JP3850552B2 - Aircraft cannon feed system - Google Patents

Aircraft cannon feed system Download PDF

Info

Publication number
JP3850552B2
JP3850552B2 JP13003798A JP13003798A JP3850552B2 JP 3850552 B2 JP3850552 B2 JP 3850552B2 JP 13003798 A JP13003798 A JP 13003798A JP 13003798 A JP13003798 A JP 13003798A JP 3850552 B2 JP3850552 B2 JP 3850552B2
Authority
JP
Japan
Prior art keywords
air
aircraft
hollow fiber
fiber membrane
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13003798A
Other languages
Japanese (ja)
Other versions
JPH11319466A (en
Inventor
正弘 西岡
英明 田中
亨 江口
秀男 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Orion Machinery Co Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd, Sumitomo Heavy Industries Ltd filed Critical Orion Machinery Co Ltd
Priority to JP13003798A priority Critical patent/JP3850552B2/en
Publication of JPH11319466A publication Critical patent/JPH11319466A/en
Application granted granted Critical
Publication of JP3850552B2 publication Critical patent/JP3850552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば航空機の機関砲等に給弾するシステム、特に空気圧給弾システム等の空気圧を利用する機器の特に寒冷環境下で使用する空気圧利用機器の除湿装置に関するものである。
【0002】
【従来の技術】
従来図3に示すごとく、航空機の機関砲等に給弾する場合、航空機1に給弾装置2を取り付け、エンジン駆動のエアコンプレッサ3からホ−ス4を介してエアモ−タ5を接続し、これを給弾装置2に接続して給弾装置2を駆動し、航空機1に弾薬を搭載していた。
通常のエアコンプレッサにも簡単な除湿器が接続されているが、使用場所は工場内であり気温はさほど低くならず、これらの除湿器では寒冷地、高地の基地での厳寒期にはエアモ−タの凍結を防止できない。
【0003】
また、本格的な除湿機、例えば冷凍式圧縮空気除湿装置を使用すると、新たな電源が必要となり、冷媒に接触させて凝縮させる方式であるので、0℃以下では使用できない。更に、移動型のコンプレッサに付帯するには大型大重量(高さ×奥行×幅=500×500×250mm〜1500×1000×500mm)となり不向きである。
又、航空機に給弾する際には、動力として電気系のモ−タ等は電磁波等の為に弾の電気雷管が誤作動するため、使用できない。また、その信頼性を確保する為にもモ−タ等の機器をこれ以上追加するのは難しい。
【0004】
【発明が解決しようとする課題】
本発明は、圧縮空気中の水分をエアモ−タの手前で除去し、低温下においてもエアモ−タ等及びこれに接続する給弾装置が安全に作動しうるようにする航空機の機関砲給弾システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
航空機の機関砲給弾システムにおいて、航空機(1)に給弾装置(2)を取り付け、エアコンプレッサ(3)からホース(4)を介してエアモータ(5)を接続し、これを給弾装置(2)に接続して給弾装置(2)を駆動する航空機の機関砲給弾システムであって、前記エアコンプレッサ(3)と前記エアモータ(5)との間にク−リングパイプ(6)を介しバッファタンク(9)を、バッファタンク(9)に続いて中空糸膜利用除湿器(10)を、そして該中空糸膜利用除湿器(10)とルブリケ−タ(11)とをそれぞれ接続した。
【0006】
【発明の実施の形態】
本発明除湿装置の構成を図1に示す。本発明では、図3に示す従来の装置においてエアコンプレッサ3からホ−ス4の間に下記の構成を接続している。エアコンプレッサ3にク−リングパイプ6を介し接続する。次にバッファタンク9に中空糸膜利用除湿器10を接続し、さらにルブリケ−タ11及びホ−スリ−ル12が接続されている。ク−リングパイプ6、バッファタンク9にはそれぞれドレンパイプ7及び8が接続されている。ク−リングパイプ6は例えば内径13mm、肉厚1mm、長さ4mのステンレスパイプで、1mで4往復程度折り畳んでいる。バッファタンク9はたとえば外径200mm、長さ450mmの鋼製で、ドレンパイプ7,8は通常の手回しバルブが用いられる。
【0007】
中空糸膜利用除湿器10は、ガス分離膜を内部を中空に形成したものである。ガス分離膜の原理は、水分を除去する例として、膜の両側に水蒸気分圧の異なるガスが存在すると、水の分子が、水蒸気分圧差によって、膜を移動するようにしたものである。さらに詳しく説明すると、図2に示す如く、中空糸膜利用除湿器は、内部に筒状をした中空糸膜10aを内蔵し、中空糸膜の内部に圧縮空気10bを通し、中空糸膜10aの外側に乾燥空気10cを流して中空糸膜10aの内外蒸気圧の差で内部の湿気を外側に移動させて除湿するものである。この中空糸膜の束を密封容器内に収納する技術に関しては周知であるが、一例として特開平8−299743号に開示された技術と同等であり、ここでは省略する。また除湿装置はオ−トドレン機構7,8を有している。ルブリケ−タ11には圧縮空気に対して必要量の潤滑油を供給する機構が内蔵されている。ホ−スリ−ル12はホ−ス4をまとめる機構である。
【0008】
(作用)
本発明は次の如く作動する。コンプレッサ3より吐出された高温かつ多湿な圧縮空気をク−リングパイプ6内を通過させて冷却し、圧縮空気内部の水分をク−リングパイプ6の内壁に凝縮させて第一段除湿をする。この場合寒冷環境であることを十分に利用して冷却を行わせ、自然冷却以上に積極的に冷却すると、凝縮した水分が凝固してしまい排出が困難となる。気温−30℃程度までは、このパイプのみの冷却で十分であるが、それ以下では、センサ−とヒ−タ−により過冷却を防止する必要がある。
【0009】
次に一次除湿された圧縮空気は、バッファタンク9内に流入し、こゝで断熱膨張させることにより空気の温度を下げ、水分を凝縮させて第二段除湿をする。ク−リングパイプ6内およびバッファタンク9内に貯まった水分はそれぞれドレンパイプ7及び8によって適宜排出する。
【0010】
次に圧縮空気は中空糸膜利用除湿器10(図2)で内蔵された中空糸膜10a内に圧縮空気を通し、他方中空糸膜の外側に乾燥空気を流すことで膜10aの内側と外側との水蒸気分圧差によって圧縮空気内の水蒸気が膜に浸透し、連続して除湿が行われる。図2で説明すると、中空糸膜の内側に圧縮空気(湿潤空気)、外側にパ−ジ空気(乾燥空気)を供給することで膜の内側と外側の水蒸気分圧差によって圧縮空気中の水蒸気が膜に浸透し、外側からパ−ジ空気と一緒に排出され、連続的に除湿がおこなわる。単体では20℃湿度100%の空気がマイナス20℃湿度4.4%程度となる。ここまで来た圧縮空気は水分のみならず駆動側空圧機器で必要な潤滑油分まで取り去られているのでルブリケ−タ11は圧縮空気に対して必要量の潤滑油を供給する。
【0011】
(応用分野)
給弾機器に限らず、寒冷地の建設現場、炭坑、空港、基地等で圧縮空気を使用して空気圧機器を作動させる場合に適し、広い利用分野を有している。
【0012】
【発明の効果】
本発明により、寒冷地、高地の基地で厳寒期で外気温度がマイナス20℃からマイナス30℃程度となっても、圧縮空気中の水分が凍結せずエアモ−タが正常に作動する。
つまり本発明によって、圧縮空気中の水分をエアモ−タの手前で除去し、低温下においてもエアモ−タ及びこれに接続する給弾装置を安心して作動させることができる。
また、電源が不要でしかも強力な除湿が可能であり、構造も簡単であるから、ロ−コストな航空機の機関砲給弾システムを提供することができる。
【図面の簡単な説明】
【図1】本発明に関る除湿装置
【図2】除湿装置に使用する中空糸膜利用除湿器。
【図3】従来の航空機への給弾状態を示す。
【符号の説明】
1 航空機 2 給弾装置
3 エアコンプレッサ 4 ホ−ス
5 エアモ−タ 6 ク−リングパイプ
7,8 ドレンパイプ 9 バッファタンク
10 中空糸膜利用除湿器 10a 中空糸膜
10b 圧縮空気 11 ルブリケ−タ
12 ホ−スリ−ル
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a dehumidifying device for a pneumatic equipment used in a cold environment, for example, a system that feeds air to a cannon of an aircraft, particularly a pneumatic equipment such as a pneumatic bullet feeding system.
[0002]
[Prior art]
Conventionally, as shown in FIG. 3, when bullets are supplied to an aircraft cannon or the like, a bullet feed device 2 is attached to the aircraft 1, and an air motor 5 is connected from an engine-driven air compressor 3 via a hose 4, This was connected to the bullet feeding device 2 to drive the bullet feeding device 2, and the aircraft 1 was loaded with ammunition.
A simple dehumidifier is connected to a normal air compressor, but the place of use is in the factory and the temperature is not so low. In these dehumidifiers, the air conditioner is used in cold regions and high altitude bases. Cannot freeze.
[0003]
In addition, when a full-scale dehumidifier, for example, a refrigeration type compressed air dehumidifier is used, a new power source is required and the system is brought into contact with the refrigerant to condense, so that it cannot be used at 0 ° C. or lower. Furthermore, it is unsuitable for attaching to a movable compressor because it is large and heavy (height × depth × width = 500 × 500 × 250 mm to 1500 × 1000 × 500 mm).
In addition, when feeding an aircraft, an electric motor or the like as power cannot be used because the electric detonator of the bullet malfunctions due to electromagnetic waves or the like. Further, it is difficult to add more devices such as motors in order to ensure the reliability.
[0004]
[Problems to be solved by the invention]
The present invention Eamo moisture in the compressed air - is removed before the data, Eamo even at a low temperature - motor or the like and the bullet feed device cannon bullet feed of an aircraft to be safely operated connected thereto The purpose is to provide a system .
[0005]
[Means for Solving the Problems]
In an aircraft cannon feeding system , an air feeding device (2) is attached to an aircraft (1), an air motor (5) is connected from an air compressor (3) through a hose (4), and this is connected to a bullet feeding device ( 2) an aircraft gun feeding system for driving a bullet feeding device (2) connected to 2), wherein a cooling pipe (6) is provided between the air compressor (3) and the air motor (5). The buffer tank (9), the buffer tank (9) followed by the hollow fiber membrane dehumidifier (10), and the hollow fiber membrane dehumidifier (10) and the lubricator (11), respectively. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the dehumidifying device of the present invention is shown in FIG. In the present invention, the following configuration is connected between the air compressor 3 and the hose 4 in the conventional apparatus shown in FIG. Connected to the air compressor 3 via a cooling pipe 6. Next, a hollow fiber membrane dehumidifier 10 is connected to the buffer tank 9, and a lubricator 11 and a hose reel 12 are further connected. Drain pipes 7 and 8 are connected to the cooling pipe 6 and the buffer tank 9, respectively. The cooling pipe 6 is a stainless steel pipe having an inner diameter of 13 mm, a wall thickness of 1 mm, and a length of 4 m, for example, and is folded about 4 reciprocations at 1 m. The buffer tank 9 is made of, for example, steel having an outer diameter of 200 mm and a length of 450 mm, and the drain pipes 7 and 8 are ordinary hand-operated valves.
[0007]
The hollow fiber membrane-based dehumidifier 10 has a gas separation membrane formed hollow inside. The principle of the gas separation membrane is, as an example of removing water, when water having different water vapor partial pressures exists on both sides of the membrane, water molecules move through the membrane due to the water vapor partial pressure difference. More specifically, as shown in FIG. 2, the hollow fiber membrane utilization dehumidifier incorporates a hollow fiber membrane 10 a having a cylindrical shape inside, passes compressed air 10 b inside the hollow fiber membrane, and the hollow fiber membrane 10 a Dehumidification is performed by flowing dry air 10c to the outside and moving the internal moisture to the outside due to the difference in internal and external vapor pressures of the hollow fiber membrane 10a. A technique for accommodating the bundle of hollow fiber membranes in a sealed container is well known, but is equivalent to the technique disclosed in Japanese Patent Laid-Open No. 8-299743 as an example, and is omitted here. In addition, the dehumidifier has auto drain mechanisms 7 and 8. The lubricator 11 has a built-in mechanism for supplying a necessary amount of lubricating oil to the compressed air. The hose reel 12 is a mechanism for grouping the hose 4.
[0008]
(Function)
The present invention operates as follows. The high-temperature and high-humidity compressed air discharged from the compressor 3 is cooled by passing through the cooling pipe 6, and moisture in the compressed air is condensed on the inner wall of the cooling pipe 6 to perform first-stage dehumidification. In this case, if the cooling is performed by fully utilizing the cold environment and the cooling is more positive than the natural cooling, the condensed water is solidified and it becomes difficult to discharge. The cooling of only this pipe is sufficient until the temperature is about -30 ° C, but it is necessary to prevent overcooling with a sensor and a heater below that temperature.
[0009]
Next, the primary dehumidified compressed air flows into the buffer tank 9 and adiabatically expands with this, thereby lowering the temperature of the air and condensing moisture to perform second-stage dehumidification. Moisture accumulated in the cooling pipe 6 and the buffer tank 9 is appropriately discharged through drain pipes 7 and 8, respectively.
[0010]
Next, the compressed air is passed through the hollow fiber membrane 10a incorporated in the hollow fiber membrane dehumidifier 10 (FIG. 2), and the dry air is allowed to flow outside the hollow fiber membrane, thereby allowing the inside and outside of the membrane 10a to flow outside. The water vapor in the compressed air permeates into the membrane due to the difference in water vapor partial pressure with respect to the water, and dehumidification is continuously performed. Referring to FIG. 2, by supplying compressed air (wet air) to the inside of the hollow fiber membrane and purge air (dry air) to the outside, water vapor in the compressed air is caused by the difference in water vapor partial pressure between the inside and outside of the membrane. It penetrates into the membrane and is discharged from the outside together with purge air, and is continuously dehumidified. By itself, air at 20 ° C. and humidity of 100% has a minus 20 ° C. humidity of about 4.4%. Since the compressed air that has come so far has been removed not only with moisture but also with the lubricating oil necessary for the driving-side pneumatic device, the lubricator 11 supplies the required amount of lubricating oil to the compressed air.
[0011]
(Application areas)
It is suitable for operating pneumatic equipment using compressed air at construction sites, coal mines, airports, bases, etc. in cold districts as well as bullet feed equipment, and has a wide field of application.
[0012]
【The invention's effect】
According to the present invention, even if the outside air temperature is about minus 20 ° C. to minus 30 ° C. in a cold region and a highland base in the severe cold season, moisture in the compressed air does not freeze and the air motor operates normally.
That is, according to the present invention, moisture in the compressed air is removed before the air motor, and the air motor and the bullet feeding device connected thereto can be operated with peace of mind even at low temperatures.
Further, since no power source is required, powerful dehumidification is possible, and the structure is simple, a low-cost aircraft cannon feeding system can be provided.
[Brief description of the drawings]
FIG. 1 is a dehumidifying apparatus according to the present invention. FIG. 2 is a dehumidifier using a hollow fiber membrane used in the dehumidifying apparatus.
FIG. 3 shows a state of bullet feed to a conventional aircraft.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aircraft 2 Bullet feeder 3 Air compressor 4 Hose 5 Air motor 6 Cooling pipe 7, 8 Drain pipe 9 Buffer tank
10 Dehumidifier using hollow fiber membrane 10a Hollow fiber membrane
10b Compressed air 11 Lubricator
12 hose reel

Claims (1)

航空機(1)に給弾装置(2)を取り付け、エアコンプレッサ(3)からホース(4)を介してエアモータ(5)を接続し、これを給弾装置(2)に接続して給弾装置(2)を駆動する航空機の機関砲給弾システムであって、前記エアコンプレッサ(3)と前記エアモータ(5)との間にク−リングパイプ(6)を介しバッファタンク(9)を、バッファタンク(9)に続いて中空糸膜利用除湿器(10)を、そして該中空糸膜利用除湿器(10)とルブリケ−タ(11)とをそれぞれ接続したことを特徴とする航空機の機関砲給弾システム The bullet feed device (2) is attached to the aircraft (1), the air motor (5) is connected from the air compressor (3) via the hose (4), and this is connected to the bullet feed device (2). (2) an engine cannonball feeding system for an aircraft, in which a buffer tank (9) is provided between the air compressor (3) and the air motor (5) via a cooling pipe (6). A machine gun for an aircraft comprising a tank (9), a hollow fiber membrane dehumidifier (10), and the hollow fiber membrane dehumidifier (10) and a lubricator (11), respectively. Ammunition system .
JP13003798A 1998-05-13 1998-05-13 Aircraft cannon feed system Expired - Fee Related JP3850552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13003798A JP3850552B2 (en) 1998-05-13 1998-05-13 Aircraft cannon feed system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13003798A JP3850552B2 (en) 1998-05-13 1998-05-13 Aircraft cannon feed system

Publications (2)

Publication Number Publication Date
JPH11319466A JPH11319466A (en) 1999-11-24
JP3850552B2 true JP3850552B2 (en) 2006-11-29

Family

ID=15024584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13003798A Expired - Fee Related JP3850552B2 (en) 1998-05-13 1998-05-13 Aircraft cannon feed system

Country Status (1)

Country Link
JP (1) JP3850552B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106347706B (en) * 2016-10-27 2018-10-23 西安航空制动科技有限公司 The method for eliminating antiskid brake control device low temperature failure

Also Published As

Publication number Publication date
JPH11319466A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
CA2259736C (en) Membrane air dryer with scheme to reduce air lost as sweep air
US10724750B2 (en) Cooling dryer for compressed air and corresponding method
EP2787293A1 (en) Integrated membrane dehumidification system
KR101314140B1 (en) Moisture control air system for pneumatically driven device
US4887435A (en) Refrigeration cleaning and flushing system
EP3513861B1 (en) Hybrid low dew point compressed air dryer
US5642629A (en) Cooled air cycle system and method for operating such a system
CA2367788A1 (en) A hollow fiber membrane dehumidification device
US8114199B2 (en) Sweep air system for membrane air dryer
KR20100110645A (en) Air drier system with heat source by the oil separating document
JP4870616B2 (en) Refrigerant recovery device and refrigerant recovery unit
CN102022132A (en) Cooling and dehumidifying system of underground shelter
JP3850552B2 (en) Aircraft cannon feed system
US3091097A (en) Method of removing impurities from a compressed gas
CA2666849C (en) Method and device for disposing of air compression system effluent
CN102562122A (en) Mobile liquid cooling device without electric drive and liquid cooling method
JP3723083B2 (en) Compressed air supply device
JPH0420761A (en) Refrigerant recoverying machine
US6530239B2 (en) Refrigeration system
JP2000039236A (en) Air conditioner
USRE34231E (en) Refrigeration cleaning and flushing system
RU2304537C1 (en) Locomotive pneumatic system
JPH0566075A (en) Refrigeration cycle
JP2006299919A (en) Screw compressor
SU1678423A1 (en) Device for desiccation of gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees