JP3851590B2 - Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt - Google Patents

Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt Download PDF

Info

Publication number
JP3851590B2
JP3851590B2 JP2002149342A JP2002149342A JP3851590B2 JP 3851590 B2 JP3851590 B2 JP 3851590B2 JP 2002149342 A JP2002149342 A JP 2002149342A JP 2002149342 A JP2002149342 A JP 2002149342A JP 3851590 B2 JP3851590 B2 JP 3851590B2
Authority
JP
Japan
Prior art keywords
bolt
drilling
frp
self
hollow bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002149342A
Other languages
Japanese (ja)
Other versions
JP2003336479A (en
Inventor
慎吾 谷山
Original Assignee
エスティーエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスティーエンジニアリング株式会社 filed Critical エスティーエンジニアリング株式会社
Priority to JP2002149342A priority Critical patent/JP3851590B2/en
Publication of JP2003336479A publication Critical patent/JP2003336479A/en
Application granted granted Critical
Publication of JP3851590B2 publication Critical patent/JP3851590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自穿孔ボルトとFRP中空ボルトを使った先行地山固結方法、更に詳しくは、トンネル掘削工事における先行地山改良を目的とした補助工法として多用される、注入式フォアポーリングとこれに用いるドライブカップラに関する。
【0002】
【従来の技術】
図6と図7は従来の注入式フォアポーリングの実施状態を示す。
【0003】
従来の注入式フォアポーリングは、たとえば土木学会平成8年版第3印発行「トンネル標準示方書(山岳工法編)・同解説」におけるその237項では、「トンネル切羽より斜め前方地山に5m程度以下の長さのボルトやパイプなどを打設すると同時に、急結性セメントミルクや薬液等を圧力注入し、天端安定を高める工法で、穿孔後注入用ボルトを挿入し注入するタイプ、穿孔と注入を同一ボルトで行う自穿孔タイプなどがある」と定義し、「信頼性が高く多くの実績がある」と紹介されている。
【0004】
実際の適用では図6の如く、トンネルや地下空洞の掘削において特に地山の悪い、例えば高度の風化岩層や軟弱地層ならびに土被り厚さの小さな地層での工事では、従来より加背を低くして先行掘削を行い、例えば約1m置きに配置される鋼製支保工1(例えばH120×120)の間に1シフトづつ、図7の如く天端仰角約120度の範囲に、直径約20〜35mm程度、長さ約3〜4m程度の中空鋼管2をトンネル掘進方向より前方に向けて約25〜35°の仰角で、所定の間隔をもって打設し、中空鋼管2からセメントや樹脂などの固化材を充填して前方天端の地山を改善してから次の1mを掘削する手法がとられている。
【0005】
【発明が解決しようとする課題】
ところで、土質の悪い地山で実施される従来の注入式フォアポーリングでは、上記のように、各鋼製支保工1毎に削孔と中空鋼管2の挿設ならびに注入作業が必要となり、トンネル工事は限られた複数の工種を繰り返すサイクル工事であることより非常に頻繁に工種の入れ替えがなされ、このため、経済効果に影響するサイクルタイムが長くなっていた。
【0006】
そこでこの発明は、このサイクルタイムを極力短縮化し、経済性を追及するとともに煩雑な作業の省力化を図ることができる自穿孔ボルトとFRP中空ボルトを使った先行地山固結方法と、これに用いるドライブカップラを提供することを課題としている。
【0007】
【課題を解決するための手段】
上記のような課題を解決するため、この発明は、先端にロストビットを配置した中空構造で外周に連続ネジを有する自穿孔ボルトで先行削孔を実施し、次にFRP中空ボルトを後続打設を可能とするドライブカップラにて接続し、削岩機に取り付けた長尺の打ち込みロッドの内孔にFRP中空ボルトを内設するようにして、打ち込みロッドの先端に取り付けたドライブスリーブで直接このドライブカップラを回転・打撃して後続のFRP中空ボルトを地山に牽引するように穿孔し、この後、当該打ち込みロッドおよびドライブスリーブを引き抜いてからFRP中空ボルトの地山よりの出口部をコーキングし、後続のFRP中空ボルト末端より固化材を注入し、先端のロストビット孔より排出させて地山に圧入する構成を採用したものである。
【0008】
上記地山固結方法の実施をトンネル掘進方向に向けて、同一形状の鋼製支保工の2基または3基毎に実施しつつ、後続のFRP中空ボルト部分を切除しながらトンネルの掘削を進めるようにすることができる。
【0009】
また、ドライブカップラは、自穿孔ボルトとFRP中空ボルトを結合するように形成され、このドライブカップラの外側面に、打ち込みロッドの先端に具備したドライブスリーブより直接に打撃と回転を伝達できる打撃面と、複数のスプライン突起部と、後続のFRP中空ボルトの打設時において、先行掘削された孔壁に当該突起部が衝突して後続の削孔が困難にならないことと、穿孔された廃土の通過が妨げられないことを目的として、当該打撃面とスプライン突起部の前方に既削孔の孔壁を再度リーミングしながら後続削孔作業を進められるよう、前方のロストビットより若干小径で複数周方向に独立したトリミングエッジを設けた構造とすることができる。
【0010】
この発明では、注入式フォアポーリングの実施において、まず通常のトンネル工事で用いるロックボルト工や当該フォアポーリング工における削孔径よりも幾分大きい直径の自穿孔用のロストビットを自穿孔ボルトに取り付け、この自穿孔ボルトで先行削孔を実施し、同自穿孔ボルトの打設完了後に特殊形状のドライブカップラにて自穿孔ボルトの後端に、後続の繊維補強プラスチック(FRP)製の中空ボルトを接続し、このFRP中空ボルトを直接打撃すれば地山によっては当該FRP中空ボルトが破壊して削孔作業ができなくなることから、この発明の手段では、削岩機の打ち込みロッドを当該FRP中空ボルトよりも長尺太径のものとし、この長尺打ち込みロッドの内側にFRP中空ボルトを内包するようにして打ち込み、打ち込みロッドの先端に固定したドライブスリーブで直接、ドライブカップラを打撃・回転させて掘削を実施する手段をとるものである。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態を図示例と共に説明する。
【0012】
図1はこの発明による注入式フォアポーリングの実施形態を示している。
【0013】
図1の実施例では、まず従来の当該工法に用いられていた直径40〜50mmの削孔ビットよりも幾分大きい径の、例えば直径65mmで固化材吐出口11を有するロストビット12を、中空構造で外周面に連続した転造ネジを具備し、直径28.5mmで長さ4mの自穿孔ボルト13の先端に固定し、このフォアポーリングボルトを従来のフォアポーリングよりも小さな約15°〜25°の仰角となるようロックボルト穿孔と同じ要領で地山に打設する。
【0014】
次に、少なくとも端部に接続ネジ構造を具備した繊維強化プラスチック(FRP)よりなる2.5mのFRP中空ボルト14を、上記先行打設した自穿孔ボルト13の後端に、特殊形状のドライブカップラ15を用いて接続する。
【0015】
同時にトンネルジャンボ16などに具備されたガイドセル17上に搭載された削岩機18には、打ち込みスリーブ19と、当該FRP中空ボルト14よりも若干長い、約3mの長さの中空構造の打ち込みロッド20が連結され、打ち込みロッド20とドライブスリーブ21は当該FRP中空ボルト14を内包するように挿嵌され、打ち込みロッド20の先端にねじ込み固定されているドライブスリーブ21がドライブカップラ15に外嵌する。
【0016】
削岩機18の回転は、打ち込みロッド20に固定したドライブスリーブ21と、ドライブカップラ15を介して自穿孔ボルト13に伝達され、また、打撃はドライブスリーブ21でドライブカップラ15を打撃することで自穿孔ボルト13に伝わる。
【0017】
従って、削岩機18の回転と打撃はFRP中空ボルト14に伝達されることなく直接、特殊形状のドライブカップラ15に伝達され、さらには先行打設した自穿孔ボルト13を介して先端のロストビット12に伝達される。
【0018】
このようにして自穿孔ボルト13の後端に連結されたFRP中空ボルト14を牽引するように削孔が進められ、約2〜2.3mの打設を実施してFRP中空ボルト14の地山に対する打設が完了したらば、ガイドセル17上の削岩機18を、打ち込みスリーブ19、打ち込みロッド20およびドライブスリーブ21と共に一気に退却させることにより、前方が4mの自穿孔ボルト13で後方がドライブカップラ15にて接続された約2.5mのFRP中空ボルト14よりなる全長約6.5mの長尺中空管が形成される。
【0019】
このあと、FRP中空ボルト14の端末の地山出口部を例えば図2の如くコーキング材32でシールした後、FRP中空ボルト14の出口端部に設けた短尺自穿孔ボルト23に注入治具を取り付け、固化材を充填・圧入して注入式フォアポーリング工事を完了する。
【0020】
その後、このFRP中空ボルト14の部分を掘削機で切除しながら約1m分だけトンネルの掘削を進行し、鋼製支保工1を一つ手前の支保工より約1mの距離に立て込み、さらに同じく追加の1mを掘進して支保工を立て込み、前記の手順で、自穿孔ボルト13と特殊形状のドライブカップラ15で接続したFRP中空ボルト14を打設し固化材を圧入する注入式フォアポーリング作業を複数基おきに実施する。
【0021】
以後、このようなサイクル作業を繰り返しながらトンネル掘削を進める。
【0022】
図3は、自穿孔ボルト13と後続管となるFRP中空ボルト14の具体例を示し、この実施例では長尺のFRP中空管の両端に、短尺自穿孔ボルト22、23を固定して接続ネジを具備させ、先端の短尺自穿孔ボルト22をドライブカップラ15と螺合接続している。なお、端部のネジ構造はこのような形式でなくても、例えばFRP中空ボルト14の表面に直接、接続ネジを成形させる方式でもよい。
【0023】
図4はこの発明を構成するドライブスリーブの形状を、また図5は特殊形状のドライブカップラの形状を示している。
【0024】
削岩機18より打ち込みスリーブ19、長尺の打ち込みロッド20、ドライブスリーブ21を介して伝達された打撃と回転は、その打撃をドライブスリーブ21の先端の打撃面24’とドライブカップラ15の打撃面24で、また回転を複数のスプライン突起25で前方の自穿孔ボルト13に伝達し、先端のロストビット12で削孔を進める。
【0025】
ドライブカップラ15は、筒状でその内周面に、長尺のFRP中空管14の端部に設けられた短尺自穿孔ボルト22及び、先行打設された自穿孔ボルト13を螺合する雌ねじ26、27を備え、外周面の途中に設けた打撃面24の前方に軸方向に長いスプライン突起25と、このスプライン突起25と略同一のドライブカップラ円周分割角度で、複数のトリムエッジ28が設けられ、ドライブスリーブ21との嵌合面には端部に止水ゴムリング33が取り付けられている。
【0026】
トリムエッジ28は後続のFRP中空ボルト14の牽引打設時において、ドライブカップラ15のスプライン突起25や打撃面24が既削孔された壁面に引っかかって削孔の邪魔をしないように、通常の鋳鋼製ビットのエッジと同じ鋭角になっており、このエッジ部で既削孔壁の突出部分をリーミングしながら削孔を進め、また、最前方のロストビット12の削孔によって生じたスライムは、独立した複数の当該トリムエッジ28の間を通過して後方へ排出される構造である。
【0027】
ドライブスリーブ21は、先端側の内部がドライブカップラ15への嵌合部29となり、その内周面にはスプライン突起25に外嵌して回転を伝える凹溝30が形成され、先端面が打撃面24’になり、後端側の内部が長尺の打ち込みロッド20を螺合するねじ孔31になっている。
【0028】
【発明の効果】
上記のように、この発明の手法による注入式フォアポーリング工事を実施することにより、従来は約1mおきに設置される鋼製支保工の間にそれぞれ実施していた当該工事を、複数おきに実施すれば良く、注入式フォアポーリングの工程をサイクルタイムから大幅に縮小でき、従って工事速度は著しく改善され、大きな経済性を得ることができる。
【0029】
また、この発明のドライブカップラ方式を採用することにより、自穿孔ボルトの後続管として用いたFRP中空ボルトが決して破損することなく着実に先行地山に挿設でき、当該FRPボルトは固結材圧入後の後続掘削時に汎用の掘削機で切除できることから、FRP中空ボルトが後続設置される鋼製支保工の形状に影響することはなく、同一の支保工が使えるので作業管理が煩雑になることより開放される。
【図面の簡単な説明】
【図1】この発明による注入式フォアポーリングの実施形態を示す縦断側面図
【図2】FRP中空ボルト端末の地山出口部のコーキング状態を示す縦断側面図
【図3】この発明による注入式フォアポーリングの拡大した縦断側面図
【図4】(A)はこの発明に用いるドライブスリーブの縦断側面図、(B)は同縦断正面図
【図5】(A)はこの発明に用いるドライブカップラの側面図、(B)は同縦断側面図、(C)は同正面図
【図6】従来の注入式フォアポーリングの実施状態を示す縦断側面図
【図7】同上の縦断正面図
【符号の説明】
1 鋼製支保工
2 中空鋼管
11 固化材吐出口
12 ロストビット
13 自穿孔ボルト
14 FRP中空ボルト
15 ドライブカップラ
16 トンネルジャンボ
17 ガイドセル
18 削岩機
19 打ち込みスリーブ
20 打ち込みロッド
21 ドライブスリーブ
22、23 自穿孔ボルト
24、24’ 打撃面
25 スプライン突起
26、27 雌ねじ
28 トリムエッジ
29 嵌合部
30 凹溝
31 ドライブスリーブのねじ孔
32 コーキング材
33 止水ゴムリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for consolidating preceding ground using self-drilling bolts and FRP hollow bolts, and more specifically, an injection type fore-polling, which is frequently used as an auxiliary construction method for the purpose of improving preceding ground in tunnel excavation work. It relates to the drive coupler used for
[0002]
[Prior art]
6 and 7 show the state of implementation of conventional injection type forepoling.
[0003]
The conventional injection type fore-polling is, for example, in Section 237 of the “Tunnel Standard Specification (Mountain Construction Method)” and “Explanation” issued by the Japan Society of Civil Engineers, 1996, third edition. Bolts and pipes of the length of the same length, and at the same time, quick-setting cement milk and chemicals are injected under pressure to increase the stability of the top end. There is a self-drilling type that uses the same bolt, etc. "and it is introduced as" Reliable and has many achievements ".
[0004]
In actual application, as shown in Fig. 6, in the excavation of tunnels and underground cavities, the height of the ground is particularly low, for example, in highly weathered rocks and soft grounds, and in constructions with small soil cover thickness. For example, a pre-excavation is performed, and for example, a steel support 1 (for example, H120 × 120) arranged at intervals of about 1 m is shifted by one shift within a range of about 120 degrees in the elevation angle of the top as shown in FIG. A hollow steel pipe 2 having a length of about 35 mm and a length of about 3 to 4 m is cast at a predetermined interval at an elevation angle of about 25 to 35 ° from the tunneling direction to the front, so that cement, resin, etc. are solidified from the hollow steel pipe 2. The method of excavating the next 1m after filling the material and improving the ground at the front top is taken.
[0005]
[Problems to be solved by the invention]
By the way, in the conventional injection type fore-polling carried out in a soil with poor soil quality, as described above, it is necessary to insert a hole and a hollow steel pipe 2 for each steel support 1 and to perform the tunneling work. Is a cycle work that repeats a limited number of work types, and the work types are changed very frequently, and therefore the cycle time that affects the economic effect is prolonged.
[0006]
Therefore, the present invention provides a method for consolidating a preceding ground using a self-drilling bolt and an FRP hollow bolt that can shorten the cycle time as much as possible, pursue economic efficiency, and save labor for complicated work. It is an object to provide a drive coupler to be used.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention performs a pre-drilling with a self-drilling bolt having a hollow structure with a lost bit at the tip and having a continuous screw on the outer periphery, and then a FRP hollow bolt is subsequently placed. This drive is connected directly with the drive sleeve attached to the tip of the driving rod so that the FRP hollow bolt is installed in the inner hole of the long driving rod attached to the rock drill. Rotate and strike the coupler to drill the subsequent FRP hollow bolt to the ground, then, after pulling out the driving rod and drive sleeve, caulk the outlet from the ground of the FRP hollow bolt, A configuration in which a solidifying material is injected from the end of the subsequent FRP hollow bolt, discharged from the lost bit hole at the tip, and press-fitted into the ground is adopted.
[0008]
While implementing the above-mentioned ground solidification method in the direction of tunnel excavation, the excavation of the tunnel is advanced while excising the subsequent FRP hollow bolt part while carrying out every two or three of the steel supporters of the same shape Can be.
[0009]
The drive coupler is formed so as to couple the self-drilling bolt and the FRP hollow bolt, and a striking surface capable of transmitting striking and rotation directly from the drive sleeve provided at the tip of the driving rod on the outer surface of the drive coupler. When the plurality of spline protrusions and the subsequent FRP hollow bolts are driven, the protrusions do not collide with the previously excavated hole wall to make subsequent drilling difficult, and the excavated waste soil In order to prevent the passage from being hindered, a plurality of rounds with a slightly smaller diameter than the front lost bit are made so that the subsequent drilling operation can proceed while re-reaming the hole wall of the already-cut hole in front of the striking surface and the spline protrusion. A structure in which trimming edges independent in the direction can be provided.
[0010]
In this invention, in the implementation of injection-type fore-polling, first, a self-drilling bolt having a diameter somewhat larger than the diameter of the drilling hole in the fore-polling work or a lock bolt used in normal tunnel construction is attached to the self-drilling bolt, Pre-drilling is performed with this self-drilling bolt, and after the completion of the self-drilling bolt, a hollow bolt made of fiber reinforced plastic (FRP) is connected to the rear end of the self-drilled bolt with a specially shaped drive coupler. However, if the FRP hollow bolt is directly struck, the FRP hollow bolt may be destroyed depending on the natural ground and the drilling operation cannot be performed. Therefore, according to the means of the present invention, the driving rod of the rock drilling machine is more than the FRP hollow bolt. Is also made of a long and large diameter, and is driven in by placing an FRP hollow bolt inside the long driving rod. Direct head drive sleeve fixed to the tip of, those taking means for implementing the drilling drive coupler is striking and rotation.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 shows an embodiment of injectable forepoling according to the present invention.
[0013]
In the embodiment of FIG. 1, first, the lost bit 12 having a diameter somewhat larger than the drilling bit having a diameter of 40 to 50 mm used in the conventional method, for example, 65 mm in diameter and having the solidified material discharge port 11 is hollow. The structure is provided with a continuous rolling screw on the outer peripheral surface, and is fixed to the tip of a self-drilling bolt 13 having a diameter of 28.5 mm and a length of 4 m. Place in the ground in the same way as rock bolt drilling so that the elevation angle is °.
[0014]
Next, a 2.5 m FRP hollow bolt 14 made of fiber reinforced plastic (FRP) having a connection screw structure at least at the end is attached to the rear end of the self-piercing bolt 13 that has been previously placed, and a specially shaped drive coupler. 15 to connect.
[0015]
At the same time, a rock drill 18 mounted on a guide cell 17 provided in a tunnel jumbo 16 or the like has a driving sleeve 19 and a hollow driving rod having a length of about 3 m which is slightly longer than the FRP hollow bolt 14. 20, the driving rod 20 and the drive sleeve 21 are inserted so as to contain the FRP hollow bolt 14, and the drive sleeve 21 screwed and fixed to the tip of the driving rod 20 is externally fitted to the drive coupler 15.
[0016]
The rotation of the rock drill 18 is transmitted to the self-drilling bolt 13 via the drive sleeve 21 fixed to the driving rod 20 and the drive coupler 15, and the hitting is performed by hitting the drive coupler 15 with the drive sleeve 21. It is transmitted to the perforated bolt 13.
[0017]
Therefore, the rotation and hitting of the rock drill 18 are not directly transmitted to the FRP hollow bolt 14, but are directly transmitted to the specially shaped drive coupler 15, and further, the lost bit at the tip is passed through the self-drilling bolt 13 that has been placed in advance. 12 is transmitted.
[0018]
In this way, the drilling is advanced so as to pull the FRP hollow bolt 14 connected to the rear end of the self-drilling bolt 13, and the ground of the FRP hollow bolt 14 is formed by placing about 2 to 2.3 m. Is completed, the rock drill 18 on the guide cell 17 is retracted together with the driving sleeve 19, the driving rod 20 and the drive sleeve 21, so that the front drilling bolt 13 is 4 m in front and the drive coupler 15 is in the rear. A long hollow tube having a total length of about 6.5 m is formed by the FRP hollow bolts 14 having a length of about 2.5 m connected to each other.
[0019]
After that, the ground exit portion of the end of the FRP hollow bolt 14 is sealed with a caulking material 32 as shown in FIG. 2, for example, and then an injection jig is attached to the short self-piercing bolt 23 provided at the outlet end portion of the FRP hollow bolt 14. Fill and press the solidified material to complete the injection-type fore-polling work.
[0020]
After that, while excavating the FRP hollow bolt 14 with an excavator, the tunnel excavation was advanced by about 1 m, and the steel support 1 was stood at a distance of about 1 m from the previous support. An additional 1m is dug up and the support work is set up. The injection fore-polling work in which the FRP hollow bolt 14 connected by the self-drilling bolt 13 and the specially shaped drive coupler 15 is placed and the solidified material is press-fitted by the above procedure. Are carried out every other group.
[0021]
After that, tunnel excavation will proceed while repeating such cycle work.
[0022]
FIG. 3 shows a specific example of the self-drilling bolt 13 and the FRP hollow bolt 14 as a subsequent pipe. In this embodiment, short self-drilling bolts 22 and 23 are fixed and connected to both ends of the long FRP hollow pipe. A screw is provided, and a short self-piercing bolt 22 at the tip is screwed to the drive coupler 15. Note that the screw structure at the end may not be in this form, but may be a method in which, for example, a connection screw is directly formed on the surface of the FRP hollow bolt 14.
[0023]
FIG. 4 shows the shape of a drive sleeve constituting the present invention, and FIG. 5 shows the shape of a specially shaped drive coupler.
[0024]
The striking and rotation transmitted from the rock drill 18 through the driving sleeve 19, the long driving rod 20, and the drive sleeve 21, the striking surface 24 ′ at the tip of the drive sleeve 21 and the striking surface of the drive coupler 15. 24, the rotation is transmitted to the front self-drilling bolt 13 by a plurality of spline protrusions 25, and the drilling is advanced by the lost bit 12 at the tip.
[0025]
The drive coupler 15 has a cylindrical shape, and an internal thread for screwing a short self-piercing bolt 22 provided at an end of the long FRP hollow tube 14 and a self-piercing bolt 13 previously placed on the inner peripheral surface thereof. 26, 27, a spline protrusion 25 that is long in the axial direction in front of the striking surface 24 provided in the middle of the outer peripheral surface, and a plurality of trim edges 28 at a drive coupler circumferential division angle substantially the same as the spline protrusion 25. A waterproof rubber ring 33 is attached to the end of the fitting surface with the drive sleeve 21.
[0026]
The trim edge 28 is a conventional cast steel so that the spline protrusion 25 and the striking surface 24 of the drive coupler 15 are not caught by the already drilled wall surface when the FRP hollow bolt 14 is pulled. It has the same acute angle as the edge of the made bit, and the edge is advanced while reaming the protruding part of the already drilled wall, and the slime generated by drilling the foremost lost bit 12 is independent. In this structure, it passes between the plurality of trim edges 28 and is discharged rearward.
[0027]
The inside of the drive sleeve 21 is a fitting portion 29 to the drive coupler 15, and a concave groove 30 is formed on the inner peripheral surface of the drive sleeve 21 to externally fit the spline protrusion 25 and transmit rotation, and the tip surface is a striking surface. 24 ′, and the inside on the rear end side is a screw hole 31 into which the long driving rod 20 is screwed.
[0028]
【The invention's effect】
As described above, by implementing the injection-type fore-polling work according to the method of the present invention, the work, which has been conventionally carried out during the steel support works installed at intervals of about 1 m, is carried out every two or more times. The injection fore-polling process can be greatly reduced from the cycle time, so that the construction speed is significantly improved and great economic efficiency can be obtained.
[0029]
In addition, by adopting the drive coupler system of the present invention, the FRP hollow bolt used as the subsequent pipe of the self-drilling bolt can be steadily inserted into the preceding ground without being damaged, and the FRP bolt can be pressed into the solidified material. Since it can be excised with a general-purpose excavator during subsequent excavation, the FRP hollow bolt will not affect the shape of the steel support that will be installed subsequently, and the same support can be used, making work management complicated. Opened.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an embodiment of an injection type forepoling according to the present invention. FIG. 2 is a vertical side view showing a caulking state of a natural ground outlet portion of an FRP hollow bolt terminal. FIG. 4A is a vertical side view of a drive sleeve used in the present invention, and FIG. 5B is a front view of the drive sleeve used in the present invention. FIG. 5A is a side view of a drive coupler used in the present invention. Figure, (B) is a longitudinal side view of the same, (C) is a front view of the same. [FIG. 6] A vertical side view showing the state of implementation of a conventional injection type forepoling [FIG.
DESCRIPTION OF SYMBOLS 1 Steel support 2 Hollow steel pipe 11 Solidification material discharge port 12 Lost bit 13 Self-drilling bolt 14 FRP hollow bolt 15 Drive coupler 16 Tunnel jumbo 17 Guide cell 18 Rock drill 19 Driving sleeve 20 Driving rod 21 Drive sleeves 22 and 23 Perforated bolts 24, 24 'Strike surface 25 Spline protrusions 26, 27 Female thread 28 Trim edge 29 Fitting portion 30 Groove 31 Drive sleeve screw hole 32 Caulking material 33 Water-stop rubber ring

Claims (3)

先端にロストビットを配置した中空構造で外周に連続ネジを有する自穿孔ボルトで先行削孔を実施し、次にFRP中空ボルトを後続打設を可能とするドライブカップラにて接続し、削岩機に取り付けた長尺の打ち込みロッドの内孔にFRP中空ボルトを内設するようにして、打ち込みロッドの先端に取り付けたドライブスリーブで直接このドライブカップラを回転・打撃して後続のFRP中空ボルトを地山に牽引するように穿孔し、この後、当該打ち込みロッドおよびドライブスリーブを引き抜いてからFRP中空ボルトの地山よりの出口部をコーキングし、後続のFRP中空ボルト末端より固化材を注入し、先端のロストビット孔より排出させて地山に圧入することを特徴とする自穿孔ボルトとFRPボルトを使った先行地山固結方法。A drilling machine with a hollow structure with a lost bit at the tip and a self-drilling bolt with a continuous thread on the outer periphery, and then connecting the FRP hollow bolt with a drive coupler that allows subsequent placement. The FRP hollow bolt is installed in the inner hole of the long driving rod attached to the drive rod, and this drive coupler is rotated and hit directly by the drive sleeve attached to the tip of the driving rod, and the subsequent FRP hollow bolt is grounded. After drilling so as to pull to the mountain, after pulling out the driving rod and drive sleeve, caulk the outlet part from the ground of the FRP hollow bolt, inject the solidified material from the end of the subsequent FRP hollow bolt, It is discharged from the lost bit hole and pressed into a natural ground, and a solid ground consolidation method using self-drilling bolts and FRP bolts. 前記地山固結方法の実施をトンネル掘進方向に向けて、同一形状の鋼製支保工の2基または3基毎に実施しつつ、後続のFRP中空ボルト部分を切除しながらトンネルの掘削を進めることを特徴とする請求項1に記載の自穿孔ボルトとFRPボルトを使った先行地山固結方法。Implementation of the natural ground consolidation method in the direction of tunnel excavation, every two or three steel supporters of the same shape, while excavating the tunnel while cutting the subsequent FRP hollow bolt part The preceding ground consolidation method using the self-drilling bolt and the FRP bolt according to claim 1. 前記地山固結方法に用いるドライブカップラが自穿孔ボルトとFRP中空ボルトを結合するように形成され、このドライブカップラの外側面に、打ち込みロッドの先端に具備したドライブスリーブより直接に打撃と回転を伝達できる打撃面と、複数のスプライン突起部と、後続のFRP中空ボルトの打設時において、先行掘削された孔壁に当該突起部が衝突して後続の削孔が困難にならないことと、穿孔された廃土の通過が妨げられないことを目的として、当該打撃面とスプライン突起部の前方に既削孔の孔壁を再度リーミングしながら後続削孔作業を進められるよう、前方のロストビットより若干小径で複数周方向に独立したトリミングエッジを設けた先行地山固結方法に用いるドライブカップラ。The drive coupler used in the natural ground consolidation method is formed so as to connect the self-drilling bolt and the FRP hollow bolt, and the drive coupler is directly hit and rotated from the drive sleeve provided at the tip of the driving rod. When a striking surface that can be transmitted, a plurality of spline protrusions, and a subsequent FRP hollow bolt are placed, the protrusions do not collide with the hole wall that has been previously excavated, and subsequent drilling is not difficult. From the lost bit in the front, the subsequent drilling operation can be carried out while re-reaming the hole wall of the already drilled hole in front of the striking surface and the spline protrusion, in order to prevent the passage of the waste soil. A drive coupler used in a preceding ground consolidation method in which trimming edges having a slightly smaller diameter and multiple circumferential directions are provided.
JP2002149342A 2002-05-23 2002-05-23 Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt Expired - Fee Related JP3851590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149342A JP3851590B2 (en) 2002-05-23 2002-05-23 Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149342A JP3851590B2 (en) 2002-05-23 2002-05-23 Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt

Publications (2)

Publication Number Publication Date
JP2003336479A JP2003336479A (en) 2003-11-28
JP3851590B2 true JP3851590B2 (en) 2006-11-29

Family

ID=29706382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149342A Expired - Fee Related JP3851590B2 (en) 2002-05-23 2002-05-23 Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt

Country Status (1)

Country Link
JP (1) JP3851590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556749C2 (en) * 2013-05-30 2015-07-20 Андрей Иванович Киприянов Method of advance mine walling by anchors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892844B (en) * 2009-05-20 2014-06-04 深圳海川新材料科技有限公司 Method for excavating tunnels undergoing advanced bolting by using CRD
EP2867422B1 (en) * 2012-06-27 2020-03-11 M3S Holdings Pty Ltd Combination reinforcing coupler and column alignment device
RU2580124C1 (en) * 2015-02-19 2016-04-10 Общество с ограниченной ответственностью Научно-технический и экспертный центр новых экотехнологий в гидрогеологии и гидротехнике "НОВОТЭК" Method of creating protective shield in roof of designed mine works (versions)
JP7202913B2 (en) * 2019-02-04 2023-01-12 西松建設株式会社 Hollow bolt for tunnel pre-receiving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556749C2 (en) * 2013-05-30 2015-07-20 Андрей Иванович Киприянов Method of advance mine walling by anchors

Also Published As

Publication number Publication date
JP2003336479A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP2006219933A (en) Rock bolt and timbering construction method using the same
US6457909B1 (en) Multi-purpose anchor bolt assembly
CN109826657A (en) One kind being used for soft rock tunnel solidifying of the working face device and its construction method
JP2735650B2 (en) Ground reinforcement method and equipment
JP3493014B2 (en) Tunnel widening method
JP3851590B2 (en) Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt
JP3974090B2 (en) Long face bolt construction method
JP4603652B2 (en) The consolidation method of natural ground
JP6288895B1 (en) Pipe driving method
WO2001023711A1 (en) Ground reinforcing method
CN201214788Y (en) Grouting device under pressure for mortar anchor rod
JPH11200750A (en) Excavation bit for winding hole and execution method using it
JP3851550B2 (en) Non-widening long tip receiving method for drilling rod embedded type
CN113738418A (en) Drilling anchoring pre-support system based on shield operation and construction method
JP2000145398A (en) Injection pipe used for consolidation and reinforcement of ground
JP3100347B2 (en) Construction method of ground reinforcement bolt
JP4078265B2 (en) Drilling machine and tension material insertion method
JP3524493B2 (en) Ground reinforcement method
JP2003184499A (en) Large diameter lock bolt anchor for natural ground reinforcement
JP7311894B2 (en) Ground reinforcement method
JP3267571B2 (en) Ground reinforcement method
JP7026562B2 (en) Tunnel construction method
JPH07268877A (en) Method for reinforcing excavation slope
JP3249952B2 (en) Multi-stage steel pipe injection system
JP3229934B2 (en) Non-widening steel pipe drilling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150908

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees