JP3850231B2 - Antifouling copper alloy - Google Patents

Antifouling copper alloy Download PDF

Info

Publication number
JP3850231B2
JP3850231B2 JP2001177254A JP2001177254A JP3850231B2 JP 3850231 B2 JP3850231 B2 JP 3850231B2 JP 2001177254 A JP2001177254 A JP 2001177254A JP 2001177254 A JP2001177254 A JP 2001177254A JP 3850231 B2 JP3850231 B2 JP 3850231B2
Authority
JP
Japan
Prior art keywords
antifouling
alloy
corrosion
corrosion resistance
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177254A
Other languages
Japanese (ja)
Other versions
JP2002363670A (en
Inventor
進 丸内
信彦 中島
哲郎 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Sumitomo Light Metal Industries Ltd
Original Assignee
Kyushu Electric Power Co Inc
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Sumitomo Light Metal Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2001177254A priority Critical patent/JP3850231B2/en
Publication of JP2002363670A publication Critical patent/JP2002363670A/en
Application granted granted Critical
Publication of JP3850231B2 publication Critical patent/JP3850231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、発電プラントの取・放水路、取水設備機器、護岸設備、揚油設備、熱交換器冷却海水用配管などの海水系設備用材料として使用される海生生物汚損対策用防汚型銅合金に関する。
【0002】
【従来の技術】
上記の海水系設備においては、海生生物の付着により種々の問題が生じるため、海生生物の付着を防止する対策が講じられている。従来、その対策として、薬品処理、機械的処理、超音波・高周波・紫外線などの物理エネルギーによる処理、昇温・酸欠・淡水化などの環境変化措置、塗料を含む防汚材料の適用などが提案されているが、薬品処理として実用されている塩素処理は、環境問題の観点からその適用が制限されており、機械的処理は、設備の設置と維持管理に高額な費用を要するという難点があり、物理エネルギーによる処理は、それらの発生装置が現状では小型で、その適用範囲が小規模となるため実用化が難しい。また、環境変化措置についても、その適用が局所閉系統あるいは小範囲に限定されるため、取・放水路などの大容量、開放系の海水設備への適用は困難である。
【0003】
これらの海生生物汚損対策において、防汚材料により対象部を被覆し、あるいは防汚材料で設備を作製する手法が、費用対効果の観点から有効なものとして着目され一部実用化されてきた。最も一般的な手法は、防汚塗料による被覆であり、有機スズ系塗料、亜酸化銅、銅粉末添加塗料、シリコーン系塗料などが開発されてきたが、有機スズ系塗料は環境問題からその適用が忌避され、亜酸化銅、銅粉末添加塗料、シリコーン系塗料では効果が十分でないとともに、その防汚特性の有効期間も半年程度で、頻繁に再塗装を行わなければならないという問題もある。
【0004】
一方、銅および銅合金材料は、その抗菌特性から以前より防汚材料として認識され、とくに10%キュプロニッケル(JIS H3100/H3300 C7060)は、海水設備、海洋プラットホーム、船底などへの被覆材料として実用化されており、有効な海生生物汚損対策となっているが、使用環境によっては、なお防汚性が十分でない場合があり、防汚性銅合金の改良として、Ni:3.0〜11.0%、As:0.003〜0.08%を必須成分として含有し、さらにFe、Mn、Sb、Al、Snのうちの1種以上を含有する銅合金材料(特開平5−311296号公報)、Al:7.0〜20.0%、Cr:0.5%超9.0%以下を含有する銅系材料(特開平6−100968号公報)が提案され、また、Cu:30〜80%、Al:2〜12%、Cr:1.5〜20%およびFeを組合わせた海生生物付着防止用耐海水材料(特開平11−1734号公報)、Fe:10〜80%、Al:1〜10%およびCuを組合わせた耐海生生物材料(特開平8−239726号公報)も提案されているが、これらの材料も種々の使用環境に対して必ずしも十分な防汚特性を有していない。
【0005】
最近では、既存の電子・電気用材料であるCu−Be合金を防汚材料として適用することが評価されており、Cu−Mn系合金の使用も検討されている(海水学会誌、Vol.50(1996年)、334頁)。しかしながら、Cu−Be合金は、銅イオンの溶出による防汚効果は優れているものの、逆に腐食量が過大となったり、あるいは腐食形態が孔食状となって、漏水事故を招いたり、耐用寿命が短くなって交換費用が膨大となるなどの難点がある。また、Cu−Mn系合金は、逆に、耐食性には優れているが、その結果として銅イオンの溶出量が不足し、十分な防汚効果が得られず、従来と同様に付着海生生物を定期的清掃によって除去せざるを得ないなどの問題点がある。
【0006】
【発明が解決しようとする課題】
本発明は、海生生物付着を防止する防汚材料における上記従来の問題を解消するためになされたものであり、その目的は、JISC7060合金と同様、Niを含有する銅合金材料をベースとして、合金成分の組合わせと防汚性との関係について試験、検討を加えた結果としてなされたものであり、その目的は、JISC7060合金より優れた防汚性と、孔食などの局部腐食を生じることがないとともに、過大な腐食速度を示すこともない適度の耐食性をそなえ、JISC7060合金と比べて同等以上の加工性を有し、コスト的に有利な海生生物汚損対策用防汚型銅合金を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するための請求項1による防汚型同合金は、Ni:1.0〜1.9%、Mn:0.05〜1.0%、Fe:0.01〜2.0%を含有し、残部Cuおよび不純物からなることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明による防汚型銅合金における合金成分の意義および限定理由について説明する。
本発明の防汚型銅合金は、Ni:1.0〜3.0%、Mn:0.05〜1.0%、Fe:0.01〜2.0%を含有し、残部Cuおよび不純物からなるものであり、この特定組成において、JISC7060合金より優れた防汚特性が達成される。
【0009】
Niは、耐食性の向上に機能する元素であり、好ましい含有量は1.0〜3.0%の範囲である。Niが1.0%未満では耐食性が十分でなく、3.0%を越えると材料コストが高くなる、Niのさらに好ましい含有範囲は1.5〜2.5%である。
【0010】
Mnは、合金材の鋳造時の溶湯の流れを良くして鋳造性を改善するとともに、耐食性を高めるためにも寄与する。Mnの好ましい含有量は0.05〜1.0%の範囲である。Mnが0.05%未満では鋳造欠陥が生じ易く、1.0%を越えて含有されても鋳造性改善の効果は飽和し、銅イオンの溶出量が抑制されて防汚特性が低下する。
【0011】
Feは、Cu−Ni系合金の海水耐食性、とくに耐局部腐食性を相乗的に向上させるが、過剰な添加は全面腐食を増大させ、加工性を損なう。Feの好ましい含有量は0.01〜2%の範囲であり、0.01%未満では耐局部腐食性の抑制効果が小さく、2%を越えて含有されると、加工性が損なわれて安定した合金材の製造が困難となる。また腐食量が過剰となり実用に適しないものとなる。なお、本発明の合金において、0.05%以下のP、C、Al、Si、Sn、Zn、Pbを1種または2種以上含有し、かつそれらの合計が0.5%未満とする含有は本発明の特性に影響を及ぼすことはない。
【0012】
本発明の防汚型銅合金は、常法に従って溶解、鋳造後、面削、均熱処理を行い、使用形状に応じて、熱間圧延および冷間圧延により板材とし、熱間押出、抽伸加工により管材などに成形される。
【0013】
【実施例】
以下、本発明の実施例を比較例と対比して説明し、本発明の特徴をより明確にするとともに、その効果を実証する。なお、本発明は、これに限定されるものではなく、本発明の趣旨の範囲内において適宜に変更することが可能である。
【0014】
実施例1
Cu、Ni、Mn、Feの新地金を用い、表1に示す組成を有する合金を黒鉛るつぼで高周波溶解し、鉄製鋳型を用いる落込み鋳造法により、厚さ30mm、幅175mm、高さ150mmの板状鋳塊を造塊した。得られた鋳塊を両面面削して厚さ25mmとし、800℃で2時間の均熱処理を施した後、この温度で熱間圧延を行って厚さ5mmとし、続いて冷間圧延により厚さ2mmの板材(試験材)とした。
【0015】
JISC7060合金(Ni:10%、Mn:0.8%、Fe:1.5%、残部Cuおよび不純物)を、実施例1と同様に溶解、鋳造し、実施例1と同一工程に従って厚さ2mmの板材(比較試験材)とした。
【0016】
得られた試験材の加工性(鋳造性、熱間圧延性/冷間圧延性)、銅イオン溶出性、耐食性を、以下の方法に従って評価した。
加工性:鋳造性、熱間圧延性、冷間圧延性が比較試験材と同等またはそれ以上のものは○とし、比較試験材より劣るものは×とする。
【0017】
銅イオン溶出性:試験材および比較試験材から縦100mm、横100mmの試験片を採取し、全面をアセトン脱脂後、1リットルの人工海水中に試験片を1か月間浸漬して、人工海水中に溶出した銅イオン量を原子吸光光度計により測定し、銅イオン溶出量が比較試験材より多いものは○(銅イオン溶出性良好)、同等またはそれ以下のものは×とする。
【0018】
耐食性:容積400リットルの人工海水を満たした塩化ビニル製水槽中に試験材を浸漬して、水槽内の人工海水をマグネットポンプで循環流動させて6か月間の腐食試験を実施し、試験終了後、各試験材の腐食形態を調べ、腐食減量を測定する。耐食性については、耐用年数を考慮し、腐食形態に応じて、全面腐食の場合には腐食減量を基準として求めた年間腐食速度により評価し、孔食併発の場合には最大腐食深さを基準として求めた年間腐食速度により評価する。銅合金の海水中の腐食速度は初期に高く、期間の経過に伴って低下することを考慮し、年間腐食速度が0.05mm/年以下は○(耐食性良好)、0.05mm/年を越える場合は×とする。
【0019】
評価結果を表1に示す。表1にみられるように、本発明に従う各試験材No.1〜2は、いずれも、比較試験材(JISC7060合金材)より銅イオン溶出性に優れ、比較試験材と同等の加工性、耐食性をそなえている。なお、試験材No.3〜4は参考例として示すものである。
【0020】
【表1】

Figure 0003850231
【0021】
比較例1
Cu、Ni、Mn、Feの新地金を用い、実施例1と同様に溶解、鋳造し、実施例1と同一工程に従って厚さ2mmの板材(試験材)とした。得られた試験材の加工性(鋳造性、熱間圧延性/冷間圧延性)、銅イオン溶出性、耐食性を、実施例1と同じ方法に従って評価した。評価結果を表2に示す。
【0022】
【表2】
Figure 0003850231
【0023】
表2に示すように、試験材No.5はNi量が少ないため、孔食が併発するとともに年間腐食速度が0.05mm/年を越え、耐食性が劣るものとなっている。試験材No.6はNi量が多いため、銅イオン溶出量がJISC7060合金と同程度となって改善が得られず、試験材No.7はMn量が少ないため、鋳造時に欠陥が生じ、圧延後の板表面にこの結果を起点とする割れが生じた。
【0024】
試験材No.8は、Mn量が多いため、銅イオン溶出量がJISC7060合金と同程度となって改善が得られず、試験材No.9はFeが含有されないため、孔食を併発するとともに年間腐食速度が0.05mm/年を越え、耐食性が劣るものとなっている。試験材No.10はFeの含有量が多過ぎるため、圧延後の板端面に耳割れが生じ、また耐食性も劣っている。
【0025】
実施例2
実施例1で作製された試験材No.2から、幅100mm、長さ300mm、(厚さ2mm)の試験片を採取し、北九州市関門港に面した発電所取水口の取水流動海水に1999年10月より2000年3月までの5か月間浸漬し、その防汚性および耐食性を評価した。
【0026】
防汚性は、板表面の中央部50mm×200mm(100cm2 )範囲の付着物重量と海生生物個体数により評価し、耐食性は、実施例1と同様の方法により評価した。結果を表3に示す。
【0027】
比較例2
実施例1で作製されたJISC7060合金の比較試験材から、幅100mm、長さ300mm(厚さ2mm)の試験片を採取し、実施例2と同様、北九州市関門港に面した発電所取水口の取水流動海水に1999年10月より2000年3月までの5か月間浸漬し、その防汚性および耐食性を実施例2と同様に評価した。
【0028】
また、併せて、厚さ10mm、幅130mm、長さ285mmのコンクリート板を比較試験材と同様、前記取水流動海水に5か月間浸漬し、防汚性の評価を行った。結果を表3に示す。
【0029】
【表3】
Figure 0003850231
【0030】
表3に示すように、本発明に従う試験材(No.2)は、JISC7060合金より優れた防汚性を有し、耐食性は腐食速度から評価した場合JISC7060合金よりやや劣るが、腐食形態は全面腐食であり、実用上支障のない性能をそなえている。なお、コンクリート板には海生生物が多量に付着し、激しい汚損が生じているのが認められた。
【0031】
【発明の効果】
本発明によれば、防汚材料として汎用されているJISC7060合金より優れた防汚性をそなえ、耐食性、加工性もJISC7060合金と同等またはそれ以上であり、コスト面でより有利な防汚型銅合金が提供される。当該防汚型銅合金を海水系設備の防汚材料として適用することにより、環境への影響もなく、海水系設備への海生生物の付着が効果的に抑制され、海水系設備の管理が容易となるとともに、定期清掃頻度の低減、定期清掃により回収される海生生物廃棄量の低減が達成され、経済的効果はきわめて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to antifouling copper for marine organism fouling countermeasures used as seawater system materials such as power plant intake / discharge channels, water intake equipment, seawall equipment, oil pumping equipment, heat exchanger cooling seawater piping, etc. Regarding alloys.
[0002]
[Prior art]
In the seawater system facilities described above, various problems occur due to the attachment of marine organisms, and therefore measures are taken to prevent the attachment of marine organisms. Conventional countermeasures include chemical treatment, mechanical treatment, treatment with physical energy such as ultrasonic, high frequency, and ultraviolet rays, environmental change measures such as temperature rise, oxygen deficiency, and desalination, and application of antifouling materials including paint. Although it has been proposed, the application of chlorination, which has been put to practical use as a chemical treatment, is limited from the viewpoint of environmental issues, and mechanical treatment has the drawback of requiring high costs for installation and maintenance of equipment. In addition, the processing using physical energy is difficult to put into practical use because those generators are currently small and their application range is small. In addition, since the application of environmental change measures is limited to a local closed system or a small range, it is difficult to apply it to large-capacity, open-type seawater facilities such as intake / discharge channels.
[0003]
In these marine life pollution countermeasures, the technique of coating the target part with antifouling materials or making equipment with antifouling materials has been noticed as being effective from the viewpoint of cost effectiveness and has been partially put into practical use. . The most common method is coating with antifouling paints, and organic tin paints, cuprous oxide, copper powder added paints, silicone paints, etc. have been developed. However, there is a problem that cuprous oxide, copper powder-added paint, and silicone-based paint are not sufficiently effective, and that the antifouling property has an effective period of about half a year and must be frequently repainted.
[0004]
On the other hand, copper and copper alloy materials have been recognized as antifouling materials because of their antibacterial properties. In particular, 10% cupronickel (JIS H3100 / H3300 C7060) is practically used as a coating material for seawater facilities, marine platforms, ship bottoms, etc. However, depending on the usage environment, the antifouling property may not be sufficient. As an improvement of the antifouling copper alloy, Ni: 3.0 to 11 0.0%, As: a copper alloy material containing 0.003 to 0.08% as an essential component and further containing one or more of Fe, Mn, Sb, Al, and Sn (Japanese Patent Laid-Open No. 5-311296) Publication), Al: 7.0-20.0%, Cr: more than 0.5% and not more than 9.0% copper-based material (Japanese Patent Laid-Open No. 6-100968) is proposed, and Cu: 30 ~ 80% Seawater resistant material for preventing marine organism adhesion by combining Al: 2 to 12%, Cr: 1.5 to 20% and Fe (Japanese Patent Laid-Open No. 11-1734), Fe: 10 to 80%, Al: 1 Marine marine biomaterials (Japanese Patent Laid-Open No. 8-239726) in which 10% and Cu are combined have also been proposed, but these materials also have sufficient antifouling properties for various usage environments Not.
[0005]
Recently, it has been evaluated that a Cu—Be alloy, which is an existing electronic / electrical material, is applied as an antifouling material, and the use of a Cu—Mn alloy is also being studied (Journal of the Seawater Society, Vol. 50). (1996) p. 334). However, although the Cu-Be alloy has an excellent antifouling effect due to elution of copper ions, on the contrary, the corrosion amount becomes excessive, or the corrosion form becomes pitting corrosion, resulting in a water leakage accident, There are drawbacks such as shortening the service life and enormous replacement costs. On the other hand, the Cu-Mn alloy is superior in corrosion resistance, but as a result, the amount of copper ions eluted is insufficient, and a sufficient antifouling effect cannot be obtained. There are problems such as having to be removed by regular cleaning.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems in antifouling materials for preventing marine organism adhesion, and its purpose is based on a copper alloy material containing Ni as in JISC7060 alloy. It was made as a result of testing and studying the relationship between the combination of alloy components and antifouling properties, and its purpose is to produce antifouling properties superior to JISC7060 alloy and local corrosion such as pitting corrosion. Anti-fouling copper alloy for marine organism fouling countermeasures that has moderate corrosion resistance that does not show excessive corrosion rate, has the same or better workability than JISC7060 alloy, and is cost-effective It is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the antifouling type alloy according to claim 1 has Ni: 1.0 to 1.9 %, Mn: 0.05 to 1.0%, Fe: 0.01 to 2.0. %, And is composed of the balance Cu and impurities.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the significance and reasons for limitation of alloy components in the antifouling type copper alloy according to the present invention will be described.
The antifouling type copper alloy of the present invention contains Ni: 1.0 to 3.0%, Mn: 0.05 to 1.0%, Fe: 0.01 to 2.0%, the remaining Cu and impurities In this specific composition, antifouling properties superior to JISC7060 alloy are achieved.
[0009]
Ni is an element that functions to improve corrosion resistance, and the preferred content is in the range of 1.0 to 3.0%. If Ni is less than 1.0%, the corrosion resistance is not sufficient, and if it exceeds 3.0%, the material cost increases. A more preferable range of Ni is 1.5 to 2.5%.
[0010]
Mn improves the castability by improving the flow of the molten metal at the time of casting the alloy material, and also contributes to enhancing the corrosion resistance. A preferable content of Mn is in the range of 0.05 to 1.0%. If Mn is less than 0.05%, casting defects are likely to occur, and even if contained over 1.0%, the effect of improving castability is saturated, the amount of elution of copper ions is suppressed, and the antifouling property is lowered.
[0011]
Fe synergistically improves seawater corrosion resistance, particularly local corrosion resistance, of Cu—Ni alloys, but excessive addition increases overall corrosion and impairs workability. The preferable content of Fe is in the range of 0.01 to 2%. If it is less than 0.01%, the effect of suppressing local corrosion resistance is small, and if it exceeds 2%, the workability is impaired and stable. It becomes difficult to manufacture the alloy material. Moreover, the amount of corrosion becomes excessive and becomes unsuitable for practical use. In addition, in the alloy of the present invention, 0.05% or less of P, C, Al, Si, Sn, Zn, Pb is contained in one or more kinds, and the total content is less than 0.5% Does not affect the properties of the present invention.
[0012]
The antifouling type copper alloy of the present invention is melted and cast according to a conventional method, subjected to chamfering and soaking, and is made into a plate material by hot rolling and cold rolling according to the shape used, by hot extrusion and drawing. Molded into tube material.
[0013]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples to clarify the features of the present invention and to demonstrate the effects thereof. In addition, this invention is not limited to this, It can change suitably within the range of the meaning of this invention.
[0014]
Example 1
Using a new ingot of Cu, Ni, Mn, and Fe, an alloy having the composition shown in Table 1 is melted at a high frequency with a graphite crucible, and is 30 mm thick, 175 mm wide, and 150 mm high by a drop casting method using an iron mold. A plate-shaped ingot was formed. The obtained ingot was chamfered on both sides to a thickness of 25 mm, subjected to a soaking treatment at 800 ° C. for 2 hours, then hot-rolled at this temperature to a thickness of 5 mm, and then thickened by cold rolling. A plate material (test material) having a thickness of 2 mm was used.
[0015]
JIS C7060 alloy (Ni: 10%, Mn: 0.8%, Fe: 1.5%, balance Cu and impurities) was melted and cast in the same manner as in Example 1, and the thickness was 2 mm according to the same process as in Example 1. Plate material (comparative test material).
[0016]
The workability (castability, hot rollability / cold rollability), copper ion elution, and corrosion resistance of the obtained test materials were evaluated according to the following methods.
Workability: “Good” indicates that the castability, hot rollability, and cold rollability are equal to or greater than those of the comparative test material, and “X” indicates inferiority to the comparative test material.
[0017]
Copper ion elution: 100 mm length and 100 mm width test specimens were taken from the test material and comparative test material, and the entire surface was degreased with acetone, and the test specimen was immersed in 1 liter of artificial seawater for 1 month, and then in artificial seawater. The amount of copper ions eluted in the sample is measured with an atomic absorption photometer. If the amount of copper ions eluted is greater than that of the comparative test material, ○ (good copper ion elution) is indicated, and if the amount is equal or less, ×.
[0018]
Corrosion resistance: A test material is immersed in a vinyl chloride water tank filled with 400 liters of artificial seawater, and the artificial seawater in the water tank is circulated and flowed with a magnet pump to conduct a corrosion test for 6 months. Investigate the corrosion form of each test material and measure the corrosion weight loss. Corrosion resistance is evaluated based on the annual corrosion rate calculated based on the weight loss of corrosion in the case of full-scale corrosion, taking into account the service life, and based on the maximum corrosion depth in the case of pitting corrosion. Evaluation is based on the annual corrosion rate obtained. Considering that the corrosion rate of copper alloys in seawater is initially high and decreases with the passage of time, the annual corrosion rate is less than 0.05 mm / year (good corrosion resistance), exceeding 0.05 mm / year In this case, it is ×.
[0019]
The evaluation results are shown in Table 1. As can be seen in Table 1, each test material No. Each of Nos. 1 and 2 is superior in copper ion elution to the comparative test material (JISC7060 alloy material), and has the same workability and corrosion resistance as the comparative test material. The test material No. 3 to 4 are shown as reference examples.
[0020]
[Table 1]
Figure 0003850231
[0021]
Comparative Example 1
Using new ingots of Cu, Ni, Mn, and Fe, melting and casting were performed in the same manner as in Example 1, and a plate material (test material) having a thickness of 2 mm was obtained according to the same process as in Example 1. The workability (castability, hot rollability / cold rollability), copper ion elution, and corrosion resistance of the obtained test materials were evaluated according to the same methods as in Example 1. The evaluation results are shown in Table 2.
[0022]
[Table 2]
Figure 0003850231
[0023]
As shown in Table 2, the test material No. No. 5 has a small amount of Ni, so that pitting corrosion occurs at the same time and the annual corrosion rate exceeds 0.05 mm / year, resulting in poor corrosion resistance. Test material No. Since No. 6 has a large amount of Ni, the amount of elution of copper ions is almost the same as that of JISC7060 alloy, and no improvement is obtained. Since No. 7 had a small amount of Mn, defects occurred during casting, and cracks originating from this result occurred on the plate surface after rolling.
[0024]
Test material No. In No. 8, since the amount of Mn is large, the amount of elution of copper ions is almost the same as that of JISC7060 alloy, and no improvement can be obtained. Since No. 9 does not contain Fe, pitting corrosion occurs at the same time, and the annual corrosion rate exceeds 0.05 mm / year, resulting in poor corrosion resistance. Test material No. Since No. 10 has too much Fe content, the end face of the plate after rolling is cracked, and the corrosion resistance is inferior.
[0025]
Example 2
The test material No. 1 prepared in Example 1 was used. Samples with a width of 100 mm, a length of 300 mm, and a thickness of 2 mm were collected from No. 2 and taken into the flowing seawater at the power station intake facing the Kanmon Port in Kitakyushu City from October 1999 to March 2000. It was immersed for months and its antifouling and corrosion resistance was evaluated.
[0026]
The antifouling property was evaluated by the weight of deposits and the number of marine organisms in the range of 50 mm × 200 mm (100 cm 2 ) in the center of the plate surface, and the corrosion resistance was evaluated by the same method as in Example 1. The results are shown in Table 3.
[0027]
Comparative Example 2
A test piece with a width of 100 mm and a length of 300 mm (thickness 2 mm) was taken from the comparative test material of JISC7060 alloy produced in Example 1, and the power plant intake facing the Kanmon Port in Kitakyushu City, as in Example 2. The sample was immersed in flowing seawater for 5 months from October 1999 to March 2000, and its antifouling property and corrosion resistance were evaluated in the same manner as in Example 2.
[0028]
In addition, a concrete plate having a thickness of 10 mm, a width of 130 mm, and a length of 285 mm was immersed in the intake water flowing seawater for 5 months in the same manner as the comparative test material, and the antifouling property was evaluated. The results are shown in Table 3.
[0029]
[Table 3]
Figure 0003850231
[0030]
As shown in Table 3, the test material (No. 2) according to the present invention has an antifouling property superior to that of JISC7060 alloy, and the corrosion resistance is slightly inferior to that of JISC7060 alloy when evaluated from the corrosion rate. Corrosion and performance that does not hinder practical use. A large amount of marine organisms adhered to the concrete plate, and it was observed that severe fouling occurred.
[0031]
【The invention's effect】
According to the present invention, an antifouling type copper having antifouling properties superior to those of JISC7060 alloy, which is widely used as an antifouling material, and having corrosion resistance and workability equivalent to or higher than those of JISC7060 alloy, and more advantageous in terms of cost. An alloy is provided. By applying the antifouling copper alloy as an antifouling material for seawater facilities, there is no impact on the environment, and marine organisms are effectively prevented from adhering to the seawater facilities. The economic effect is extremely high because the frequency of regular cleaning and the reduction of the amount of marine organisms recovered by regular cleaning are achieved.

Claims (1)

Ni:1.0〜1.9%(質量%、以下同じ)、Mn:0.05〜1.0%、Fe:0.01〜2.0%を含有し、残部Cuおよび不純物からなることを特徴とする防汚型銅合金。Ni: 1.0 to 1.9 % (mass%, the same shall apply hereinafter), Mn: 0.05 to 1.0%, Fe: 0.01 to 2.0%, the balance being Cu and impurities Antifouling type copper alloy characterized by
JP2001177254A 2001-06-12 2001-06-12 Antifouling copper alloy Expired - Fee Related JP3850231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177254A JP3850231B2 (en) 2001-06-12 2001-06-12 Antifouling copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177254A JP3850231B2 (en) 2001-06-12 2001-06-12 Antifouling copper alloy

Publications (2)

Publication Number Publication Date
JP2002363670A JP2002363670A (en) 2002-12-18
JP3850231B2 true JP3850231B2 (en) 2006-11-29

Family

ID=19018123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177254A Expired - Fee Related JP3850231B2 (en) 2001-06-12 2001-06-12 Antifouling copper alloy

Country Status (1)

Country Link
JP (1) JP3850231B2 (en)

Also Published As

Publication number Publication date
JP2002363670A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
Farooq et al. Evaluating the performance of zinc and aluminum sacrificial anodes in artificial seawater
EP2377963A1 (en) Corrosion-resistant steel material for crude oil tanker
JP5058574B2 (en) Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks
EP2484790B1 (en) Steel material for structures having excellent weather resistance and steel structure
KR101904704B1 (en) High-strength, corrosion-resistant aluminum alloys for use as finstock and methods of making same
CN103882255A (en) Lead-free bronze alloy and application thereof
JP2004068075A (en) Hot-dip zn-al-mg plated steel sheet superior in workability and corrosion resistance, and manufacturing method therefor
Sperandio et al. Influence of silicon on the corrosion behavior of Al–Zn–In sacrificial anode
Seah et al. Corrosion characteristics of ZA-27-graphite particulate composites
JP3850231B2 (en) Antifouling copper alloy
JP5068981B2 (en) Aluminum alloy clad material
Bell et al. Aluminium in fresh waters
JPS6321741B2 (en)
CN107475562B (en) A kind of sea water resistance erosion processing copper alloy and preparation method thereof
JPS60138033A (en) Copper alloy having excellent corrosion resistance
Shuaib-Babata et al. The effect of Magnesium addition on the performance of Aluminium-Zinc–Copper alloy as a sacrificial anode in seawater
JP5047395B1 (en) Corrosion-proof aluminum alloy galvanic anode with no corrosion products
JP4480257B2 (en) Surface coated austenitic stainless steel for fuel tanks with excellent stress corrosion cracking resistance
JPS60138034A (en) Copper alloy having superior corrosion resistance
JP3819080B2 (en) Heat exchanger with excellent corrosion resistance
CN101948966A (en) Titanium-containing low-nickel copper alloy with seawater corrosion resistance
Ahmed Corrosion and corrosion prevention of aluminium alloys in desalination plants: Part 2
JPH02145736A (en) Copper alloy having excellent dezincification corrosion resistance
JPS61223148A (en) Corrosion resistant copper alloy for marine use
JPS6256223B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees