JP3850929B2 - Gas turbine blade repair method, repair device therefor, and gas turbine blade - Google Patents

Gas turbine blade repair method, repair device therefor, and gas turbine blade Download PDF

Info

Publication number
JP3850929B2
JP3850929B2 JP23517496A JP23517496A JP3850929B2 JP 3850929 B2 JP3850929 B2 JP 3850929B2 JP 23517496 A JP23517496 A JP 23517496A JP 23517496 A JP23517496 A JP 23517496A JP 3850929 B2 JP3850929 B2 JP 3850929B2
Authority
JP
Japan
Prior art keywords
welding
blade
gas turbine
turbine blade
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23517496A
Other languages
Japanese (ja)
Other versions
JPH1080767A (en
Inventor
慶一 浦城
忠 粕谷
栄次 芦田
孝雄 舟本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23517496A priority Critical patent/JP3850929B2/en
Publication of JPH1080767A publication Critical patent/JPH1080767A/en
Application granted granted Critical
Publication of JP3850929B2 publication Critical patent/JP3850929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding

Description

【0001】
【発明の属する技術分野】
本発明はガスタービン翼の補修方法およびガスタービン翼およびガスタービン翼の補修装置の改良に係わり、特に動翼の損傷先端部に肉盛溶接を施し、翼形状を復元するようになしたガスタービン翼の補修技術に関するものである。
【0002】
【従来の技術】
火力発電プラントの構成機器の一部であるガスタービンにおいて、動翼は極めて高温の環境下で使用される。そのため上記動翼の先端部は供用期間中に磨耗あるいは高温酸化による減肉などの劣化が生じる可能性があり、割れなどの不具合の発生が懸念されている。上記動翼を補修によって供用状態に復元する場合、補修施工の一つに肉盛溶接が挙げられる。これは動翼先端部の劣化した部位に対して肉盛溶接することで劣化部を補充する施工である。
【0003】
なお、この種ガスタービン動翼の補修方法に関連するものとしては、例えば特開平3−33402号公報が挙げられる。
【0004】
【発明が解決しようとする課題】
このように一般には肉盛溶接によりガスタービン翼は復元されるわけであるが、しかしながら、この肉盛溶接による補修方法であると、図13にも示されているように、動翼1の先端部における劣化部2の形状は一様ではなく、動翼によって様々な状態の劣化部が存在する。この劣化部2の補修を手溶接で行う場合、マニュアル施工のため入熱の制御に限界が生じる。上記動翼はNi基超合金によって製造されており、高温割れの割れ感受性が高い。そのため手溶接によって入熱が大きくなった場合には、溶接熱影響部において新たな高温割れが発生する恐れがあった。
【0005】
また、入熱状態を制御するには、溶接位置に応じてアーク電圧を自動的に制御するが望ましいが、図14に示すような局部的な劣化部2の補修には制御が困難であった。また、各劣化部の状態に応じてならい溶接をするには劣化部の形状に対応した溶接軌跡を個々に入力する必要があり、自動化が困難であった。
【0006】
さらに、制御された入熱量で動翼の先端部を肉盛溶接するとき、溶接面を平坦とした従来技術では、溶接部近傍に溶接不良部が発生する可能性があった。
【0007】
本発明はこれに鑑みなされたもので、その目的とするところは、先端部が劣化したガスタービン動翼に対して、入熱を制御した自動溶接を容易に行うことが可能で、かつ溶接不具合の発生しない健全な肉盛溶接部を形成する施工方法、および溶接不具合のない健全な肉盛溶接部を有するガスタービン動翼を提供するにある。
【0008】
【課題を解決するための手段】
すなわち本発明は、ガスタービン動翼の先端部を肉盛溶接によって補修する施工において、溶接施工の前に先端部を所定の形状に切断あるいは研削して当該面を表面仕上げした後に肉盛溶接するようになし所期の目的を達成するようにしたものである。
【0009】
また、本発明は、ガスタービン動翼の先端部を肉盛溶接によって補修する施工において、溶接施工の前に先端部を動翼の元の先端面に平行な所定の形状に切断あるいは研削して当該面を表面仕上げした後に肉盛溶接するようにしたものである。また、ガスタービン動翼の先端部を肉盛溶接によって補修する施工において、溶接施工の前に先端部を動翼の元の先端面から一定の傾角を有する所定の形状に切断あるいは研削して当該面を表面仕上げした後に肉盛溶接するようにしたものである。
【0010】
また、本発明は、ガスタービン動翼の先端部を肉盛溶接によって補修する施工において、溶接施工の前に先端部を所定の形状に切断あるいは研削して当該面を表面仕上げした後、当該面の溶接対象部における溶接のならい位置および各部位における溶接条件を事前に溶接トーチの駆動機構および溶接条件の制御機構に入力して肉盛溶接するようにしたものである。また、動翼をタービンディスクに組み込んだまま肉盛溶接するようにしたものである。
【0011】
また、本発明は、ガスタービン動翼の先端部を肉盛溶接によって補修する施工において、溶接施工の前に先端部を所定の形状に切断あるいは研削した後、当該面の縁部が中央部よりも高くなるように仕上げ加工し、肉盛溶接するようにしたものである。また、溶接施工の前に切断あるいは研削して当該面を表面仕上げした先端部の形状が動翼のタービンディスクに組み込まれる段あるいは動翼のサイズあるいは動翼の材質あるいは動翼の供用環境あるいは動翼の供用年数に応じて定められることを特徴とする。
【0012】
また、本発明は、上記補修施工において、肉盛溶接後、補修部をガスタービン動翼の元の形状に仕上げ加工するようにしたものである。また、上記補修施工において、溶接施工の前に切断あるいは研削した当該面の形状に応じて肉盛溶接施工中あるいは施工前後の予熱条件あるいは冷却条件を設定するようにしたものである。また、先端部に一定形状の肉盛溶接部を有するように翼群を形成するようにしたものである。
【0013】
また、先端部の肉盛溶接部の形状あるいは大きさが動翼のタービンディスクに組み込まれる段あるいは動翼のサイズあるいは動翼の材質あるいは動翼の溶接前の供用環境あるいは動翼の溶接前の供用年数に応じて定められていることを特徴とするガスタービン動翼を提供するものである。また、肉盛溶接部を含む動翼先端部が動翼製造時の動翼先端部と同一の形状を有することを特徴とするガスタービン動翼を提供するものである。
【0014】
また、本発明は、溶接トーチ、溶接電源、溶加材供給機構、ガスシールド機構、動翼の予熱機構あるいは冷却機構、溶接トーチ駆動機構、溶接部監視機構、溶接線のならい制御機構、溶接条件の制御機構を具備し、かつガスタービン動翼の先端の溶接対象部が所定の形状であることを判断する機構および所定の形状からの誤差を補正してならい溶接する制御機構を具備するようにしたものである。
【0015】
すなわちこのように形成されたガスタービン翼の補修方法であると、ガスタービン翼の損傷部分を所定の形状に切削し、かつその切削面に表面仕上げを施し、その後で表面仕上げを施した部分に肉盛溶接を施すようにしたので、溶接対象部が一定の形状に加工されていることから、溶接電流、溶接電圧、アーク長等の溶接条件の設定および入熱制御を容易に行うことが可能となり、また、翼は、元の劣化部の形状にかかわらずどの翼に対しても一定の形状に加工されるため、どの翼に対しても一定の溶接条件で施工が可能であり、肉盛溶接部からなる補修部の品質が翼によってばらつくことなく均一化させることが可能となるのである。
【0016】
また、溶接施工の前に先端部を一定の形状に切断あるいは研削して切断面を表面仕上げした後に肉盛溶接することによって、溶接不具合の発生しない健全な肉盛溶接部を形成することができる。また、先端部を一定形状に加工した後の溶接対象部は同一形状となっているため、本発明では、それぞれの段において一度の設定条件の入力によってその段を構成する一連の動翼を補修することができ、補修施工の時間を大幅に短縮することが可能となるのである。
【0017】
【発明の実施の形態】
以下図示した実施例に基づいて本発明を詳細に説明する。図1にはそのガスタービン動翼の補修状態が示されている。本実施の形態では溶接方式は、例えば図1に示すように電極と母材との間にアークを発生させるアーク溶接の場合を示しているが、本発明はTIGアーク、プラズマアーク、レーザ等どのような溶接熱源を用いた場合でも実施可能である。
【0018】
〔実施の形態1〕
本発明による、溶接施工の前に先端部を所定の形状に切断して切断面を表面仕上げした後に肉盛溶接するガスタービン動翼の補修施工を図1および図2を用いて説明する。図1(a)〜(c)はガスタービン動翼の先端部近傍を横からみた図である。同図(a)は補修前の先端部が劣化した動翼である。この動翼1の補修に際し、まず劣化部2を含む先端部を同図(b)に示すようにある一定の形状に切断あるいは研削する。この切断あるいは研削施工によって、切断あるいは研削された劣化部3の形状にかかわらず肉盛溶接の対象となる溶接対象面4は一定の形状となる。
【0019】
また、上記施工は、動翼における劣化部の発生位置が偏在していない場合、図2(a)に示すように元の先端部に平行に切断あるいは研削することによって肉盛溶接の姿勢は常に下向きになり、溶接条件に対する肉盛部形状を均一化させるためには望ましい。しかしながら動翼における劣化部3の発生位置が偏在している場合、同図(b)に示すように劣化部3の偏在位置をカバーするように切断あるいは研削した方が効率的である。この場合、動翼の元の先端面から一定の傾角を有する所定の形状に切断あるいは研削することが溶接施工を安定化させるためには望ましい。
【0020】
また、動翼における劣化部の形状あるいは偏在度が動翼のタービンディスクに組み込まれる段あるいは動翼のサイズあるいは動翼の材質あるいは動翼の供用環境あるいは動翼の供用年数に応じて異なる場合、前記条件に応じた肉盛部形状を形成するため、前記条件に応じた形状に切断あるいは研削加工を施すことが望ましい。
【0021】
次に、切断あるいは研削施工の後溶接対象面4に対して表面仕上げを施し、図1(c)に示すように肉盛溶接を行う。本発明では、溶接対象部が一定の形状に加工されているため、溶接電流、溶接電圧、アーク長等の溶接条件の設定および入熱制御を容易に行うことが可能である。また、元の劣化部3の形状にかかわらず、どの動翼に対しても一定の形状に加工するため、どの動翼に対しても一定の溶接条件で施工が可能であり、肉盛溶接部5からなる補修部の品質が動翼によってばらつくことなく均一化する。
【0022】
以上のように本発明では、溶接施工の前に先端部を一定の形状に切断あるいは研削して切断面を表面仕上げした後に肉盛溶接することによって、溶接不具合の発生しない健全な肉盛溶接部を形成することができる。
【0023】
〔実施の形態2〕
本発明による、溶接対象部における溶接のならい位置および各部位における溶接条件を事前に溶接トーチの駆動機構および溶接条件の制御機構に入力して肉盛溶接する補修方法を図3および図4を用いて説明する。
【0024】
図3は先端部を一定の形状に加工して表面仕上げした動翼を横および上から見たものである。同一サイズの動翼の場合、図3に示す上記仕上げ後の溶接対象面4は同一形状をしている。したがって、図4に示すように溶接対象面4にならう溶接トーチ6の移動の軌跡を事前に溶接トーチの駆動機構11を制御する制御装置20より入力しておくことによって、同一サイズの動翼1において補修施工前に存在した劣化部3の形状にかかわらず、図4に示す肉盛溶接施工を複数の動翼に対して一連の流れ作業で自動的に行うことが可能である。
【0025】
また図4における溶接対象面4の各部位における溶接条件をそれぞれの位置に応じて適正に設定して、移動軌跡あるいは溶接開始からの時間に対応させて制御装置20より入力しておくことが望ましい。
【0026】
以上のように本発明では、溶接施工の前に先端部を一定の形状に切断あるいは研削して切断面を表面仕上げした後、溶接線にならう溶接トーチの移動の軌跡および各部位に対する溶接条件を入力させて肉盛溶接することにより、補修施工の自動化が可能でかつ溶接不具合の発生しない健全な肉盛溶接部を形成することができる。
【0027】
〔実施の形態3〕
本発明による、動翼をタービンディスクに組み込んだまま肉盛溶接する補修方法を図5および図6を用いて説明する。図5はタービンディスクに組み込まれた動翼の補修施工の断面図である。
【0028】
図5に示すように、クレーン10に取り付けられたトーチ駆動機構11によって溶接トーチ6は先端部を一定の形状に切断あるいは研削して表面仕上げした動翼1にセットされる。このトーチ6は例えば図3に示した溶接対象面4にならうように駆動機構11によって移動し、肉盛溶接される。肉盛溶接の状況は監視モニタカメラ12によって監視され、適正な補修が行われるよう制御される。1個の動翼の補修施工の終了後、トーチ6は次の動翼にセッティングされる。
【0029】
また、図6はある段におけるタービンディスク部と動翼のみをピックアップし、かつ動翼を典型的な2ヶ所の角度のみを図示した図である。トーチのセッティングはトーチの角度、すなわち溶接姿勢の影響が無視できる範囲においてはトーチを移動させて良いが、溶接姿勢が問題となる条件下では、図6に示すようにタービンディスク9を回転させてトーチ6を次の補修対象となる動翼1にセッティングさせる。
【0030】
ガスタービン動翼は各段毎にサイズが異なるので、各段毎の溶接線軌跡および溶接条件の設定が必要であるが、それぞれの段における一連の動翼は同一サイズであり、本発明による先端部を一定形状に加工した後の溶接対象部は同一形状となっている。このため本発明では、それぞれの段において一度の設定条件の入力によってその段を構成する一連の動翼を補修することが可能であり、補修施工の時間を大幅に短縮することができる。
【0031】
〔実施の形態4〕
本発明による、先端部を所定の形状に切断あるいは研削した後、当該面の縁部が中央部よりも高くなるように仕上げ加工し、肉盛溶接するガスタービン動翼の補修方法を図7および図8を用いて説明する。
【0032】
図7および図8は溶接方向に垂直な動翼先端部の断面を表している。図7(a)のように溶接対象面4の縁部13と中央部14を同じ高さに仕上げ加工した場合、溶接時の熱影響による高温割れを防止するために低入熱で肉盛溶接すると、溶接条件によっては図7(b)のように縁部13が溶接不良となる恐れがある。また縁部を溶融させるため入熱量を大きくして肉盛溶接すると、溶接条件によっては図7(c)のように熱影響部15で高温割れ16が発生する恐れがある。
【0033】
本発明では、図8(a)のように溶接対象面の縁部13が中央部14よりも高くなるように仕上げ加工して肉盛溶接するようにする。このようにすると、図8(b)に示されているように低入熱で溶接した場合でも縁部13が十分に溶込み、かつ熱影響部15での高温割れの発生しない健全な肉盛溶接部を形成することができるのである。
【0034】
〔実施の形態5〕
本発明による、先端部を所定の形状に切断あるいは研削した後、当該面の縁部が中央部よりも高くなるように仕上げ加工し、肉盛溶接するガスタービン動翼の補修方法を図9および図10を用いて説明する。
【0035】
図9は肉盛溶接後、補修部をガスタービン動翼の元の形状に仕上げ加工したガスタービン動翼を横からみたものである。ガスタービン動翼は補修後、図10に示すようにセラミック層18をコーティングして再び供用される。本発明では図9に示すように動翼先端の補修部17を動翼製造時の元の形状に仕上げ加工することによって肉盛溶接部の凹凸がなくなり、図10に示すように再コーティング時に密着性のよいコーティングを施すことが可能である。
【0036】
〔実施の形態6〕
本発明による、溶接施工の前に切断あるいは研削した当該面の形状に応じて肉盛溶接施工中あるいは施工前後の予熱条件あるいは冷却条件を設定することを特徴とする、ガスタービン動翼の補修方法を図11および図12を用いて説明する。本発明による先端部を所定の形状にするために切断あるいは研削された部分が大きい場合、施工効率を増すために肉盛量が大きいことが望ましい。
【0037】
しかしながら、肉盛のための溶加量を大きくするには入熱量が大きい溶接が必要であり、図7(c)に示した割れ感受性が高まる恐れがある。この場合、動翼を予熱あるいは冷却しながら肉盛溶接する施工が有効である。この予熱条件あるいは冷却条件は動翼先端部の加工された所定の形状に応じて設定される。本発明では動翼先端部は、動翼のタービンディスクに組み込まれる段あるいは動翼のサイズあるいは動翼の材質あるいは動翼の供用環境あるいは動翼の供用年数に応じて所定の形状に定められるため、所定の形状に応じて設定された予熱条件あるいは冷却条件はそれぞれ一定の熱履歴を持たせることが可能である。
【0038】
図11は動翼の外側に加熱機構を具備させて先端部を肉盛溶接する施工を表した図である。高周波加熱機構あるいはアークランプ等で構成される加熱機構21を動翼1の所定の形状に加工された先端部近傍の外側に接触させることにより動翼1の熱影響部の外側は加熱される。このため、動翼における溶接時の予熱効果あるいは後熱効果が増し、熱影響部の冷却速度は極めて遅くなった。この結果、熱影響部に生じる引張応力が緩和されて、肉盛の溶加量を大きくするために入熱量の大きな溶接条件で施工した場合においても高温割れの発生しない健全な肉盛補修溶接が可能となった。
【0039】
また、図12は動翼の外側に水冷機構を具備させて先端部を肉盛溶接する施工を表した図である。水冷されているCu板25を動翼1の所定の形状に加工された先端部近傍の外側に接触させることにより動翼1の熱影響部の外側は冷却される。このため、動翼の溶接時に受ける熱の伝導が加速され、熱影響部は急冷された。この結果、肉盛の溶加量を大きくするために入熱量の大きな溶接条件で施工した場合においても高温割れの発生しない健全な肉盛補修溶接が可能となった。
【0040】
〔実施の形態7〕
本発明による施工あるいは肉盛部を有するガスタービン動翼の形成は、例えば図15に示す溶接装置によって行われる。図15は、溶接トーチ6、溶接電源29、溶加材供給機構30、ガスボンベ38からガス管39を通して供給されるガスシールド機構、動翼1の予熱あるいは冷却機構32、予熱条件あるいは冷却条件の制御機構33、溶接トーチ駆動機構11、溶接部監視機構12、溶接線のならい制御機構34、溶接条件の制御機構35を具備し、かつガスタービン動翼1の先端の溶接対象部が所定の形状であることを判断する機構36および所定の形状からの誤差を補正してならい溶接する制御機構37を具備した溶接装置を示している。
【0041】
ここで動翼の先端の溶接対象部が所定の形状であるかどうかは、例えば所定の形状に加工した想定される溶接対象部を事前に入力しておき、実際にモニターされた動翼の溶接対象部を画像処理したデータと比較して判断される。また、誤差が生じた場合には、モニターされた溶接対象部にしたがって溶接トーチの移動軌跡を補正して溶接が行われる。
【0042】
【発明の効果】
以上説明してきたように本発明によれば、ガスタービン動翼の先端部に対し入熱を制御した自動溶接を容易に行うことが可能で、かつ溶接不具合の発生しない健全な肉盛溶接部を形成することができる。
【図面の簡単な説明】
【図1】本発明のガスタービン動翼の補修状態を示す側面図である。
【図2】ガスタービン動翼の先端の劣化部の加工形態を表す図である。
【図3】先端部を一定の形状に加工して表面仕上げした動翼を上から見た図である。
【図4】溶接線にならって動翼の肉盛溶接施工を自動的に行う様子を表す図である。
【図5】動翼をタービンディスクに設置したまま肉盛溶接する補修方法を表した図である。
【図6】タービンディスクを回転させてトーチを次の補修対象となる動翼にセッティングさせる図である。
【図7】溶接面の縁部と中央部を同じ高さに仕上げ加工した場合の肉盛溶接部を表す図である。
【図8】溶接面の縁部が中央部よりも高くなるように仕上げ加工した場合の肉盛溶接を表す図である。
【図9】肉盛溶接後、補修部をガスタービン動翼の元の形状に仕上げ加工した動翼を横からみた図である。
【図10】肉盛溶接後、セラミック層を再コーティングした動翼先端部を横からみた図である。
【図11】動翼先端部近傍を加熱しながら肉盛溶接する施工図である。
【図12】動翼先端部近傍を冷却しながら肉盛溶接する施工図である。
【図13】動翼先端部における様々な形状を持つ劣化部の図である。
【図14】動翼先端部における局部的な劣化部の補修を表す図である。
【図15】ガスタービン動翼の補修溶接装置を表す図である。
【符号の説明】
1…ガスタービン動翼、2…動翼先端の劣化部、3…切断あるいは研削された劣化部、4…一定の形状に加工された溶接対象面、5…肉盛溶接部、6…溶接トーチ、7…溶接電極、8…アーク、9…タービンディスク、10…クレーン、11…駆動機構、12…監視モニタカメラ、13…仕上げ面の縁部、14…仕上げ面の中央部、15…熱影響部、16…熱影響部での高温割れ、17…肉盛溶接後元の形状に仕上げ加工した補修部、18コーティング層、19…スペーサ、20…駆動機構の制御装置、21…加熱機構、22…電線、23…加熱用電源、24…ホック機構、25…水冷Cu板、26…冷却水注入口、27…冷却水排出口、28…冷却水、29…溶接電源、30…溶加材供給機構、31…溶加材、32…予熱あるいは冷却機構、33…予熱条件あるいは冷却条件の制御機構、34…溶接線のならい制御機構、35…溶接条件の制御機構、36…溶接対象部形状の判断機構、37…ならい溶接の誤差補正制御機構、38…シールドガスボンベ、39…ガス管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine blade repair method and gas turbine blade and gas turbine blade repair device, and more particularly to a gas turbine in which build-up welding is performed on a damaged blade tip to restore the blade shape. It relates to wing repair technology.
[0002]
[Prior art]
In a gas turbine that is a part of the components of a thermal power plant, a moving blade is used in an extremely high temperature environment. For this reason, there is a possibility that the tip of the rotor blade may be worn or deteriorated due to high temperature oxidation during the service period, and there is a concern about the occurrence of defects such as cracks. In the case where the moving blade is restored to a service state by repair, overlay welding is one of the repair works. This is a construction in which the deteriorated portion is replenished by overlay welding on the deteriorated portion of the blade tip portion.
[0003]
In addition, as a thing relevant to the repair method of this kind gas turbine rotor blade, Unexamined-Japanese-Patent No. 3-33402 is mentioned, for example.
[0004]
[Problems to be solved by the invention]
Thus, generally, the gas turbine blade is restored by overlay welding. However, as shown in FIG. 13, the tip of the rotor blade 1 is a repair method by overlay welding. The shape of the deteriorated part 2 in the part is not uniform, and there are deteriorated parts in various states depending on the rotor blades. When repairing the deteriorated portion 2 by manual welding, there is a limit to control of heat input due to manual construction. The moving blade is made of a Ni-base superalloy and has high cracking susceptibility to hot cracking. Therefore, when the heat input is increased by manual welding, there is a possibility that new hot cracks may occur in the weld heat affected zone.
[0005]
In order to control the heat input state, it is desirable to automatically control the arc voltage according to the welding position. However, it is difficult to control the locally deteriorated portion 2 as shown in FIG. . Further, in order to perform welding according to the state of each deteriorated portion, it is necessary to individually input a welding locus corresponding to the shape of the deteriorated portion, and automation is difficult.
[0006]
Furthermore, when the tip of the rotor blade is overlay welded with a controlled amount of heat input, there is a possibility that a poorly welded portion may occur in the vicinity of the welded portion in the conventional technique in which the weld surface is flat.
[0007]
The present invention has been made in view of the above, and an object of the present invention is to easily perform automatic welding with controlled heat input on a gas turbine rotor blade having a deteriorated tip, and a welding failure. It is in providing the construction method which forms the sound build-up weld part which does not generate | occur | produce, and the gas turbine rotor blade which has the sound build-up weld part without a welding defect.
[0008]
[Means for Solving the Problems]
That is, according to the present invention, in the construction for repairing the tip portion of the gas turbine rotor blade by overlay welding, the tip portion is cut or ground into a predetermined shape and the surface is surface-finished before welding, and then overlay welding is performed. It is intended to achieve the intended purpose.
[0009]
Further, in the present invention, in the construction for repairing the tip of the gas turbine blade by overlay welding, the tip is cut or ground into a predetermined shape parallel to the original tip of the blade before welding. After the surface is finished, overlay welding is performed. Also, in repairing the tip of a gas turbine blade by overlay welding, the tip is cut or ground into a predetermined shape having a certain inclination from the original tip of the blade before welding. After the surface is finished, overlay welding is performed.
[0010]
Further, the present invention provides a method for repairing the tip of a gas turbine rotor blade by overlay welding, cutting or grinding the tip into a predetermined shape before the welding, and then finishing the surface. The welding position and the welding conditions at each part of the welding target part are input in advance to the drive mechanism of the welding torch and the control mechanism of the welding conditions, and overlay welding is performed. In addition, overlay welding is performed with the rotor blade being incorporated in the turbine disk.
[0011]
In the present invention, in the construction for repairing the tip portion of the gas turbine rotor blade by overlay welding, after the tip portion is cut or ground into a predetermined shape before the welding construction, the edge portion of the surface from the center portion Is finished so that it becomes higher, and overlay welding is performed. In addition, the shape of the tip, which is cut or ground before the welding process and the surface is finished, is incorporated into the turbine disk of the blade, the size of the blade, the material of the blade, the service environment of the blade, or the It is determined according to the service life of the wing.
[0012]
Further, in the above-described repair work, the present invention finishes the repaired part to the original shape of the gas turbine rotor blade after the overlay welding. Further, in the above repair work, preheating conditions or cooling conditions are set during or after overlay welding according to the shape of the surface cut or ground before the welding work. In addition, the blade group is formed so as to have a fixed welded portion at the tip.
[0013]
In addition, the shape or size of the built-up weld at the tip is the stage or size of the blade, the material of the blade, the service environment before welding of the blade, or the state before welding of the blade. The present invention provides a gas turbine rotor blade characterized by being determined according to the years of service. Further, the present invention provides a gas turbine rotor blade characterized in that a rotor blade tip including a build-up weld has the same shape as the rotor blade tip at the time of manufacturing the rotor blade.
[0014]
The present invention also includes a welding torch, a welding power source, a filler material supply mechanism, a gas shield mechanism, a moving blade preheating mechanism or cooling mechanism, a welding torch drive mechanism, a welded portion monitoring mechanism, a welding line tracking control mechanism, and welding conditions. And a control mechanism for determining that the welding target part at the tip of the gas turbine rotor blade has a predetermined shape and a control mechanism for welding by correcting an error from the predetermined shape. It is a thing.
[0015]
That is, in the repair method of the gas turbine blade formed in this way, the damaged portion of the gas turbine blade is cut into a predetermined shape, and the cut surface is surface-finished, and then the surface-finished portion is applied. Since overlay welding is performed, the welding target part is processed into a fixed shape, so it is possible to easily set welding conditions such as welding current, welding voltage, arc length, and heat input control. In addition, since the wing is processed into a constant shape for any wing regardless of the shape of the original deteriorated part, it can be applied to any wing under constant welding conditions. This makes it possible to make the quality of the repaired portion made of the welded portion uniform without variation by the blades.
[0016]
In addition, by performing build-up welding after cutting or grinding the tip part into a certain shape before welding work and finishing the cut surface, it is possible to form a sound build-up weld part that does not cause welding defects. . In addition, since the welding target part after the tip part is processed into a constant shape has the same shape, the present invention repairs a series of moving blades constituting the stage by inputting the set condition once in each stage. This makes it possible to significantly reduce the time required for repair work.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments. FIG. 1 shows the repaired state of the gas turbine rotor blade. In the present embodiment, for example, as shown in FIG. 1, the welding method is arc welding in which an arc is generated between the electrode and the base material. However, the present invention is not limited to TIG arc, plasma arc, laser, etc. Even when such a welding heat source is used, it can be implemented.
[0018]
[Embodiment 1]
The repairing operation of the gas turbine rotor blade according to the present invention, in which the tip portion is cut into a predetermined shape before the welding operation and the cut surface is surface-finished and then subjected to overlay welding, will be described with reference to FIGS. 1A to 1C are views of the vicinity of the tip of the gas turbine rotor blade as seen from the side. FIG. 4A shows a moving blade with a deteriorated tip portion before repair. When repairing the moving blade 1, first, the tip including the deteriorated portion 2 is cut or ground into a certain shape as shown in FIG. By this cutting or grinding operation, the surface 4 to be welded, which is the object of overlay welding, has a constant shape regardless of the shape of the degraded part 3 that has been cut or ground.
[0019]
Further, in the above construction, when the occurrence position of the deteriorated portion in the rotor blade is not unevenly distributed, the posture of overlay welding is always performed by cutting or grinding in parallel to the original tip as shown in FIG. It is desirable to make it downward and to make the overlay shape uniform with respect to welding conditions. However, when the occurrence position of the deteriorated portion 3 in the moving blade is unevenly distributed, it is more efficient to cut or grind so as to cover the uneven position of the deteriorated portion 3 as shown in FIG. In this case, in order to stabilize the welding work, it is desirable to cut or grind into a predetermined shape having a certain inclination angle from the original tip surface of the rotor blade.
[0020]
In addition, when the shape or uneven distribution of the deteriorated part in the moving blade varies depending on the stage incorporated in the turbine disk of the moving blade, the size of the moving blade, the material of the moving blade, the operating environment of the moving blade, or the service life of the moving blade, In order to form the built-up part shape according to the said conditions, it is desirable to cut or grind the shape according to the said conditions.
[0021]
Next, with respect to welding object plane 4 after cutting or grinding construction subjected to front surface finishing, performing overlay welding as shown in Figure 1 (c). In the present invention, since the welding target part is processed into a fixed shape, it is possible to easily set welding conditions such as a welding current, a welding voltage, and an arc length and to control heat input. In addition, regardless of the shape of the original deteriorated part 3, since it is processed into a constant shape for any moving blade, it can be applied to any moving blade under constant welding conditions, The quality of the repair part consisting of 5 is made uniform without variation due to the moving blades.
[0022]
As described above, according to the present invention, a sound build-up welded portion that does not cause a welding failure by cutting or grinding the tip portion into a fixed shape and finishing the cut surface before welding is performed. Can be formed.
[0023]
[Embodiment 2]
A repair method according to the present invention, in which overlay welding is performed by inputting the welding position in the welding target portion and the welding conditions in each part to the driving mechanism of the welding torch and the control mechanism of the welding conditions in advance, with reference to FIGS. I will explain.
[0024]
FIG. 3 is a side view of a moving blade whose surface is finished by processing the tip portion into a certain shape. In the case of moving blades of the same size, the surface 4 to be welded after finishing shown in FIG. 3 has the same shape. Therefore, as shown in FIG. 4, a moving trajectory of the welding torch 6 following the surface to be welded 4 is input in advance from the control device 20 that controls the driving mechanism 11 of the welding torch, thereby moving the moving blades of the same size. In FIG. 1, regardless of the shape of the deteriorated portion 3 existing before the repair work, the overlay welding work shown in FIG. 4 can be automatically performed on a plurality of moving blades by a series of flow operations.
[0025]
Further, it is desirable that the welding conditions in each part of the surface 4 to be welded in FIG. 4 are appropriately set according to the respective positions and input from the control device 20 in accordance with the movement trajectory or the time from the start of welding. .
[0026]
As described above, in the present invention, the front end portion is cut or ground into a certain shape and the cut surface is surface-finished before welding, and then the movement trajectory of the welding torch following the weld line and the welding conditions for each part By inputting the て and performing overlay welding, it is possible to automate repair construction and to form a sound overlay weld portion that does not cause welding defects.
[0027]
[Embodiment 3]
A repair method according to the present invention, in which build-up welding is performed with a rotor blade being incorporated in a turbine disk, will be described with reference to FIGS. FIG. 5 is a cross-sectional view of repairing a moving blade incorporated in a turbine disk.
[0028]
As shown in FIG. 5, the welding torch 6 is set on the moving blade 1 whose surface is finished by cutting or grinding the tip portion into a certain shape by the torch drive mechanism 11 attached to the crane 10. The torch 6 is moved by the drive mechanism 11 so as to follow the surface 4 to be welded shown in FIG. The status of overlay welding is monitored by the monitoring monitor camera 12 and controlled so that proper repair is performed. After the completion of repair work for one moving blade, the torch 6 is set to the next moving blade.
[0029]
FIG. 6 is a diagram illustrating only the turbine blades and the moving blades at a certain stage and picking up only the two typical angles of the moving blades. In setting the torch, the torch may be moved within a range where the influence of the torch angle, that is, the welding position can be ignored. However, under the condition that the welding position becomes a problem, the turbine disk 9 is rotated as shown in FIG. The torch 6 is set on the moving blade 1 to be repaired next.
[0030]
Since the size of the gas turbine blade is different for each stage, it is necessary to set the welding line locus and welding conditions for each stage. However, the series of blades in each stage are the same size, and the tip according to the present invention is used. The welding object part after processing a part into a fixed shape has the same shape. For this reason, in the present invention, it is possible to repair a series of moving blades constituting the stage by inputting the set condition once in each stage, and the time for repairing can be greatly shortened.
[0031]
[Embodiment 4]
FIG. 7 shows a repair method for a gas turbine blade according to the present invention, in which the tip portion is cut or ground into a predetermined shape, and then the edge of the surface is finished so as to be higher than the center portion, and overlay welding is performed. This will be described with reference to FIG.
[0032]
7 and 8 show cross sections of the blade tip perpendicular to the welding direction. As shown in FIG. 7 (a), when the edge portion 13 and the center portion 14 of the surface 4 to be welded are finished to the same height, overlay welding is performed with low heat input to prevent high-temperature cracking due to the thermal effect during welding. Then, depending on the welding conditions, the edge portion 13 may be poorly welded as shown in FIG. Further, when welding is carried out with a large heat input to melt the edge, depending on the welding conditions, a hot crack 16 may occur in the heat affected zone 15 as shown in FIG.
[0033]
In the present invention, as shown in FIG. 8 (a), the edge 13 of the surface to be welded is finished so as to be higher than the central portion 14, and overlay welding is performed. In this way, as shown in FIG. 8 (b), even when welding is performed with low heat input, the edge 13 is sufficiently melted and a sound build-up in which high temperature cracking does not occur in the heat affected zone 15 is achieved. A weld can be formed.
[0034]
[Embodiment 5]
FIG. 9 shows a method for repairing a gas turbine rotor blade according to the present invention, in which the tip portion is cut or ground into a predetermined shape, then finished so that the edge of the surface becomes higher than the center portion, and overlay welding is performed. This will be described with reference to FIG.
[0035]
FIG. 9 is a side view of the gas turbine rotor blade in which the repaired portion is finished into the original shape of the gas turbine rotor blade after overlay welding. After repairing the gas turbine rotor blade, the ceramic layer 18 is coated and used again as shown in FIG. In the present invention, as shown in FIG. 9, the repaired portion 17 at the tip of the moving blade is finished to the original shape at the time of manufacturing the moving blade, thereby eliminating the unevenness of the build-up welded portion, and close contact during recoating as shown in FIG. It is possible to apply a good coating.
[0036]
[Embodiment 6]
A method for repairing a gas turbine rotor blade according to the present invention, wherein preheating conditions or cooling conditions are set during or after overlay welding according to the shape of the surface cut or ground before welding. Will be described with reference to FIGS. 11 and 12. When the portion cut or ground to make the tip portion according to the present invention have a predetermined shape is large, it is desirable that the amount of overlaying is large in order to increase the construction efficiency.
[0037]
However, in order to increase the amount of filler for overlaying, welding with a large amount of heat input is required, which may increase the crack sensitivity shown in FIG. In this case, it is effective to perform overlay welding while preheating or cooling the rotor blade. This preheating condition or cooling condition is set according to the predetermined shape of the rotor blade tip processed. In the present invention, the tip of the moving blade is determined in a predetermined shape according to the stage incorporated in the turbine disk of the moving blade, the size of the moving blade, the material of the moving blade, the operating environment of the moving blade, or the service life of the moving blade. Each preheating condition or cooling condition set in accordance with a predetermined shape can have a certain heat history.
[0038]
FIG. 11 is a diagram showing a construction in which a heating mechanism is provided on the outer side of the moving blade to build-up the tip portion. The outside of the heat affected zone of the moving blade 1 is heated by bringing the heating mechanism 21 constituted by a high-frequency heating mechanism or an arc lamp into contact with the outside of the tip of the moving blade 1 in the vicinity of the tip. For this reason, the preheating effect or the afterheating effect at the time of welding in the rotor blade increased, and the cooling rate of the heat affected zone became extremely slow. As a result, the tensile stress generated in the heat-affected zone is relaxed, and a sound build-up repair weld that does not cause high-temperature cracking even when applied under welding conditions with a large heat input in order to increase the amount of build-up is achieved. It has become possible.
[0039]
FIG. 12 is a diagram showing a construction in which a water cooling mechanism is provided on the outer side of the moving blade to build-up the tip portion. By bringing the water-cooled Cu plate 25 into contact with the outside in the vicinity of the tip of the rotor blade 1 processed into a predetermined shape, the outside of the heat affected zone of the rotor blade 1 is cooled. For this reason, the conduction of heat received during welding of the rotor blades was accelerated, and the heat-affected zone was rapidly cooled. As a result, sound build-up repair welding that does not cause hot cracking is possible even when the welding is performed under a large heat input in order to increase the amount of build-up.
[0040]
[Embodiment 7]
The construction of the gas turbine rotor blade having the construction or the built-up portion according to the present invention is performed by, for example, a welding apparatus shown in FIG. FIG. 15 shows the welding torch 6, the welding power source 29, the filler material supply mechanism 30, the gas shield mechanism supplied from the gas cylinder 38 through the gas pipe 39, the preheating or cooling mechanism 32 of the rotor blade 1, the preheating condition or the cooling condition control. A mechanism 33, a welding torch drive mechanism 11, a weld monitoring mechanism 12, a welding line tracking control mechanism 34, and a welding condition control mechanism 35, and the welding target portion at the tip of the gas turbine rotor blade 1 has a predetermined shape. 1 shows a welding apparatus including a mechanism 36 for determining the existence and a control mechanism 37 for performing welding after correcting an error from a predetermined shape.
[0041]
Here, whether the welding target part at the tip of the moving blade has a predetermined shape is determined by, for example, inputting an assumed welding target part processed into a predetermined shape in advance and actually monitoring the welding of the moving blade The determination is made by comparing the target portion with the image-processed data. When an error occurs, welding is performed by correcting the movement trajectory of the welding torch according to the monitored welding target portion.
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to easily perform automatic welding with controlled heat input to the tip of the gas turbine rotor blade, and to provide a sound build-up weld that does not cause welding defects. Can be formed.
[Brief description of the drawings]
FIG. 1 is a side view showing a repaired state of a gas turbine rotor blade of the present invention.
FIG. 2 is a diagram illustrating a machining mode of a deteriorated portion at the tip of a gas turbine rotor blade.
FIG. 3 is a top view of a moving blade whose tip is processed into a certain shape and surface-finished.
FIG. 4 is a diagram illustrating a state in which overlay welding of a moving blade is automatically performed according to a weld line.
FIG. 5 is a view showing a repairing method in which build-up welding is performed with a moving blade installed on a turbine disk.
FIG. 6 is a diagram in which a turbine disk is rotated to set a torch on a moving blade to be repaired next.
FIG. 7 is a diagram showing a build-up weld when the edge and center of the weld surface are finished to the same height.
FIG. 8 is a diagram showing overlay welding when finishing is performed so that the edge of the weld surface is higher than the center.
FIG. 9 is a side view of a moving blade in which a repaired part is finished into the original shape of a gas turbine moving blade after overlay welding.
FIG. 10 is a side view of a rotor blade tip portion that has been recoated with a ceramic layer after overlay welding.
FIG. 11 is a construction diagram in which overlay welding is performed while heating the vicinity of the tip of a moving blade.
FIG. 12 is a construction diagram in which overlay welding is performed while cooling the vicinity of the tip of a moving blade.
FIG. 13 is a view of a deteriorated portion having various shapes at the blade tip.
FIG. 14 is a diagram illustrating repair of a locally deteriorated portion at the tip of a moving blade.
FIG. 15 is a view showing a repair welding apparatus for a gas turbine blade.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas turbine rotor blade, 2 ... Deterioration part of blade tip, 3 ... Deterioration part cut | disconnected or ground, 4 ... Surface to be welded processed to fixed shape, 5 ... Overlay welding part, 6 ... Welding torch , 7 ... welding electrode, 8 ... arc, 9 ... turbine disk, 10 ... crane, 11 ... drive mechanism, 12 ... monitoring monitor camera, 13 ... edge of finished surface, 14 ... center of finished surface, 15 ... heat influence 16, hot cracks in the heat affected zone, 17 repair parts finished to the original shape after overlay welding, 18 coating layer, 19 spacer, 20 drive controller, 21 heating mechanism, 22 DESCRIPTION OF SYMBOLS ... Electric wire, 23 ... Power supply for heating, 24 ... Hook mechanism, 25 ... Water-cooled Cu plate, 26 ... Cooling water injection port, 27 ... Cooling water discharge port, 28 ... Cooling water, 29 ... Welding power source, 30 ... Feed material supply Mechanism 31 ... Filler material 32 ... Preheating or cooling mechanism 33 ... Control mechanism for preheating condition or cooling condition, 34 ... Control mechanism for welding line, 35 ... Control mechanism for welding condition, 36 ... Judgment mechanism for welded part shape, 37 ... Error correction control mechanism for profile welding, 38 ... Shield gas cylinder, 39 ... gas pipe.

Claims (10)

ガスタービン翼の損傷部分に肉盛溶接を施し、翼形状を復元するようにしたガスタービン翼の補修方法において、
損傷部分を有する前記ガスタービン翼の夫々を同じ所定の形状に切削し、次いで切削した部分に肉盛溶接を施すようにしたことを特徴とするガスタービン翼の補修方法。
In the repairing method of the gas turbine blade, which is subjected to overlay welding on the damaged part of the gas turbine blade, and the blade shape is restored,
Wherein the respective gas turbine blade to cut into the same predetermined shape, then repairing method of cutting the gas turbine blade, characterized in that it has to apply the overlay welding portions having a damaged portion.
ガスタービン動翼の損傷先端部に肉盛溶接を施し、翼形状を復元するようにしたガスタービン翼の補修方法において、
前記肉盛溶接施工前に、損傷先端部を有する各翼の夫々を、動翼の元の先端面に平行で同じ所定の形状に切断あるいは研削し、その後に切断あるいは研削した部分に前記肉盛溶接を施すようにしたことを特徴とするガスタービン翼の補修方法。
In the repair method of the gas turbine blade, which is subjected to overlay welding on the damaged tip of the gas turbine blade, and the blade shape is restored,
Before the overlay welding, loss respectively of each wing having a wound distal end section, cut or ground to the same predetermined shape parallel to the moving blade of the original tip surface, the meat then cut or ground portions A repair method for gas turbine blades, characterized by performing prime welding.
ガスタービン動翼の損傷先端部に肉盛溶接を施し、翼形状を復元するようにしたガスタービン翼の補修方法において、
前記肉盛溶接施工前に、動翼の損傷先端部を夫々元の先端面から一定の傾角を有する同じ所定の形状に切断あるいは研削し、その後に前記肉盛溶接を施すようにしたことを特徴とするガスタービン翼の補修方法。
In the repair method of the gas turbine blade, which is subjected to overlay welding on the damaged tip of the gas turbine blade, and the blade shape is restored,
Before the overlay welding, that each rotor blade damage tip cut or ground to the same predetermined shape having a constant inclination from the tip end surface of each source, and to subsequently apply the overlay welding A gas turbine blade repair method that is characterized.
ガスタービン動翼の損傷先端部に肉盛溶接を施し、翼形状を復元するようにしたガスタービン翼の補修方法において、
前記溶接施工前に、動翼の損傷先端部を夫々同じ所定の形状に切断あるいは研削した後、当該面の溶接対象部における溶接のならい位置および各部位における溶接条件を事前に溶接トーチの駆動機構および溶接条件の制御機構に入力して肉盛溶接をするようにしたことを特徴とするガスタービン翼の補修方法。
In the repair method of the gas turbine blade, which is subjected to overlay welding on the damaged tip of the gas turbine blade, and the blade shape is restored,
Before the welding, after the cutting cut or Ken each blade damage tip respectively same predetermined shape, welding torch welding conditions at the copying position and each part of the weld at the welded portion of the surface in advance A gas turbine blade repair method characterized in that overlay welding is performed by inputting to a drive mechanism and a welding condition control mechanism.
前記肉盛溶接を施すに際し、前記翼をタービンディスクに組み込んだまま施すようにした請求項1,2,3または4記載のガスタービン翼の補修方法。  The method for repairing a gas turbine blade according to claim 1, 2, 3 or 4, wherein the build-up welding is performed while the blade is incorporated in a turbine disk. ガスタービン動翼の損傷先端部に肉盛溶接を施し、翼形状を復元するようにしたガスタービン翼の補修方法において、
前記溶接施工の前に、各動翼の損傷先端部を夫々同じ所定の形状に切断した後、当該面の縁部が中央部よりも高くなるように仕上げ加工し、その後肉盛溶接を施すようにしたことを特徴とするガスタービン翼の補修方法。
In the repair method of the gas turbine blade, which is subjected to overlay welding on the damaged tip of the gas turbine blade, and the blade shape is restored,
Before the welding work, after cutting the damaged tip of each rotor blade into the same predetermined shape, finish processing so that the edge of the surface is higher than the central part, and then overlay welding A gas turbine blade repair method characterized by that.
前記肉盛溶接をガスタービン翼の形状よりも大きめに施し、肉盛溶接後、補修部を動翼製造時の元の形状に仕上げ加工するようにした請求項1から6いずれか1項記載のガスタービン動翼の補修方法。Subjecting said overlay welding to larger than the shape of the gas turbine blade, after overlay welding, to any one of the repair part from claim 1 which is adapted to finishing to its original shape when the rotor blade manufacturing 6 The gas turbine rotor blade repair method described. 前記肉盛溶接施工の前に切断あるいは研削した当該面の形状に応じて、肉盛溶接施工中あるいは施工前後の予熱条件あるいは冷却条件を設定するようにした請求項1から7いずれか1項記載のガスタービン動翼の補修方法。Depending on the cut or ground to a shape of the surface in front of the overlay welding, any one of claims 1 to 7 which is adapted to set the pre-heating condition or cooling condition before and after overlay welding or during construction gas turbine blade method repairing described. ガスタービン翼の損傷先端部に肉盛溶接が施されて、翼形状が復元されているガスタービン翼において、
前記損傷先端部の肉盛溶接部の形状あるいは大きさが動翼のタービンディスクに組み込まれる段あるいは動翼のサイズあるいは動翼の材質あるいは動翼の溶接前の供用環境あるいは動翼の溶接前の供用年数に応じて同じように定められていることを特徴とするタービン動翼。
In the gas turbine blade in which build-up welding is applied to the damaged tip of the gas turbine blade and the blade shape is restored,
The damage tip of the overlay weld part shape or size of the moving blade of the size or moving blade stages or blades incorporated in the turbine disc material or blade before welding serviced environment or blade before welding A turbine rotor blade characterized in that it is determined in the same manner according to the years of service.
溶接トーチ、溶接電源、溶加材供給機構、ガスシールド機構、動翼の予熱器講あるいは冷却機構、予熱条件あるいは冷却条件の制御機構、溶接トーチ駆動機構、溶接部関し機構、溶接線のならい制御機構、溶接条件の制御機構を備え、ガスタービン翼の損傷部分を同じように切断した後そこに肉盛溶接を施して翼形状を復元するガスタービン翼の補修装置において、
前記装置に、ガスタービン動翼の先端の溶接対象部が所定の形状であることを判断する機構及び所定の形状からの誤差を補正して肉盛溶接する制御機構を設けたことを特徴とするガスタービン翼の補修装置。
Welding torch, welding power source, filler material supply mechanism, gas shield mechanism, moving blade preheater or cooling mechanism, preheating condition or cooling condition control mechanism, welding torch drive mechanism, welded mechanism, welding line leveling control In a gas turbine blade repair device that has a mechanism and a welding condition control mechanism , cuts the damaged portion of each gas turbine blade in the same way, and then performs overlay welding to restore the blade shape,
The apparatus is provided with a mechanism for determining that the welding target portion at the tip of the gas turbine rotor blade has a predetermined shape, and a control mechanism for performing overlay welding by correcting an error from the predetermined shape. Repair equipment for gas turbine blades.
JP23517496A 1996-09-05 1996-09-05 Gas turbine blade repair method, repair device therefor, and gas turbine blade Expired - Lifetime JP3850929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517496A JP3850929B2 (en) 1996-09-05 1996-09-05 Gas turbine blade repair method, repair device therefor, and gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517496A JP3850929B2 (en) 1996-09-05 1996-09-05 Gas turbine blade repair method, repair device therefor, and gas turbine blade

Publications (2)

Publication Number Publication Date
JPH1080767A JPH1080767A (en) 1998-03-31
JP3850929B2 true JP3850929B2 (en) 2006-11-29

Family

ID=16982171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517496A Expired - Lifetime JP3850929B2 (en) 1996-09-05 1996-09-05 Gas turbine blade repair method, repair device therefor, and gas turbine blade

Country Status (1)

Country Link
JP (1) JP3850929B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568077B1 (en) * 2000-05-11 2003-05-27 General Electric Company Blisk weld repair
US6536110B2 (en) * 2001-04-17 2003-03-25 United Technologies Corporation Integrally bladed rotor airfoil fabrication and repair techniques
DE102004036066A1 (en) 2004-07-24 2006-02-16 Mtu Aero Engines Gmbh Method for repairing or manufacturing a component
US20070119052A1 (en) * 2005-11-28 2007-05-31 General Electric Company Combustor dome repair method
SG134185A1 (en) 2006-01-16 2007-08-29 United Technologies Corp Turbine platform repair using laser clad
JP4898720B2 (en) * 2008-02-14 2012-03-21 三菱重工業株式会社 Turbine blade repair method
US8925200B2 (en) * 2008-03-27 2015-01-06 United Technologies Corporation Method for repairing an airfoil
KR101035154B1 (en) 2008-08-08 2011-05-17 한전케이피에스 주식회사 The welding method of blade for gas turbine
JP5618643B2 (en) * 2010-06-14 2014-11-05 株式会社東芝 Gas turbine rotor blade repair method and gas turbine rotor blade
KR101291506B1 (en) * 2012-03-07 2013-07-30 한국실리콘주식회사 Repairing method of electrode
CN103008966B (en) * 2012-12-05 2015-07-01 中国海洋石油总公司 Repairing method of scrapped mud pump cylinder sleeve
CN105057969B (en) * 2015-05-29 2017-12-08 西安交通大学 Repairing method of solid impeller disc based on MICROBEAM PLASMA WELDING and electric spark finishing
JP7261697B2 (en) * 2018-09-06 2023-04-20 エトスエナジー・イタリア・ソシエタ・ペル・アチオニ Method for repairing the rotor of a multi-stage axial compressor of a gas turbine
CN114393278B (en) * 2022-01-28 2023-06-23 安徽马钢设备检修有限公司 Surfacing technology for abrasion of bearing bush installation part of main transmission base of tyre rolling mill
CN117399894B (en) * 2023-10-13 2024-04-05 泰州市天元精密铸造有限公司 Casting defect repairing device

Also Published As

Publication number Publication date
JPH1080767A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP3850929B2 (en) Gas turbine blade repair method, repair device therefor, and gas turbine blade
JP4675482B2 (en) Turbine rotor modification and repair method
EP1197289B1 (en) Gas turbine component refurbishment apparatus and repair method
US5319179A (en) Method and apparatus for welding workpieces made of superalloys
US6326585B1 (en) Apparatus for laser twist weld of compressor blisks airfoils
RU2225514C2 (en) Method of making rotor en-bloc with blades (versions), device for local heat treatment and method of repair of blades of said rotor
KR100718574B1 (en) Apparatus and method for forming weld joints having compressive residual stress patterns
EP3536444B1 (en) Laser welding of component
CN111922621B (en) Automatic repair method for turbine blade
EP0550205B1 (en) Steam turbine rotor welding
EP1793962A2 (en) Method to restore an airfoil leading edge
CA2802755C (en) Method for repairing rotor blades
US20140117007A1 (en) Local Heat Treatment and Thermal Management System for Engine Components
JP2008114290A (en) High temperature electron beam welding
US20100064515A1 (en) Method for repairing and/or replacing individual elements of a gas turbine component
CN109604927B (en) Surfacing repair method for short-edge copper plate side surface of continuous casting crystallizer
CN1355080A (en) Hidden arc build-up welding method for repairing internal surface of pipe-casting mould
JP2013107101A (en) Method for repairing metal component
CN105728877A (en) Method for repairing torsional cylinder by laser welding
US6313437B1 (en) Method for arc welding with melting electrode
CN115122042A (en) Preheating device and method for solid-phase additive repair and remanufacture
RU2330750C2 (en) Method of turbomachine blades repair and device for its implementation
US10907483B2 (en) Turbine blade, erosion shield forming method, and turbine blade manufacturing method
KR20160117598A (en) Management method of powder supply head and erosion shield forming method and device
RU2786555C1 (en) Method for repairing the combs of labyrinth seals of disks of a gas turbine engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term