the operation during operation will be described. The drive torque generated by the electric motor drives the compression element, and the compression stroke of the refrigerant gas is performed. The low-pressure refrigerant gas sucked from the suction pipe 13 is compressed by the compression element, and the high-pressure refrigerant gas is discharged from the discharge pipe 14 to the outside of the sealed container 7.
[0003]
By the way, during operation of the compressor, vibration is generated by the force acting on the compression element and the electric motor inside the support member 17, and is transmitted to the support member 17, the coupling member 18, and the sealed container 7, and noise is generated from the sealed container 7. To do. In order to suppress the generation of this noise, it is necessary to set the shape and fixing method of the coupling member 18 so that the vibration of the frequency component that causes noise is attenuated by the coupling member 18. It is necessary to set the resonance frequency of the system in which all the parts that are affected by weight 17 and the support member 17 and the coupling member 18 are combined to be lower than the frequency in question. However, in order to lower the resonance frequency, the elastic modulus of the coupling member 18 needs to be lowered, and the rigidity of the coupling member 18 needs to be lowered. However, if the rigidity is lowered, the strength of the coupling member 18 during operation is lowered, This is difficult because the connecting member 18 may be damaged during operation. Further, when the rigidity of the coupling member 18 is lowered, the deformation amount of the coupling member 18 during operation of the compressor increases, and is fixed to the sealed container 7 and the support member 17 due to a difference in displacement between the sealed container 7 and the support member 17. The discharge pipe 14 receives a reaction force from the sealed container 7 and the support member 17. Accordingly, in order to maintain the strength of the discharge pipe 14 during operation, it is necessary to bend the discharge pipe 14 in the sealed container 7 to increase the allowable deformation amount, so that the material, formation, and assembly cost of the discharge pipe 14 increase. Resulting in. Furthermore, since the bolts 30 and 31 are used to attach the coupling member 18, the processing and assembly costs for fixing the coupling member 18 to the sealed container 7 and the support member 17 are increased. There is also a risk that the fixing part is displaced at the bolt fixing part or the bolt is loosened due to the force received from the support member 17 during operation or the impact force at the time of dropping.
[0004]
[Problems to be solved by the invention]
Since the hermetic compressor shown in the prior art is configured as described above, the rigidity of the coupling member is reduced in order to attenuate the vibration of the frequency component of the noise that becomes a problem during compressor operation. Is difficult due to the risk of damage to the coupling member due to a decrease in the strength of the coupling member, and it is necessary to bend the discharge pipe in a sealed container in order to maintain the strength of the discharge pipe during operation. The tube material, formation, and assembly costs increase, and the coupling member is bolted to the sealed container and the support member. This increases the processing and assembly costs, and the force received from the support member during operation. There were problems such as the danger that the fixed parts may be displaced at the bolt fixing part or the bolts may be loosened due to the impact force when dropped.
The present invention has been made to solve the above-described problems, and enables a structure in which vibration of a frequency component that causes a problem with noise is attenuated by a coupling member, and the coupling member is also deformed without being damaged. An object is to obtain a scroll compressor that can reduce the amount, and thus can reduce the material, formation, and assembly cost of the discharge pipe, and is low in cost, reliable, and in terms of noise.
[0005]
[Means for Solving the Problems]
A scroll compressor according to a first aspect of the present invention includes a hermetically sealed container, a compression element having a fixed scroll and an orbiting scroll, a drive element having a main shaft for transmitting a driving force of the motor and the motor, A frame that supports the main shaft, a support member that supports the compression element, the drive element, and the frame, and the support member and the hermetic container are connected to each other, and has a plurality of axial cutouts. And a hollow cylindrical coupling member having a predetermined thickness and a predetermined length.
[0006]
A scroll compressor according to a second aspect of the present invention includes a hermetic container, a compression element having a fixed scroll and an orbiting scroll, and a drive element having a main shaft for transmitting a drive force of the motor and the motor. A frame that supports the main shaft, a support member that supports the compression element, the drive element, and the frame, a coupling member that connects the support member and the sealed container, and is fixed to the sealed container And a scroll having a discharge pipe that guides gas discharged from the fixed scroll to the outside of the hermetic container. In the compressor, the shape and the rigidity of the coupling member are reduced so that the vibration frequency of the sealed container is lowered during the compressor operation and the reaction force from the sealed container does not act on the discharge pipe. The method in which you set.
[0007]
A scroll compressor according to a third aspect of the present invention is the one according to the first or second aspect, wherein the coupling member is attached at substantially the center of gravity in the axial direction of the support member.
[0008]
The scroll compressor according to the fourth aspect of the present invention is the scroll compressor according to the first or second aspect, wherein the shape of the coupling member is determined so that the resonance frequency of the vibration of the support member is 1 KHZ or less. is there.
[0009]
The scroll compressor according to the fifth aspect of the present invention is the first or second aspect of the invention, wherein the stress generated by the coupling member is applied to the impact acceleration when the compressor is allowed to fall or toppling. The width and length of the notch of the coupling member that can be kept below the yield point are set.
[0010]
The scroll compressor according to a sixth aspect of the present invention is the first or second aspect, wherein at least one of the fixing of the support member and the coupling member and the fixing of the sealed container and the coupling member is press-fitted, Fixed by shrink fitting or welding.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of Embodiment 1 of the scroll compressor according to the present invention. In FIG. 1, 1 is a fixed scroll, the outer peripheral part of the baseplate part 1a is being fixed to the flame | frame 4, and the outer peripheral part of the flame | frame 4 is being fixed to the supporting member 17 by shrink fitting. A discharge port 1c is formed near the center of the base plate portion 1a of the fixed scroll 1, and a plate-like spiral tooth 1b is formed on one side of the base plate portion 1a. Reference numeral 2 denotes a swing scroll, and a plate-like spiral tooth 2b having substantially the same shape as the plate-like spiral tooth of the fixed scroll is formed on one side of the base plate portion 2a. A hollow cylindrical boss is formed at the center of the base plate 2a of the orbiting scroll 2 opposite to the plate-like spiral teeth 2b, and a bearing 2c is formed at the hollow cylindrical boss. . A thrust surface 2d is formed on the outer peripheral side of the base plate portion 2a of the orbiting scroll 2 on the same side as the hollow cylindrical boss portion, and can slide in a plane contact with the thrust bearing 4a of the frame 4. . Two pairs of Oldham guide grooves 2e are formed on the outer side of the thrust surface 2d of the orbiting scroll 2, and the upper claws 12a of the Oldham ring 12 are engaged so as to be slidable in the linear direction. On the other hand, the Oldham guide groove 4b is also formed in the frame 4 with a phase difference of about 90 ° with the Oldham guide groove 2e of the orbiting scroll 2, and the lower pawl 12b of the Oldham ring 12 is engaged so as to be linearly slidable. ing. A bearing 4 c that supports the main shaft 6 driven by the electric motor 10 in the radial direction is formed at the center of the frame 4. In the electric motor 10, the stator is fixed to the support member 17, and the rotor is fixed to the main shaft 6. A sub-frame 15 is disposed on the opposite side of the frame 4 with respect to the electric motor 10, a bearing 15a for supporting the main shaft 6 in the radial direction is formed at the center, and the outer peripheral portion is supported by a hollow cylinder by shrink fitting. It is fixed to the member 17. A pin portion 6 a having a plane portion in the same direction as the eccentric direction of the orbiting scroll 2 is formed at the end portion of the main shaft 6 on the orbiting scroll, and the slider 5 having a plane portion on the inner surface is a pin of the main shaft 6. It is engaged with the part 6a. The outer surface of the slider 5 has a cylindrical shape and is rotatably engaged with the bearing 2c of the orbiting scroll 2. A discharge muffler 8 is arranged on the side of the fixed scroll 1 opposite to the plate-like spiral teeth 1b, and the outer periphery is fixed to the fixed scroll 1. The tip of the plate-like spiral tooth 1b of the fixed scroll 1, the base plate portion 2a of the orbiting scroll 2, the base plate portion 1a of the fixed scroll 1, and the tip of the plate-like spiral tooth 2b of the orbiting scroll 2 are predetermined at the time of assembly. It is set to be a minute gap. Reference numeral 13 denotes a suction pipe that is airtightly fixed to the sealed container 7 and guides the low-pressure refrigerant gas before being compressed into the sealed container 7. Reference numeral 14 is airtightly fixed to the sealed container 7 and seals the high-pressure refrigerant gas after being compressed. A discharge pipe that discharges outside the container 7. Further, as shown in FIG. 2, the discharge pipe 14 is inserted into the discharge muffler 8 with a predetermined gap, and a sealing material 16 having an elastic action is incorporated in the seal groove 14a of the insertion portion. The high and low pressure inside and outside the discharge muffler 8 is sealed. Reference numeral 18 denotes a coupling member that couples the support member 17 and the sealed container 7, and is fixed to the inner peripheral portion of the sealed container 7 by press-fitting, shrink fitting, or welding with a sealed container fixing portion 18 b of the coupling member 18. The support member fixing portion 18c is fixed to the outer peripheral portion of the support member 17 by press fitting, shrink fitting, or welding.
However, when the discharge muffler 8 is not provided, the discharge pipe 14 is hermetically sealed to the base plate 1a of the fixed scroll 1 through a seal material so as to communicate with the discharge port 1c. Also good.
[0012]
The driving torque generated by the electric motor 10 is transmitted via the main shaft 6 to the slider 5 that performs a revolving motion. The driving torque transmitted to the slider 5 drives the orbiting scroll 2 via the bearing 2c, and the orbiting scroll 2 rotates by the Oldham ring 12 with respect to the frame 4 and thus with respect to the fixed scroll 1. Since it is restrained, the rocking motion is performed with respect to the fixed scroll 1. The low-pressure refrigerant gas sucked from the suction pipe 13 is paired with the plate-like spiral teeth 1b formed on the fixed scroll 1 and the plate-like spiral teeth 2b formed on the orbiting scroll 2. The crescent-shaped compression chamber 22 is taken in, and the compression operation is realized by reducing the volume of the crescent-shaped compression chamber in a similar manner. Further, the compressed high-pressure refrigerant gas passes through the discharge port 1 c of the fixed scroll 1, is released into the discharge muffler 8, and is then discharged from the discharge pipe 14 to the outside of the sealed container 7. Further, since the plane portion of the pin portion 6a of the main shaft 6 and the plane portion of the inner surface of the slider 5 are linearly slidable in the eccentric direction of the orbiting scroll 2, a predetermined force such as centrifugal force is applied to the orbiting scroll 2. Acts in the eccentric direction so that the orbiting scroll 2 is pressed against the fixed scroll 1 in the radial direction, and a gap is formed between the side surface of the plate-like spiral tooth 2b of the orbiting scroll 2 and the side surface of the plate-like spiral tooth 1b of the fixed scroll 1. To prevent the occurrence of
[0013]
Further, during the operation of the scroll compressor, the fixed scroll 1 and the orbiting scroll 2 have a radial direction, a rotational direction, and an axial direction due to a pressure change caused by the compression stroke of the refrigerant gas and generation of a pressure wave of a high frequency component in the compression chamber 22. A fluctuating force is applied. Further, the side surface of the plate-like spiral tooth 1 b of the fixed scroll 1 and the side surface of the plate-like spiral tooth 2 b of the swing scroll 2 are pressed by the slider 5 with a predetermined force. Due to the force acting on the fixed scroll 1 and the swing scroll 2, vibration is generated in the fixed scroll 1 and the swing scroll 2. Further, since the radial force is applied to the bearing 2c of the orbiting scroll 2, the bearing 4c of the frame 4 and the bearing 15a of the subframe 15 by the main shaft 6, vibration is generated in the orbiting scroll 2, the frame 4 and the subframe 15. Furthermore, vibration is generated in the electric motor 10 by the magnetic force in the rotation direction. In this way, vibration is generated in each component and is transmitted to the support member 17, the coupling member 18, and the sealed container 7, and is generated as noise from the sealed container 7. Usually, the natural value of the vibration of the sealed container 7 is 1k to 4 kHz, and this frequency component is characteristic of noise generated from the sealed container 7 during operation of the compressor. In order to suppress the noise generation of this frequency component and reduce the noise value, the axial direction, the radial direction, and the rotation of the system including the supporting member 17 and all the parts that act on the supporting member 17 and the coupling member 18 are combined. In the vibration mode of the direction, it is necessary to reduce the resonance frequency of the vibration in the direction that affects the noise to 1 kHz or less, and to attenuate the vibration above this frequency. It is necessary to set the elastic modulus of the coupling member 18 between the container 7 fixing portion 18b and the support member 17 fixing portion 18c to a predetermined value. Further, when the rigidity of the coupling member 18 is lowered, the deformation amount of the coupling member 8 during operation increases, but when the discharge pipe 14 and the discharge muffler 8 come into contact with each other due to the deformation, the vibration of the discharge muffler 8 passes through the discharge pipe 14. There is a possibility that the discharge pipe 14 may be damaged due to a reaction force received from the closed container 7 and the discharge muffler 8 because it is transmitted to the closed container 7 and increases vibration and noise. Further, if the rigidity of the coupling member 18 is reduced, the coupling member 18 may be damaged due to a decrease in strength of the coupling member 18. Therefore, the shape of the coupling member 18 needs to be set in consideration of the elastic modulus between the sealed container 7 fixing portion 18b and the supporting member 17 fixing portion 18c, the deformation amount during operation, and the stress value.
[0014]
As shown in FIG. 3, the coupling member 18 is a hollow cylinder having a predetermined thickness and length, and the axial resonance frequency of the system in which the coupling member 18 is combined with the supporting member 17 and all the parts whose weight acts on the supporting member 17. Reduce to 1 kHz or less, and provide a plurality of axial notches 18a to reduce the radial resonance frequency, which has the greatest effect on vibrations transmitted to the sealed container, and set it to 1 kHz or less. It is.
In general, in the case of an elastic body having the same cross-sectional shape along the axis, such as a hollow cylindrical shape, the elastic modulus increases in the axial direction and the resonance frequency increases as the cross-sectional area in the axial direction increases. Further, the longer the axial length, the lower the elastic modulus in the axial direction and the lower the resonance frequency. Therefore, if the outer diameter is the same in the case of the coupling member, as the thickness is increased, the axial sectional area increases, and the axial resonance frequency increases. Further, when the distance between the sealed container fixing part and the support member fixing part is increased, the axial resonance frequency is lowered. From the above, the thickness and length of the hollow cylindrical portion were determined in order to set the resonance frequency in the axial direction of the coupling member.
In general, the higher the rigidity of an elastic body, the higher the elastic modulus (force / displacement) and the higher the resonance frequency. Further, in the case of the same elastic modulus, the resonance frequency decreases as the weight (mass) increases. Therefore, considering the case where only the coupling member is elastically deformed, if the rigidity of the coupling member is lowered by a notch or the like, and the elastic modulus between the sealed container fixing part and the supporting member fixing part is lowered, the resonance frequency is lowered and the coupling is also reduced. When the total weight of the parts that vibrate together with the member and the coupling member (parts other than the sealed container 7, the suction pipe 13, the discharge pipe 14, and the seal material 17 in FIG. 1) is increased, the resonance frequency is lowered. From the above, when the weight of the portion that vibrates integrally with the coupling member is determined, the resonance frequency of the coupling member is set by changing the rigidity of the coupling member.
In addition, as the number of notches of the coupling member is larger, the width is longer, and the length is longer, the rigidity in the radial direction is lowered and the resonance frequency is lowered. Stiffness in other directions (axial direction, rotational direction) is also reduced, but not as great as in the radial direction. From the above, the number, width, and length of notches were determined for setting the resonance frequency in the radial direction of the coupling member.
[0015]
Further, the shape of the coupling member 18 is a hollow cylinder having a predetermined thickness and length, and the coupling member 18 is supported on the coupling member 18 during operation by the fixing method to the sealed container 7 and the support member 17. However, the amount of deformation of the coupling member 18 during operation is set so that the discharge pipe 14 and the discharge muffler 8 do not contact each other, but the resonance frequency is lowered. Therefore, when the width and length of the notch 18a of the coupling member 18 increase, the resonance frequency in the radial direction decreases, but the force acting from the support member 17 during operation and the impact force applied when the compressor falls or falls Since the deformation amount and the stress value of the coupling member 18 due to the above increase, the width and length of the notch 18a are set in consideration of these.
An example of a method for determining the shape of the coupling member 18 satisfying these resonance frequency, deformation amount and strength will be described below.
In order to reduce the resonance frequency in the axial direction with respect to the predetermined weight of the vibrating portion, and in particular to 1 KHZ or less, the predetermined thickness and the predetermined length of the hollow cylinder of the coupling member 18 are determined by structural analysis.
Next, a notch of a predetermined length is set with a predetermined quantity, and the width dimension that reduces the resonance frequency in the radial direction of the coupling member 18 by structural analysis, in particular, lower than 1 KHZ, is calculated. The width dimension in which the stress value of the maximum stress portion due to the notch is smaller than the yield point of the material is calculated, the strength is ensured, and further, the deformation between the sealed container 7 fixing portion 18b and the supporting member 17 fixing portion 18c of the coupling member 18 The width dimension is calculated so that the amount does not contact the discharge pipe 14 and the discharge muffler 8. Thus, the notch width dimension is selected to satisfy the above three factors.
If a width dimension that satisfies the resonance frequency, stress value, and deformation amount with the predetermined quantity and length can not be selected, a predetermined quantity and length are set separately. Make a selection.
In FIG. 4, the width dimension is selected with respect to the strength. The horizontal axis indicates the width of the notch 18a of the coupling member 18, and the vertical axis indicates the predetermined number and the predetermined length of the notch 18a. On the other hand, the stress of the maximum stress portion A (FIG. 3) at the tip of the notch of the coupling member 18 calculated by structural analysis when the compressor is dropped is shown. The width of the notch 18a of the coupling member 18 is The width dimension is selected so that the stress of the maximum stress portion A is smaller than the yield point of the material.
Note that the relationship of the deformation amount of the coupling member 18 calculated by the structural analysis with respect to the width of the notch 18a of the coupling member 18 is the same as in FIG.
Next, based on the coupling member 18 selected by the structural analysis, the resonance frequency, strength, and deformation amount are confirmed by experiment and finally determined.
[0016]
Further, since the inner periphery of the coupling member 18 is fixed by the fixing portion 18c at the substantially center of gravity in the axial direction of the support member 17 and all the parts on which the weight acts on the support member 17, the sealed container 7 is operated during operation. Even if the support member 17 receives a reaction force from the coupling member 18, the displacement due to the inclination of the support member 17 does not increase, and the displacement amount of the discharge muffler 8 in the sealed container 7 does not increase. While preventing the muffler 8 from contacting, the vibration in the mode in which the support member 17 is swung in the sealed container 7 is reduced, so that the vibration transmitted to the sealed container 7 is reduced.
[0017]
Due to the shape of the coupling member 18 and the fixing method of the coupling member 18 to the hermetic container 7 and the support member 17, the force acting on the coupling member 18 from the support member 17 during operation and the compressor Weight is applied to the support member 17 and the support member 17 while being strong enough to withstand impact forces such as dropping or falling, and the deformation amount of the coupling member 18 during operation is such that the discharge pipe 14 and the discharge muffler 8 do not contact each other. The resonance frequency in the axial direction and the radial direction of the system in which all the parts to be combined and the coupling member 18 are combined can be lowered, and in particular, 1 kHz or less can be achieved. Accordingly, the vibration in the mode in which the support member 17 is swung within the sealed container 7 is reduced. Further, FIG. 5 shows the force received from the support member fixing part 18c and the sealed container fixing part 18b in the coupling member 18 determined as described above. FIG. 6 is a diagram showing a damping ratio that is a ratio of transmitted force. As shown in FIG. 5, the vibration transmitted to the sealed container 7 having an eigenvalue near 1 to 4 kHz is caused by the damping of the vibration of the high frequency component in the coupling member 18. Decrease significantly. FIG. 6 is a structural diagram of a scroll compressor having the same refrigeration capacity as the scroll compressor of the present embodiment of FIG. 1 and having no support member 17 and no coupling member 18, and the frame 4 and the subframe 15 are directly sealed containers. 7 is fixed by arc spot welding, and the electric motor 10 is fixed to the subframe. FIG. 7 is a diagram showing noise measurement results of the scroll compressor of the present embodiment of FIG. 1 and the scroll compressor of FIG. 6. The scroll compressor of the present embodiment is the same as the scroll compressor of FIG. In comparison, it has been confirmed that noise of high frequency components is reduced and the noise value is greatly reduced. Further, since the deformation amount of the coupling member 18 is kept small, the discharge pipe 14 and the discharge muffler 8 do not come into contact with each other, and the reaction force from the sealed container 7 does not act on the discharge pipe 14 and discharge is performed to maintain the strength. There is no need to bend the tube, reducing the material, formation and assembly costs of the discharge tube. Further, the support member 17 and the coupling member 18 are fixed by press fitting, shrink fitting or welding, and the hermetic container 7 and the coupling member 18 are similarly fixed by press fitting, shrink fitting or welding. Is fixed to the closed container 7 via the coupling member 18, the processing cost and assembly cost are reduced, and the mounting stability is also increased.
[0018]
In FIG. 1, the support member 17 has a substantially hollow cylindrical shape including the frame 4, the main shaft 6, the electric motor 10, the subframe 15 and the like inside, and is fixed as a cause of vibration generation and transmission. It is supported so that the weight of the compression element and the electric motor, the main shaft, the frame, the sub-frame, and the drive element including the bearing with the scroll, the oscillating scroll are applied. The shape of the parts other than the sealed container 7, the suction pipe 13, and the discharge pipe 14 is not limited to the substantially hollow cylindrical shape as shown in FIG. In addition, the weight of the main parts serving as transmission elements is supported so that they act, that is, the weight of these parts does not directly act on the sealed container 7 and is coupled to the sealed container 7 by a hollow cylindrical coupling member. If it was something There.
[0019]
【The invention's effect】
As described above, the scroll compressor according to the first aspect of the present invention includes a hermetic container, a compression element including a fixed scroll and an orbiting scroll, and a drive element including a main shaft that transmits a driving force of the motor and the motor. A frame that supports the main shaft, a support member that supports the compression element, the drive element, and the frame, and the support member and the sealed container, and a plurality of axial notches are formed. And having a hollow cylindrical coupling member with a predetermined thickness and a predetermined length, the vibration of the frequency component of the noise that becomes a problem during operation of the compressor is attenuated by the coupling member, The generated noise can be reduced, and the strength of the coupling member can be secured, so that a highly reliable scroll compressor can be obtained.
[0020]
A scroll compressor according to a second aspect of the invention includes a sealed container, a compression element having a fixed scroll and an orbiting scroll, a driving element having a main shaft for transmitting a driving force of the motor and the motor, and a main shaft. A frame for supporting the compression element, a support member for supporting the driving element and the frame, a coupling member for connecting the support member and the sealed container, and being fixed to the sealed container, In a scroll compressor comprising a fixed scroll or a part fixed to the fixed scroll and sealed with a seal material, and a discharge pipe for guiding gas discharged from the fixed scroll to the outside of the sealed container The shape of the coupling member and the fixing method are set so that the vibration frequency of the sealed container is lowered during the operation of the compressor and the reaction force from the sealed container does not act on the discharge pipe. As a result, the vibration of the frequency component of the noise that becomes a problem during compressor operation is attenuated by the coupling member, and it is not necessary to bend the discharge pipe to maintain the strength while reducing the noise generated from the sealed container. Since the material, formation, and assembly cost of the discharge pipe can be reduced, a scroll compressor that is low in cost and excellent in noise can be obtained.
[0021]
In the scroll compressor according to the third aspect of the invention, in the first or second aspect of the invention, since the coupling member is attached at substantially the center of gravity in the axial direction of the support member, the support member is enclosed in the sealed container during operation. The displacement due to the inclination of the support member does not increase even when the coupling member receives a reaction force from the coupling member, and the discharge pipe in the sealed container is hermetically sealed, or a part fixed to the fixed scroll Therefore, it is possible to prevent the discharge pipe and the fixed scroll where the discharge pipe is hermetically sealed or the parts fixed to the fixed scroll from coming into contact with each other. It is not necessary to bend the discharge pipe to maintain strength, and the material, formation, and assembly costs of the discharge pipe are reduced, so there is an effect that a scroll compressor with excellent reliability can be obtained at low cost. In addition, in the sealed container, the support member Vibration of the whirling mode is reduced, transmitted to the closed container vibrates reduced, noise generated from the sealed container so greatly reduced, the scroll compressor can be obtained which is excellent in noise surface.
[0022]
In the scroll compressor according to the fourth invention, the shape of the coupling member is determined so that the resonance frequency of the vibration of the support member is 1 KHZ or less in the first or second invention. In addition to the effect of the second invention, the frequency component of 1 kHz or more of vibration transmitted to a closed container having an eigenvalue in the vicinity of 1 k to 4 kHz is attenuated, and the noise generated from the closed container is greatly reduced. An excellent scroll compressor can be obtained.
[0023]
The scroll compressor according to the fifth aspect of the invention is the first or second aspect of the invention, wherein the generated stress of the coupling member is less than the material yield point with respect to the impact acceleration at the time of dropping, falling, etc. that should be allowed for the compressor. Since the width and length of the cutout of the coupling member that can be accommodated is set, the vibration transmitted to the sealed container is attenuated, and the coupling member is not damaged during compressor operation or when the compressor is dropped. In addition, a scroll compressor excellent in noise can be obtained.
[0024]
A scroll compressor according to a sixth aspect of the present invention is the first or second aspect, wherein at least one of the fixing of the support member and the coupling member and the sealing container and the coupling member is press-fitted and shrink-fitted. In addition to fixing by welding, in addition to the effects of the first or second invention, the processing cost and assembly cost when fixing the coupling member to the support member or the sealed container are reduced, and the compressor is operating and the compressor is dropped. Since there is no risk that the fixing parts are sometimes displaced by the bolt fixing portion of the coupling member, a scroll compressor having low cost and excellent reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present invention.
FIG. 2 is a partially enlarged view of the scroll compressor according to the embodiment of the present invention.
FIG. 3 is a perspective view showing a coupling member of the scroll compressor according to the embodiment of the present invention.
FIG. 4 is a diagram showing the relationship between displacement and stress with respect to the shape of a coupling member of a scroll compressor according to an embodiment of the present invention.
FIG. 5 is a diagram showing vibration transmission characteristics of a coupling member of a scroll compressor according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view of a scroll compressor having the same capacity for comparison with the scroll compressor according to the embodiment of the present invention.
FIG. 7 is a diagram showing a noise reduction effect of the scroll compressor according to the embodiment of the present invention.
FIG. 8 is a cross-sectional view of a conventional scroll compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fixed scroll, 2 Swing scroll, 4 Frame, 6 Main shaft, 7 Airtight container, 10 Electric motor, 14 Discharge pipe, 16 Seal material, 17 Support member, 18 Connection member, 18a Notch.

Claims (6)

密閉容器と、固定スクロール及び揺動スクロールを備えた圧縮要素と、電動機及び電動機の駆動力を伝達する主軸を備えた駆動要素と、主軸を支持するフレ−ムと、前記圧縮要素、前記駆動要素及び前記フレ−ムを支持する支持部材と、前記支持部材と前記密閉容器とを連結し、複数の軸方向の切欠きを有し、所定の厚さと所定の長さの中空円筒形状の結合部材とを有することを特徴とするスクロ−ル圧縮機。An airtight container, a compression element having a fixed scroll and an orbiting scroll, an electric motor and a drive element having a main shaft for transmitting the driving force of the electric motor, a frame for supporting the main shaft, the compression element, and the drive element A hollow cylindrical coupling member having a predetermined thickness and a predetermined length, and having a plurality of axial cutouts, connecting the support member supporting the frame, the support member and the sealed container. A scroll compressor characterized by comprising: 密閉容器と、固定スクロール及び揺動スクロールを備えた圧縮要素と、電動機及び電動機の駆動力を伝達する主軸を備えた駆動要素と、主軸を支持するフレ−ムと、前記圧縮要素、前記駆動要素及び前記フレ−ムを支持する支持部材と、前記支持部材と前記密閉容器とを連結する結合部材と、前記密閉容器に固定され、前記固定スクロールあるいは固定スクロールに固定されている部品にシ−ル材を介して密封シ−ルされ、前記固定スクロールから吐出されるガスを前記密閉容器外に導く吐出管とを備えたスクロール圧縮機において、圧縮機運転中に前記密閉容器の振動周波数を低下し、かつ、前記密閉容器からの反力が前記吐出管に作用しないように前記結合部材の形状および固定方法を設定したことを特徴とするスクロール圧縮機。An airtight container, a compression element having a fixed scroll and an orbiting scroll, an electric motor and a drive element having a main shaft for transmitting the driving force of the electric motor, a frame for supporting the main shaft, the compression element, and the drive element And a support member that supports the frame, a coupling member that connects the support member and the sealed container, and a fixed component that is fixed to the sealed container and fixed to the fixed scroll or the fixed scroll. In a scroll compressor having a discharge pipe that is hermetically sealed through a material and guides gas discharged from the fixed scroll to the outside of the hermetic container, the vibration frequency of the hermetic container is reduced during operation of the compressor. And the shape and the fixing method of the said coupling member were set so that the reaction force from the said airtight container might not act on the said discharge pipe, The scroll compressor characterized by the above-mentioned. 支持部材の軸方向のほぼ重心位置に結合部材を取付けたことを特徴とする請求項1又は請求項2記載のスクロール圧縮機。The scroll compressor according to claim 1 or 2, wherein a coupling member is attached at a substantially center of gravity in the axial direction of the support member. 支持部材の振動の共振周波数が1KHZ以下となるように結合部材の形状を決定したことを特徴とする請求項1又は請求項2記載のスクロール圧縮機。3. The scroll compressor according to claim 1, wherein the shape of the coupling member is determined so that the resonance frequency of the vibration of the support member is 1 KHZ or less. 圧縮機として許容すべき落下、転倒時等の衝撃加速度に対し結合部材の発生応力を材料降伏点以下におさえるような結合部材の切欠の幅と長さを設定したことを特徴とする請求項1又は請求項2記載のスクロール圧縮機。2. The notch width and length of the coupling member are set so that the stress generated by the coupling member is kept below the material yield point with respect to impact acceleration when the compressor should be allowed to fall or fall. Or the scroll compressor of Claim 2. 支持部材と結合部材の固定及び密閉容器と前記結合部材の固定のうち少なくとも一方は圧入、焼きばめ又は溶接によって固定したことを特徴とする請求項1又は請求項2記載のスクロール圧縮機。3. The scroll compressor according to claim 1, wherein at least one of the support member and the coupling member and the sealed container and the coupling member are fixed by press-fitting, shrink fitting or welding.
JP04541097A 1997-02-28 1997-02-28 Scroll compressor Expired - Lifetime JP3852496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04541097A JP3852496B2 (en) 1997-02-28 1997-02-28 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04541097A JP3852496B2 (en) 1997-02-28 1997-02-28 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH10238465A JPH10238465A (en) 1998-09-08
JP3852496B2 true JP3852496B2 (en) 2006-11-29

Family

ID=12718497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04541097A Expired - Lifetime JP3852496B2 (en) 1997-02-28 1997-02-28 Scroll compressor

Country Status (1)

Country Link
JP (1) JP3852496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193484B1 (en) * 1998-10-21 2001-02-27 Scroll Technologies Force-fit scroll compressor assembly
JP2008045431A (en) 2006-08-11 2008-02-28 Daikin Ind Ltd Hermetic compressor

Also Published As

Publication number Publication date
JPH10238465A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US7384250B2 (en) Oil discharge preventing apparatus of scroll compressor
KR100396780B1 (en) Scroll compressor
US7942656B2 (en) Compressor and device for reducing vibration therefor
KR20130055407A (en) Rotary compressor and manufacturing method thereof
CN100371603C (en) Eccentric bush structure in radial compliance scroll compressor
US4886434A (en) Scroll compressor having discharge part communicating with two compression spaces simultaneously
JP3852496B2 (en) Scroll compressor
US20060127260A1 (en) Scroll compressor having frame fixing structure and frame fixing method thereof
JPH1113654A (en) Scroll compressor
JP2003222086A (en) Hermetically sealed compressor
JP3129103B2 (en) Hermetic electric compressor
JPH07229480A (en) Double rotary scroll compressor
JP4792947B2 (en) Compressor
JP2001317479A (en) Vertically installed compressor
JPH07208351A (en) Scroll compressor
CN218934716U (en) Scroll compressor and refrigeration equipment
EP4283126A1 (en) Scroll compressor
JP2834177B2 (en) Vibration damping device for rotary compressor
US20230235670A1 (en) Accumulator fixing device for compressor and compressor having the same
KR101462934B1 (en) Hermetic compressor
KR100417590B1 (en) Apparatus for reducing vibration of compressor
JPS62111184A (en) Scroll type compressor
CN117881888A (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP2009074464A (en) Compressor
JP2005201195A (en) Compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6