JP3851547B2 - Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material - Google Patents

Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material Download PDF

Info

Publication number
JP3851547B2
JP3851547B2 JP2001347335A JP2001347335A JP3851547B2 JP 3851547 B2 JP3851547 B2 JP 3851547B2 JP 2001347335 A JP2001347335 A JP 2001347335A JP 2001347335 A JP2001347335 A JP 2001347335A JP 3851547 B2 JP3851547 B2 JP 3851547B2
Authority
JP
Japan
Prior art keywords
csi
cui
scintillator material
mixed crystal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001347335A
Other languages
Japanese (ja)
Other versions
JP2003147343A (en
Inventor
正昭 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Osaka City University
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Osaka City University
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Osaka City University, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001347335A priority Critical patent/JP3851547B2/en
Publication of JP2003147343A publication Critical patent/JP2003147343A/en
Application granted granted Critical
Publication of JP3851547B2 publication Critical patent/JP3851547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線やγ線などの放射線の検出等に用いられるシンチレータ材料及びその製造方法並びにそれを用いた放射線検出装置に関する。
【0002】
【従来の技術】
従来、シンチレータ材料(放射線を紫外、可視発光に変換する光機能性材料)は、アルカリハライド結晶(CsI、NaIなど)を中心として長年にわたって研究開発され、広く実用化されている。その中で、X線投影による医療検査やIC基板、回路基板などの非破壊検査などにおいて、X線イメージング装置が注目されている。そしてその装置のシンチレータ材料としてはCsIを母体としそれに不純物を添加してシンチレーション効率を高めたものが実用化されている。一般的には、NaI(ヨウ化ナトリウム)又はTlI(ヨウ化タリウム)をドーピングしたCsI:Na、CsI:Tlである。
【0003】
CsIを母体に利用する理由としては、▲1▼放射線吸収効率が高い、▲2▼放射線損傷が少ない、▲3▼真空蒸着法等により薄膜作製が比較的容易であるということが挙げられる。
【0004】
しかしながら、CsI:Naは、発光効率が優れているが、大気中において潮解性のためにシンチレーション効率が低下するという欠点を有する。
【0005】
又、CsI:Tlは、大気中におけるシンチレーション特性の短時間での劣化ということは生じないが、Tl(タリウム)が非常に毒性の強い物質であるために、環境面における問題点を有している。
【0006】
【発明が解決しようとする課題】
本発明は、シンチレータ材料として優れた物質であるCsIをベースとしながら、CsI:Naのように大気中においてシンチレーション効率が低下することなく、又毒性のないシンチレータ材料及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、CsI−CuI混晶体よりなるシンチレータ材料、望ましくはCsIに対してCuI濃度が5〜50mol%であるCsI−CuI混晶体よりなるシンチレータ材料、更に望ましくはCsIに対してCuI濃度が10〜30mol%であるCsI−CuI混晶体よりなるシンチレータ材料を提供する。
【0008】
又、本発明は、CsIに対しCuIを添加してCsI−CuIの混合体を作製し、上記CsI−CuIの混合体を供給源として、基板上にCsI−CuIの混晶体を形成することを特徴とするシンチレータ材料の製造方法を提供する。
【0009】
又、本発明は、極めて実用的なシンチレータ材料として、基板上にCsI薄膜とCuI薄膜が交互に形成され、上記CsI薄膜と上記CuI薄膜の境界面にはCsI−CuIの混晶体が形成されてなるシンチレータ材料を提供する。
【0010】
又、本発明は、その実用的なシンチレータ材料の製造方法として、CsIとCuIとをそれぞれ独立の供給源とし、上記それぞれのCsI供給源及びCuI供給源より選択的にCsI及びCuIを供給することによって、基板上にCsI薄膜及びCuI薄膜を交互に形成することを特徴とするシンチレータ材料の製造方法を提供する。
【0011】
更に又、本発明は、CsI−CuIの混晶体よりなるシンチレータ材料と、上記シンチレータ材料から発せられる蛍光を検出する蛍光検出素子からなる放射線検出装置を提供する。
【0012】
又、本発明は、基板上にCsI薄膜とCuI薄膜が交互に形成され、上記CsI薄膜と上記CuI薄膜の境界面にはCsI−CuIの混晶体が形成されたシンチレータ材料と、上記シンチレータ材料から発せられる蛍光を検出する蛍光検出素子からなる放射線検出装置を提供する。
【0013】
又、本発明は、CsBr−CuBr混晶体又はCsCl−CuCl混晶体よりなるシンチレータ材料を提供する。
【0014】
【発明の実施の形態】
以下、本発明の代表的な実施例につき、図面を参照しつつ詳細に説明する。
【0015】
前述のとおり、CsIはシンチレータ材料として非常に優れた物質であるので、CsIをベースとし、同じI-VII族類であり化学的整合性が良く、かつ、毒物でなく大気雰囲気において比較的安定である銅ハライド系のCuIを添加物として、シンチレータ材料を作製した。薄膜試料の作製法としては、簡便さという利点から、通常の蒸着源加熱方式の真空蒸着法を採用した。薄膜の構造としては、次の2種類のものを作製した。一つは、CsIに対して所定の濃度にCuIを混合したものを蒸着源としたCsI:Cu薄膜であり、他方は、CsIとCuIをそれぞれ独立の蒸着源として、交互に薄膜を蒸着したCsI/CuI多層膜である。CsI/CuI多層膜では、境界面における原子拡散によりCsIとCuIの混合が生じていること、つまりCsI−CuIの混晶体が生じていることを見つけた。
【0016】
シンチレータ材料の開発を行うためには、材料の構造特性とシンチレーション特性の両方の評価が必須である。構造特性については、X線構造解析(θ−2θ法)による結晶性評価と原子間力顕微鏡による表面構造観察を行った。シンチレーション特性については、X線励起発光スペクトルと応答時間の評価を行った。これらの評価結果を総合して、本発明の成果を得た。
【0017】
まず、CsI:Cu薄膜の実施例について述べる。基板としては、光学測定を行うために石英ガラスを用いたが、イオン性が高いI-VII族物質では構成原子間の結合が弱いので、共有結合性半導体薄膜の作製で問題となる薄膜の基板材料依存性は無視できるものである。基板温度は50℃前後に、蒸着速度は0.3〜1nm/secに設定した。これらの作製条件は、全ての実施例において共通のものである。
【0018】
図1は、異なるCuI添加濃度におけるCsI:Cu薄膜(膜厚1μm)のX線励起発光スペクトルを示している。尚、各スペクトルは最大発光強度で規格化している。使用したX線源は、銅のターゲットを有するX線管球である。0.1mol%の添加濃度では、母体であるCsI結晶固有の自己束縛励起子による4.0eV発光が主発光として観測される。ここで、自己束縛励起子とは、電子と正孔が結合した励起子が、自己の作り出す格子歪みによって局在化した状態を意味し、4.0eV発光は純粋なCsI結晶におけるシンチレーションの起源である。1mol%以上の添加濃度において、2.8eVにピークを有するCuIに起因する発光が観測され、10mol%では母体のCsI固有の4.0eV発光は2.8eV発光に対して無視できるほど強度が低くなる。
【0019】
図2は、2.8eV発光のCuI添加濃度依存性を示している。5〜50mol%の濃度領域で発光効率は特に高く、10〜30mol%においてそれが最大となり、その効率はCsI:Naと同等である。具体的には、市販のCsI:Naシンチレータ結晶を砕いたものを蒸着源として作製したCsI:Na薄膜の効率に対して、90%程度である。上記の結果は、シンチレーション機能に対するCuI添加の有効性と最適条件を明確に示している。
【0020】
図3は、CsI:Cu薄膜(CuI濃度10mol%:膜厚1μm)における2.8eV発光の時間減衰特性を示している。測定では、窒素パルスレーザー(波長337nm、パルス幅300ps)を励起源とした。尚、励起過程は、窒素パルスレーザーの2光子吸収過程であり、実質的な励起波長は168nmに相当し、十分な高エネルギーでの電子励起が生じている。観測された発光寿命(発光強度が1/eに落ちる時間に相当)は1.0μsであり、CsI:NaにおけるNa発光寿命の0.63μs、CsI:TlにおけるTl発光寿命の1.0μsと同程度で、シンチレーションの応答時間においても遜色無いものである。
【0021】
次に、CsI:Cu薄膜(CuI濃度10mol%:膜厚1μm)のX線励起発光強度の大気雰囲気における経日変化を測定した。図4に示しているように、4週間の放置によっても発光強度は全く変化しないという結果が得られた。この結果は、CuI添加におけるシンチレーションの安定性を明確に示している。ただし、CsI:Cu薄膜の場合、薄膜が白濁する傾向を示す。白濁は、薄膜での光散乱を増強し光透過性を低下させるために、一部の用途例えばX線イメージングへの応用においては画像の鮮明性が低下することが予測される。この問題点の解決については後述する。
【0022】
上で述べたように、CuI添加の場合、最大発光効率を得るためには10〜30mol%程度の濃度が必要となる。結晶物理学的には、この濃度は希薄系を前提とするドーピングではなく、混晶の範疇に入るものである。尚、従来のCsI:NaとCsI:TlにおけるNaIとTlIの添加濃度は、1mol%以下が通常である。CsI:Cu薄膜におけるCuI添加濃度の高さについて、X線構造解析から評価を行った。
【0023】
図5は、異なるCuI添加濃度におけるCsI:Cu薄膜(膜厚1μm)のX線回折パターンを示している。5mol%以上のCuI濃度において、母体材料であるCsIの(110)回折とは異なるピークが明確に現れており、10mol%以上ではそれらが主ピークとなっている。CsI以外の回折ピークの出現は、CsIとは異なる物質が形成されていることを意味し、Cs3Cu25[(CsI)3−(CuI)2混晶]の回折パターンに帰属できる。即ち、CuI添加により生じる2.8eV発光は、CsI−CuI混晶を起源としていると言える。これまで、CsI−CuI混晶のシンチレーション機能は知られておらず、本発明によって初めてその機能が示された。
【0024】
CsI−CuI混晶薄膜は、上で述べたように優れたシンチレーション特性を有しているが、薄膜が白濁するという欠点を有している。これを解決するための試みとして、CsI/CuI多層膜の作製を行い、特性評価を行った。その着目点は、CsI/CuI界面において、原子拡散によりCsI−CuI混晶が形成されるという予測にある。
【0025】
図6は、CsI層厚を50nmに固定し、CuI層厚を1〜30nmまで変化させたCsI(50nm)/CuI(dnm)多層膜のX線回折パターンを示している。尚、各試料の総膜厚は1μmに設定している。
【0026】
図6とCsI:Cu薄膜のX線回折パターン(図5)を比較して、CsI/CuI多層膜においてCsI−CuI混晶が形成されていることが確認でき、このことは当初の予測を実証するものであった。
【0027】
図7は、CsI(50nm)/CuI(10nm)多層膜(総膜厚1μm)とCsI:Cu薄膜(CuI濃度10mol%:膜厚1μm)のX線励起発光スペクトルを示している。多層膜において、CsI:Cu薄膜と同じ2.8eV発光が観測される。図7において比較しているCsI:Cu薄膜のCuI濃度は、発光効率が最も高い10mol%であり(図2参照)、CsI(50nm)/CuI(10nm)多層膜の発光効率はそれよりも高いもの(約150%)となっている。
【0028】
図8は、CsI(50nm)/CuI(dnm)多層膜(総膜厚1μm)のX線励起発光強度のCuI層厚依存性を示している。CuI層厚が10〜20nmにおいて発光効率が最大となる。
【0029】
CsI:Cu薄膜においては、白濁することが問題であることを上で述べたが、CsI/CuI多層膜では非常に透明性が高い。図9は、CsI(50nm)/CuI(10nm)多層膜(総膜厚1μm)とCsI:Cu薄膜(CuI濃度10mol%:膜厚1μm)の透過スペクトルを示しており、多層膜が透明性において優れていることを明確に実証している。4eV近傍で透過率が急激に減少してゼロになるのは、CsI−CuI混晶の基礎吸収端が4.1eVにあるためである。多層膜の透過スペクトルに見られる振動構造は、透明性の高い薄膜構造特有のFabry−Perot干渉[薄膜の表面と裏面(基板と薄膜の界面)の反射による多重干渉効果]によるものである。シンチレーション発光のエネルギー領域では、最大透過率はほぼ100%であり、理想的な透明性を示している。尚、放射線を十分に吸収するということを考慮すると、CsIとCuIの多層膜の数は、多くが望ましく、実用的には数百層が好適である。
【0030】
物質の透明性は表面の凹凸による光散乱に左右されることは良く知られていることである。そこで、CsI/CuI多層膜の表面構造を詳細に評価するために、原子間力顕微鏡(AFM)による測定を行った。図10は、AFM測定から得られたCsI(50nm)/CuI(10nm)多層膜の表面粗さ形状を示している。数nm程度の凹凸であることが確認でき、極めて平坦な表面であることが明らかである。尚、CsI:Cu薄膜では、50nm程度の凹凸が確認された。
【0031】
以上の実施例は、CsI−CuIの混晶体薄膜又はCsI/CuIの多層膜について述べたが、CsI−CuIの混晶体であればバルク結晶であっても有効である。次に、CuIに代えてCuBr又はCuClを適用した実施例を図11に示す。
【0032】
図11は、試料としてCsBr(50nm)/CuBr(10nm)多層膜(総膜厚1μm)とCsCl(50nm)/CuCl(10nm)多層膜(総膜厚1μm)を用いた場合のX線励起発光スペクトルを示している。CsI/CuI多層膜と比較して1/10程度の弱い強度ではあるが、これら材料も新規で有用なシンチレーション材料として採用できるものである。
【0033】
図12は、本発明の一実施例にかかる放射線検出装置を模式的に表わした概略断面図であり、同図中、1はシンチレータ材料、2はシンチレータ材料を形成している基板(例えば石英ガラス)、3は光ファイバー、4は蛍光検出素子(例えばCCD)、5は枠体であり、例えば放射線6の入射をシンチレータ材料1にて蛍光に変換し、その蛍光を光ファイバーを介して蛍光検出素子4にて電気的に出力するものである。
【0034】
【発明の効果】
以上説明したように、本発明は、CsI−CuIの混晶体よりなるシンチレータ材料を提供するもので、シンチレーション効率、応答時間は従来のCsI:Na又はCsI:Tlと同等であり、CsI:Naのように大気中におけるシンチレーション効率の低下もなく、又CsI:Tlのような毒性について心配のない新しい材料を提供した。
【0035】
又、CsI薄膜とCuI薄膜を交互に形成した、いわゆる多層膜薄膜は単層膜又はバルク結晶では十分でなかった透明性と表面平坦性が改善され効率の向上に更に寄与することができた。
【図面の簡単な説明】
【図1】異なるCuIドーピング濃度におけるCsI:Cu薄膜のX線励起発光スペクトルを示す図である。
【図2】CsI:Cu薄膜の2.8eV発光強度のCuI濃度依存性を示す図である。
【図3】CsI:Cu薄膜(10mol%)の2.8eV発光の時間減衰特性を示す図である。
【図4】CsI:Cu薄膜(10mol%)のX線励起発光強度の大気雰囲気における経日変化を示す図である。
【図5】異なるCuIドーピング濃度におけるCsI:Cu薄膜のX線回折パターンを示す図である。
【図6】CsI(50nm)/CuI(dnm)多層膜のX線回折パターンを示す図である。
【図7】CsI(50nm)/CuI(10nm)多層膜とCsI:Cu薄膜(10mol%)のX線励起発光スペクトルを示す図である。
【図8】CsI(50nm)/CuI(dnm)多層膜のX線励起発光強度のCuI層厚(d)依存性を示す図である。
【図9】CsI(50nm)/CuI(10nm)多層膜とCuI:Cu薄膜(10mol%)の透過スペクトルを示す図である。
【図10】原子間力顕微鏡(AFM)測定から得られたCsI(50nm)/CuI(10nm)多層膜の表面粗さ特性を示す図である。
【図11】CsBr(50nm)/CuBr(10nm)及びCsCl(50nm)/CuCl(10nm)多層膜のX線励起発光スペクトルを示す図である。
【図12】本発明の一実施例における放射線検出装置の概略断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scintillator material used for detection of radiation such as X-rays and γ-rays, a manufacturing method thereof, and a radiation detection apparatus using the same.
[0002]
[Prior art]
Conventionally, scintillator materials (photofunctional materials that convert radiation into ultraviolet light and visible light emission) have been researched and developed over many years, centering on alkali halide crystals (CsI, NaI, etc.), and have been widely put into practical use. Among them, X-ray imaging apparatuses are attracting attention in medical examinations using X-ray projection and non-destructive examinations such as IC substrates and circuit boards. As a scintillator material for the apparatus, a material in which CsI is used as a base and impurities are added to increase the scintillation efficiency has been put into practical use. Generally, CsI: Na doped with NaI (sodium iodide) or TlI (thallium iodide), CsI: Tl.
[0003]
Reasons for using CsI as a matrix include (1) high radiation absorption efficiency, (2) little radiation damage, and (3) thin film preparation by vacuum deposition or the like.
[0004]
However, CsI: Na is excellent in luminous efficiency, but has a disadvantage that scintillation efficiency is lowered due to deliquescence in the atmosphere.
[0005]
CsI: Tl does not cause degradation of scintillation characteristics in the air in a short time, but Tl (thallium) is a very toxic substance and has environmental problems. Yes.
[0006]
[Problems to be solved by the invention]
The present invention provides a scintillator material that is based on CsI, which is an excellent material as a scintillator material, and does not decrease the scintillation efficiency in the atmosphere like CsI: Na, and has no toxicity, and a method for producing the scintillator material. is there.
[0007]
[Means for Solving the Problems]
The present invention relates to a scintillator material composed of a CsI-CuI mixed crystal, preferably a scintillator material composed of a CsI-CuI mixed crystal having a CuI concentration of 5 to 50 mol% with respect to CsI, and more preferably a CuI concentration of 10 to CsI. Provided is a scintillator material comprising a CsI-CuI mixed crystal of -30 mol%.
[0008]
Further, the present invention is to prepare a CsI-CuI mixture by adding CuI to CsI, and to form a CsI-CuI mixed crystal on the substrate using the CsI-CuI mixture as a supply source. A method for producing a scintillator material is provided.
[0009]
In the present invention, as an extremely practical scintillator material, a CsI thin film and a CuI thin film are alternately formed on a substrate, and a CsI-CuI mixed crystal is formed on the boundary surface between the CsI thin film and the CuI thin film. A scintillator material is provided.
[0010]
Further, according to the present invention, as a practical method for producing a scintillator material, CsI and CuI are used as independent supply sources, and CsI and CuI are selectively supplied from the respective CsI supply source and CuI supply source. Provides a method for producing a scintillator material, characterized in that CsI thin films and CuI thin films are alternately formed on a substrate.
[0011]
Furthermore, the present invention provides a radiation detection apparatus comprising a scintillator material made of a mixed crystal of CsI-CuI and a fluorescence detection element that detects fluorescence emitted from the scintillator material.
[0012]
The present invention also provides a scintillator material in which a CsI thin film and a CuI thin film are alternately formed on a substrate, and a CsI-CuI mixed crystal is formed on the interface between the CsI thin film and the CuI thin film, and the scintillator material. Provided is a radiation detection apparatus including a fluorescence detection element for detecting emitted fluorescence.
[0013]
The present invention also provides a scintillator material comprising a CsBr—CuBr mixed crystal or a CsCl—CuCl mixed crystal.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, typical embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
As described above, since CsI is a very excellent scintillator material, it is based on CsI, is the same group of I-VII, has good chemical consistency, and is relatively stable in the atmosphere, not a poison. A scintillator material was prepared using certain copper halide CuI as an additive. As a method for preparing the thin film sample, a vacuum deposition method using a normal deposition source heating method was adopted because of the advantage of simplicity. The following two types of thin film structures were produced. One is a CsI: Cu thin film using a mixture of CuI at a predetermined concentration with respect to CsI as an evaporation source, and the other is CsI in which thin films are alternately deposited using CsI and CuI as independent evaporation sources. / CuI multilayer film. In the CsI / CuI multilayer film, it was found that CsI and CuI were mixed by atomic diffusion at the interface, that is, a mixed crystal of CsI-CuI was generated.
[0016]
In order to develop a scintillator material, it is essential to evaluate both the structural characteristics and scintillation characteristics of the material. Regarding the structural characteristics, crystallinity evaluation by X-ray structural analysis (θ-2θ method) and surface structure observation by an atomic force microscope were performed. For the scintillation characteristics, the X-ray excitation emission spectrum and response time were evaluated. The results of the present invention were obtained by combining these evaluation results.
[0017]
First, an example of a CsI: Cu thin film will be described. As the substrate, quartz glass was used for optical measurement. However, since the bonds between constituent atoms of weakly ionic I-VII materials are weak, it is a thin film substrate that causes problems in the production of covalently bonded semiconductor thin films. Material dependence is negligible. The substrate temperature was set to around 50 ° C., and the deposition rate was set to 0.3 to 1 nm / sec. These production conditions are common to all the examples.
[0018]
FIG. 1 shows X-ray excitation emission spectra of CsI: Cu thin films (film thickness: 1 μm) at different CuI addition concentrations. Each spectrum is normalized by the maximum emission intensity. The X-ray source used is an X-ray tube having a copper target. At an addition concentration of 0.1 mol%, 4.0 eV emission due to self-bound excitons inherent in the base CsI crystal is observed as main emission. Here, the self-bound exciton means a state where an exciton in which electrons and holes are combined is localized by lattice strain produced by itself, and 4.0 eV emission is the origin of scintillation in a pure CsI crystal. is there. Emission due to CuI having a peak at 2.8 eV was observed at an addition concentration of 1 mol% or more. At 10 mol%, the intensity of 4.0 eV emission intrinsic to CsI of the base is negligibly low compared to 2.8 eV emission. Become.
[0019]
FIG. 2 shows the dependence of 2.8 eV emission on the CuI addition concentration. The light emission efficiency is particularly high in the concentration range of 5 to 50 mol%, and it is maximum at 10 to 30 mol%, which is equivalent to CsI: Na. Specifically, it is about 90% with respect to the efficiency of a CsI: Na thin film produced using a commercially available CsI: Na scintillator crystal as a deposition source. The above results clearly show the effectiveness and optimum conditions of CuI addition for the scintillation function.
[0020]
FIG. 3 shows the time decay characteristics of 2.8 eV emission in a CsI: Cu thin film (CuI concentration 10 mol%: film thickness 1 μm). In the measurement, a nitrogen pulse laser (wavelength 337 nm, pulse width 300 ps) was used as an excitation source. The excitation process is a two-photon absorption process of a nitrogen pulse laser, the substantial excitation wavelength corresponds to 168 nm, and electron excitation with sufficiently high energy occurs. The observed emission lifetime (corresponding to the time when the emission intensity falls to 1 / e) is 1.0 μs, which is the same as the Na emission lifetime of 0.63 μs in CsI: Na, and 1.0 μs of the Tl emission lifetime in CsI: Tl. The scintillation response time is comparable.
[0021]
Next, the change with time of the CsI: Cu thin film (CuI concentration 10 mol%: film thickness 1 μm) in X-ray excitation luminescence intensity in the air was measured. As shown in FIG. 4, the light emission intensity did not change at all even when left for 4 weeks. This result clearly shows the stability of scintillation upon addition of CuI. However, in the case of a CsI: Cu thin film, the thin film tends to become cloudy. White turbidity is expected to reduce image sharpness in some applications, such as X-ray imaging applications, because it enhances light scattering in thin films and reduces light transmission. The solution to this problem will be described later.
[0022]
As described above, when CuI is added, a concentration of about 10 to 30 mol% is required to obtain the maximum luminous efficiency. In crystal physics, this concentration is not a doping premised on a dilute system, but falls within the category of mixed crystals. In addition, the addition concentration of NaI and TlI in conventional CsI: Na and CsI: Tl is usually 1 mol% or less. The height of the CuI addition concentration in the CsI: Cu thin film was evaluated from the X-ray structural analysis.
[0023]
FIG. 5 shows X-ray diffraction patterns of CsI: Cu thin films (film thickness: 1 μm) at different CuI addition concentrations. At a CuI concentration of 5 mol% or more, peaks different from (110) diffraction of CsI as a base material clearly appear, and at 10 mol% or more, they are main peaks. The appearance of diffraction peaks other than CsI means that a substance different from CsI is formed, and can be attributed to the diffraction pattern of Cs 3 Cu 2 I 5 [(CsI) 3- (CuI) 2 mixed crystal]. That is, it can be said that the 2.8 eV emission generated by the addition of CuI originates from a CsI-CuI mixed crystal. So far, the scintillation function of CsI-CuI mixed crystals has not been known, and this function has been demonstrated for the first time by the present invention.
[0024]
Although the CsI-CuI mixed crystal thin film has excellent scintillation characteristics as described above, it has a drawback that the thin film becomes cloudy. As an attempt to solve this, a CsI / CuI multilayer film was produced and evaluated for characteristics. The point of interest is in the prediction that a CsI-CuI mixed crystal is formed by atomic diffusion at the CsI / CuI interface.
[0025]
FIG. 6 shows an X-ray diffraction pattern of a CsI (50 nm) / CuI (dnm) multilayer film in which the CsI layer thickness is fixed to 50 nm and the CuI layer thickness is changed from 1 to 30 nm. The total film thickness of each sample is set to 1 μm.
[0026]
6 and the X-ray diffraction pattern of the CsI: Cu thin film (FIG. 5), it can be confirmed that a CsI-CuI mixed crystal is formed in the CsI / CuI multilayer film, which proves the initial prediction. It was something to do.
[0027]
FIG. 7 shows an X-ray excitation emission spectrum of a CsI (50 nm) / CuI (10 nm) multilayer film (total film thickness 1 μm) and a CsI: Cu thin film (CuI concentration 10 mol%: film thickness 1 μm). In the multilayer film, the same 2.8 eV emission as the CsI: Cu thin film is observed. The CuI concentration of the CsI: Cu thin film compared in FIG. 7 is 10 mol% at which the luminous efficiency is the highest (see FIG. 2), and the luminous efficiency of the CsI (50 nm) / CuI (10 nm) multilayer film is higher than that. (About 150%).
[0028]
FIG. 8 shows the CuI layer thickness dependence of the X-ray excitation luminescence intensity of the CsI (50 nm) / CuI (dnm) multilayer film (total film thickness 1 μm). The luminous efficiency is maximized when the CuI layer thickness is 10 to 20 nm.
[0029]
Although it has been described above that white turbidity is a problem in the CsI: Cu thin film, the CsI / CuI multilayer film has very high transparency. FIG. 9 shows a transmission spectrum of a CsI (50 nm) / CuI (10 nm) multilayer film (total film thickness 1 μm) and a CsI: Cu thin film (CuI concentration 10 mol%: film thickness 1 μm). It clearly demonstrates the superiority. The reason why the transmittance sharply decreases to zero near 4 eV is that the fundamental absorption edge of the CsI-CuI mixed crystal is at 4.1 eV. The vibration structure seen in the transmission spectrum of the multilayer film is due to Fabry-Perot interference unique to a highly transparent thin film structure [multiple interference effect due to reflection of the front and back surfaces of the thin film (interface between the substrate and the thin film)]. In the energy region of scintillation luminescence, the maximum transmittance is almost 100%, indicating ideal transparency. In consideration of sufficiently absorbing radiation, the number of CsI and CuI multilayer films is preferably large, and several hundred layers are suitable for practical use.
[0030]
It is well known that the transparency of a substance depends on light scattering due to surface irregularities. Therefore, in order to evaluate the surface structure of the CsI / CuI multilayer film in detail, measurement was performed with an atomic force microscope (AFM). FIG. 10 shows the surface roughness shape of the CsI (50 nm) / CuI (10 nm) multilayer film obtained from the AFM measurement. It can be confirmed that the unevenness is about several nm, and it is clear that the surface is extremely flat. In the CsI: Cu thin film, irregularities of about 50 nm were confirmed.
[0031]
In the above embodiment, a CsI-CuI mixed crystal thin film or a CsI / CuI multilayer film is described. However, a CsI-CuI mixed crystal is effective even for a bulk crystal. Next, FIG. 11 shows an embodiment in which CuBr or CuCl is applied instead of CuI.
[0032]
FIG. 11 shows X-ray excitation light emission when a CsBr (50 nm) / CuBr (10 nm) multilayer film (total film thickness 1 μm) and a CsCl (50 nm) / CuCl (10 nm) multilayer film (total film thickness 1 μm) are used as samples. The spectrum is shown. Although the strength is about 1/10 that of the CsI / CuI multilayer film, these materials can also be used as new and useful scintillation materials.
[0033]
FIG. 12 is a schematic cross-sectional view schematically showing a radiation detection apparatus according to an embodiment of the present invention, in which 1 is a scintillator material, and 2 is a substrate (for example, quartz glass) on which the scintillator material is formed. ) 3 is an optical fiber, 4 is a fluorescence detection element (for example, CCD), and 5 is a frame. For example, the incident radiation 6 is converted into fluorescence by the scintillator material 1, and the fluorescence is detected via the optical fiber. It is an electrical output at.
[0034]
【The invention's effect】
As described above, the present invention provides a scintillator material composed of a mixed crystal of CsI-CuI, and scintillation efficiency and response time are equivalent to those of conventional CsI: Na or CsI: Tl. Thus, a new material that does not have a decrease in scintillation efficiency in the atmosphere and has no concern about toxicity such as CsI: Tl was provided.
[0035]
In addition, a so-called multilayer thin film in which CsI thin films and CuI thin films are alternately formed has improved transparency and surface flatness, which were not sufficient with a single layer film or bulk crystal, and can further contribute to an improvement in efficiency.
[Brief description of the drawings]
FIG. 1 shows X-ray excited emission spectra of CsI: Cu thin films at different CuI doping concentrations.
FIG. 2 is a graph showing the CuI concentration dependence of the 2.8 eV emission intensity of a CsI: Cu thin film.
FIG. 3 is a diagram showing time decay characteristics of 2.8 eV emission of CsI: Cu thin film (10 mol%).
FIG. 4 is a graph showing the change over time in the air atmosphere of the X-ray excited luminescence intensity of a CsI: Cu thin film (10 mol%).
FIG. 5 shows X-ray diffraction patterns of CsI: Cu thin films at different CuI doping concentrations.
FIG. 6 is a diagram showing an X-ray diffraction pattern of a CsI (50 nm) / CuI (dnm) multilayer film.
FIG. 7 is a diagram showing an X-ray excitation emission spectrum of a CsI (50 nm) / CuI (10 nm) multilayer film and a CsI: Cu thin film (10 mol%).
FIG. 8 is a graph showing the CuI layer thickness (d) dependence of the X-ray excited luminescence intensity of a CsI (50 nm) / CuI (dnm) multilayer film.
FIG. 9 is a diagram showing transmission spectra of a CsI (50 nm) / CuI (10 nm) multilayer film and a CuI: Cu thin film (10 mol%).
FIG. 10 is a diagram showing surface roughness characteristics of a CsI (50 nm) / CuI (10 nm) multilayer film obtained from atomic force microscope (AFM) measurement.
FIG. 11 is a diagram showing X-ray excitation emission spectra of CsBr (50 nm) / CuBr (10 nm) and CsCl (50 nm) / CuCl (10 nm) multilayer films.
FIG. 12 is a schematic sectional view of a radiation detection apparatus according to an embodiment of the present invention.

Claims (9)

CsI(ヨウ化セシウム)−CuI(ヨウ化銅)混晶体よりなるシンチレータ材料。A scintillator material comprising a CsI (cesium iodide) -CuI (copper iodide) mixed crystal. CsI−CuI混晶体であって、CsIに対してCuI濃度が5〜50mol%であることを特徴とするシンチレータ材料。A scintillator material which is a CsI-CuI mixed crystal and has a CuI concentration of 5 to 50 mol% with respect to CsI. CsI−CuI混晶体であって、CsIに対してCuI濃度が10〜30mol%であることを特徴とするシンチレータ材料。A scintillator material which is a CsI-CuI mixed crystal and has a CuI concentration of 10 to 30 mol% with respect to CsI. CsIに対しCuIを添加してCsI−CuIの混合体を作製し、上記CsI−CuIの混合体を供給源として、基板上にCsI−CuIの混晶体を形成することを特徴とする請求項1、2、3の何れかに記載のシンチレータ材料の製造方法。2. A CsI—CuI mixture is prepared by adding CuI to CsI, and a CsI—CuI mixed crystal is formed on a substrate using the CsI—CuI mixture as a supply source. A method for producing a scintillator material according to any one of items 2 and 3. 基板上にCsI薄膜とCuI薄膜が交互に形成され、上記CsI薄膜と上記CuI薄膜の境界面には、CsI−CuIの混晶体が形成されてなるシンチレータ材料。A scintillator material in which CsI thin films and CuI thin films are alternately formed on a substrate, and a CsI-CuI mixed crystal is formed on the boundary surface between the CsI thin films and the CuI thin films. CsIとCuIとをそれぞれ独立の供給源とし、上記それぞれのCsI供給源及びCuI供給源より選択的にCsI及びCuIを供給することによって、基板上にCsI薄膜及びCuI薄膜を交互に形成することを特徴とするシンチレータ材料の製造方法。CsI and CuI are used as independent sources, and CsI and CuI thin films are alternately formed on the substrate by selectively supplying CsI and CuI from the respective CsI and CuI sources. A method for manufacturing a scintillator material. シンチレータ材料と、上記シンチレータ材料から発せられる蛍光を検出する蛍光検出素子からなる装置であって、上記シンチレータ材料が請求項1、2、3の何れかに記載のシンチレータ材料である放射線検出装置。A radiation detection apparatus comprising a scintillator material and a fluorescence detection element for detecting fluorescence emitted from the scintillator material, wherein the scintillator material is the scintillator material according to any one of claims 1, 2, and 3. 基板上にCsI薄膜とCuI薄膜が交互に形成され、上記CsI薄膜と上記CuI薄膜の境界面には、CsI−CuIの混晶体が形成されてなるシンチレータ材料と、上記シンチレータ材料から発せられる蛍光を検出する蛍光検出素子からなる放射線検出装置。A CsI thin film and a CuI thin film are alternately formed on a substrate, and a scintillator material in which a mixed crystal of CsI-CuI is formed on the interface between the CsI thin film and the CuI thin film, and fluorescence emitted from the scintillator material. A radiation detection device comprising a fluorescence detection element for detection. CsBr(臭化セシウム)−CuBr(臭化銅)混晶体又はCsCl(塩化セシウム)−CuCl(塩化銅)混晶体よりなるシンチレータ材料。A scintillator material comprising a CsBr (cesium bromide) -CuBr (copper bromide) mixed crystal or a CsCl (cesium chloride) -CuCl (copper chloride) mixed crystal.
JP2001347335A 2001-11-13 2001-11-13 Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material Expired - Fee Related JP3851547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001347335A JP3851547B2 (en) 2001-11-13 2001-11-13 Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347335A JP3851547B2 (en) 2001-11-13 2001-11-13 Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material

Publications (2)

Publication Number Publication Date
JP2003147343A JP2003147343A (en) 2003-05-21
JP3851547B2 true JP3851547B2 (en) 2006-11-29

Family

ID=19160352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347335A Expired - Fee Related JP3851547B2 (en) 2001-11-13 2001-11-13 Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material

Country Status (1)

Country Link
JP (1) JP3851547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315919B2 (en) 2013-07-30 2016-04-19 Canon Kabushiki Kaisha Scintillator plate and radiation detector
CN109991649A (en) * 2019-03-26 2019-07-09 华中科技大学 A method of preparing inorganic scintillator film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA77423C2 (en) * 2004-02-06 2006-12-15 Inst Scintillation Materials O Scintillation material based on activated lithium iodide crystal
US7482602B2 (en) * 2005-11-16 2009-01-27 Konica Minolta Medical & Graphic, Inc. Scintillator plate for radiation and production method of the same
JP2007212218A (en) * 2006-02-08 2007-08-23 Konica Minolta Medical & Graphic Inc Scintillator plate
US8674309B2 (en) 2010-01-28 2014-03-18 Canon Kabushiki Kaisha Scintillator crystal body, method for manufacturing the same, and radiation detector
JP5121960B2 (en) * 2011-03-30 2013-01-16 キヤノン株式会社 Scintillator crystals with phase separation structure
US9091768B2 (en) 2011-06-06 2015-07-28 Canon Kabushiki Kaisha Scintillator material and radiation detector using same
US8586931B2 (en) * 2011-07-12 2013-11-19 Canon Kabushiki Kaisha Scintillator having phase separation structure and radiation detector using the same
US8803099B2 (en) 2012-06-06 2014-08-12 Canon Kabushiki Kaisha Compound, scintillator, and radiation detector
KR101659860B1 (en) * 2014-10-21 2016-09-26 고리츠다이가쿠호징 오사카후리츠다이가쿠 Method for manufacturing alkali halide-based scintillator powder and method for manufacturing scintillator material
CN104479672A (en) * 2014-11-20 2015-04-01 同济大学 Doping modification method of gamma-CuI (cuprous iodide) scintillating material
KR20210002985A (en) * 2019-07-01 2021-01-11 삼성전자주식회사 Luminescent compound, method of manufacturing the same and light emitting device including the same
CN110459640B (en) * 2019-07-15 2021-05-11 郑州大学 Based on Cs3Cu2I5Self-powered perovskite photoelectric detector and preparation method thereof
CN111792665B (en) * 2020-07-17 2022-05-24 湘潭大学 Method for high-pressure solid-phase synthesis of copper-cesium-iodide lead-free quantum dots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315919B2 (en) 2013-07-30 2016-04-19 Canon Kabushiki Kaisha Scintillator plate and radiation detector
CN109991649A (en) * 2019-03-26 2019-07-09 华中科技大学 A method of preparing inorganic scintillator film

Also Published As

Publication number Publication date
JP2003147343A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3851547B2 (en) Scintillator material, manufacturing method thereof, and radiation detection apparatus using the material
Yuan Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield
Zhu et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators
US7854961B1 (en) Scintillation materials with reduced afterglow and method of preparation
JP3714918B2 (en) Radiation detector
JP5759374B2 (en) Luminescent substance and radiation detection method using the same
Wibowo et al. Development and challenges in perovskite scintillators for high-resolution imaging and timing applications
Děcká et al. Timing performance of lead halide perovskite nanoscintillators embedded in a polystyrene matrix
JP6116386B2 (en) Compound, structure, scintillator, radiation detector and method for producing them
Wang et al. Cs3Cu2I5 perovskite nanoparticles in polymer matrix as large-area scintillation screen for high-definition X-ray imaging
Ding et al. High-Efficiency Down-Conversion Radiation Fluorescence and Ultrafast Photoluminescence (1.2 ns) at the Interface of Hybrid Cs4PbBr6–CsI Nanocrystals
Douissard et al. Epitaxial growth of LuAG: Ce and LuAG: Ce, Pr films and their scintillation properties
Wang et al. Flexible and stable copper-based halide scintillator for high-performance X-ray imaging
Ouyang et al. Efficient sky-blue radioluminescence of microcrystalline Cs 3 Cu 2 I 5 based large-scale eco-friendly composite scintillators for high-sensitive ionizing radiation detection
Xu et al. Transparent 0D Antimony Halides Glassy Wafer with Near‐Unity Photoluminescence Quantum Yield for High Spatial Resolution X‐Ray Imaging
Li et al. Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators
JPWO2007060814A1 (en) Radiation scintillator plate
CN114958349B (en) Preparation method and application of all-inorganic perovskite scintillator nanowire array
Cova et al. Scintillation Properties of CsPbBr3 Nanocrystals Prepared by Ligand-Assisted Reprecipitation and Dual Effect of Polyacrylate Encapsulation toward Scalable Ultrafast Radiation Detectors
Zhao et al. Solution-Processed Hybrid Europium (II) Iodide Scintillator for Sensitive X-Ray Detection
JP3130632B2 (en) Radiation image conversion panel
CN114447137A (en) X-ray detector and preparation method thereof
JP2006098241A (en) Radiation image conversion panel
Matsuzawa et al. Optical and scintillation properties of (ClPEA) 2PbCl4 crystals forming quantum well structures
RU2577841C2 (en) Variable-afterglow x-ray phosphor made of gadolinium-terbium oxysulphide and pixelated screen based thereon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees