JP3849698B2 - Method for producing transparent conductive film - Google Patents

Method for producing transparent conductive film Download PDF

Info

Publication number
JP3849698B2
JP3849698B2 JP2004189360A JP2004189360A JP3849698B2 JP 3849698 B2 JP3849698 B2 JP 3849698B2 JP 2004189360 A JP2004189360 A JP 2004189360A JP 2004189360 A JP2004189360 A JP 2004189360A JP 3849698 B2 JP3849698 B2 JP 3849698B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
ito
work function
ito film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004189360A
Other languages
Japanese (ja)
Other versions
JP2004342618A (en
Inventor
祐一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004189360A priority Critical patent/JP3849698B2/en
Publication of JP2004342618A publication Critical patent/JP2004342618A/en
Application granted granted Critical
Publication of JP3849698B2 publication Critical patent/JP3849698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は有機薄膜EL素子等の面発光薄膜LEDに利用できる透明導電膜に関し、特に表面平滑性、光透過性が優れ、低抵抗で表面の仕事関数が大きい透明導電膜の製造方法に関する。   The present invention relates to a transparent conductive film that can be used for a surface emitting thin film LED such as an organic thin film EL element, and more particularly to a method for producing a transparent conductive film having excellent surface smoothness and light transmittance, low resistance, and a large surface work function.

従来、ITO(インジウムと錫の複合酸化物)透明導電膜は液晶表示デバイス用として低抵抗化が要求され、そのため、膜の結晶性を向上させる目的で、基板を200℃以上に加熱して成膜することが多かった。   Conventionally, ITO (a composite oxide of indium and tin) transparent conductive film has been required to have a low resistance for liquid crystal display devices. Therefore, in order to improve the crystallinity of the film, the substrate is heated to 200 ° C. or higher. I often filmed.

有機薄膜EL素子は、一般にITO膜や半透明金属蒸着膜からなる透明陽極上に正孔輸送層、発光層、電子注入層、金属陰極の順に形成されている。SiC等の無機半導体からなる面発光薄膜LEDは、一般に透明陽極上にp型半導体、i型発光層、n型半導体、金属陰極の順に構成されている。陽極と陰極の間隔は100m程度である。発光層等は膜厚5nm程度に形成する場合もあり、層を乱さず形成するためには、ITO透明陽極の凹凸が10nm以下、好ましくは5nm以下の平滑性が望まれる。また、透明陽極の凹凸が大きいと凸部にかかる電界が大きくなり、その部分で微小な放電が生じて素子を破壊し、非発光点を生じさせて素子の寿命を低下させるため、できるだけ平滑な透明陽極が望まれる。   The organic thin film EL element is generally formed in the order of a hole transport layer, a light emitting layer, an electron injection layer, and a metal cathode on a transparent anode made of an ITO film or a semitransparent metal vapor deposition film. A surface-emitting thin-film LED made of an inorganic semiconductor such as SiC is generally composed of a p-type semiconductor, an i-type light emitting layer, an n-type semiconductor and a metal cathode on a transparent anode. The distance between the anode and the cathode is about 100 m. The light emitting layer or the like may be formed to a thickness of about 5 nm, and in order to form the layer without disturbing the layer, the ITO transparent anode has an unevenness of 10 nm or less, preferably 5 nm or less. In addition, if the irregularities of the transparent anode are large, the electric field applied to the convex part increases, and a minute discharge occurs at that part, destroying the element, generating a non-light emitting point and reducing the life of the element. A transparent anode is desired.

しかし、例えばスパッタリングによる成膜中に基板加熱を行うと、120nm程度の膜厚に成膜した場合においても結晶成長により20〜30nmの凹凸が表面に生じ、平滑性が損なわれる問題があった。これは、電子ビーム蒸着等の他の成膜方法においても同様である。   However, when the substrate is heated during film formation by sputtering, for example, even when the film is formed to have a film thickness of about 120 nm, there is a problem that unevenness of 20 to 30 nm is generated on the surface due to crystal growth and the smoothness is impaired. The same applies to other film forming methods such as electron beam evaporation.

また、市販のITO膜や、基板加熱し100〜150nm程度の厚さで30Ω/□以下の低抵抗に成膜したITO膜の仕事関数は4.6〜4.8eV(理研計器(株)製:「表面分析装置AC−1」で光量約800nWで測定)であり、金属材料で最も仕事関数が大きい白金蒸着膜においても仕事関数4.9eV(理研計器(株)製:「表面分析装置AC−1」で光量15nWで測定)である。透明陽極から発光層への正孔注入効率をより上げるためには、発光層材料の値(良く用いられるAlオキシン錯体では5.8eV程度)に近い5eV以上の仕事関数
を持つ材料が望まれている。
The work function of a commercially available ITO film or an ITO film formed by heating the substrate to a thickness of about 100 to 150 nm and a low resistance of 30 Ω / □ or less is 4.6 to 4.8 eV (manufactured by Riken Keiki Co., Ltd.). : Measured with a surface analysis apparatus AC-1 at a light intensity of about 800 nW), and a work function of 4.9 eV (manufactured by Riken Keiki Co., Ltd .: “Surface analysis apparatus AC”) -1 "and measured with a light amount of 15 nW). In order to further increase the efficiency of hole injection from the transparent anode to the light-emitting layer, a material having a work function of 5 eV or more close to the value of the light-emitting layer material (about 5.8 eV for a commonly used Al oxine complex) is desired. Yes.

その他、液晶ディスプレイで用いられるITOと同様に、場所による発光の不均一をできるだけ少なくするため低抵抗で、発光の外部取り出し効率を高めるため光透過率が高いことが要求される。   In addition, similar to ITO used in a liquid crystal display, it is required to have a low resistance in order to reduce unevenness of light emission depending on the location as much as possible, and to have a high light transmittance in order to increase the efficiency of external extraction of light emission.

低抵抗のITO透明導電膜を得るためには、結晶性を良くし、膜中の電子の散乱を防ぐと共に、酸素空孔や錫に起因するキャリア電子の密度を増やす必要がある。しかし、結晶性を良くするために基板加熱を行ったり、高い入射エネルギーの粒子を用いて成膜すると、基板上に付着した粒子が安定な場所まで移動しやすくなる結果、大きな結晶粒が成長し表面の平滑性が悪化する。   In order to obtain a low-resistance ITO transparent conductive film, it is necessary to improve crystallinity, prevent scattering of electrons in the film, and increase the density of carrier electrons due to oxygen vacancies and tin. However, if the substrate is heated to improve the crystallinity or the film is formed using particles with high incident energy, the particles attached on the substrate easily move to a stable place, resulting in the growth of large crystal grains. Surface smoothness deteriorates.

また、膜中の酸素空孔を増やしキャリア密度を増やそうとすると、電子の散乱中心も増え電子の移動度は減少するため、成膜中の酸素分圧を変化させると、適当な酸素分圧において膜の抵抗は極大となる。さらに、膜の透過率は酸素空孔が増えると低級酸化物が膜中に増え悪化する。   In addition, increasing the oxygen vacancies in the film and increasing the carrier density also increases the number of electron scattering centers and decreases the mobility of the electrons. Therefore, if the oxygen partial pressure during film formation is changed, an appropriate oxygen partial pressure can be obtained. The resistance of the film is maximized. Furthermore, the permeability of the membrane is worsened as oxygen vacancies increase and lower oxides increase in the membrane.

このことより、成膜中およびアニール中の酸素分圧、成膜粒子のエネルギーをコントロールすることで、低抵抗で平滑で透明な透明導電膜を得られると考えられた。しかし、空気中でアニールした後に最も低抵抗となる酸素分圧でITOを成膜した場合には、アニール後でも低級酸化物が膜中に残り透明性が低くなる問題がある。逆に、酸素分圧を高めにして成膜すると空気中でアニール後には酸素過剰となりキャリア密度が低下し高抵抗となる問題があった。   From this, it was considered that a smooth transparent transparent conductive film with low resistance can be obtained by controlling the oxygen partial pressure during film formation and annealing and the energy of film formation particles. However, when an ITO film is formed at an oxygen partial pressure that provides the lowest resistance after annealing in air, there is a problem in that the lower oxide remains in the film even after annealing and the transparency is lowered. On the contrary, when the film is formed with an increased oxygen partial pressure, there is a problem that oxygen is excessive after annealing in the air, the carrier density is lowered, and the resistance is increased.

そこで、成膜プロセス後のアニールにより最も低抵抗となる成膜プロセス中の成膜装置内の酸素分圧より2割程高めの酸素分圧で成膜した後、不活性ガス、窒素ガス、水素ガス等の非酸化性雰囲気や減圧雰囲気でアニールし、結晶成長させる事により低抵抗化を行った。しかし、このままでは、仕事関数が大きくならない問題が残った。   Therefore, after forming the film at an oxygen partial pressure that is about 20% higher than the oxygen partial pressure in the film forming apparatus during the film forming process that has the lowest resistance by annealing after the film forming process, the inert gas, nitrogen gas, hydrogen The resistance was lowered by annealing in a non-oxidizing atmosphere such as a gas or a reduced pressure atmosphere to grow crystals. However, there remains a problem that the work function does not increase as it is.

本発明はこの問題点を解決するためになされたものであり、その課題とするところは、表面平滑性に優れ、かつ表面の仕事関数が高い値を持ち、表面抵抗率が低く、基板を含めた450〜800nmにおける可視光線透過率が高い透明導電膜及びその製造方法を提供することにある。   The present invention has been made to solve this problem, and the problem is that the surface smoothness is excellent, the surface work function is high, the surface resistivity is low, and the substrate is included. Another object of the present invention is to provide a transparent conductive film having a high visible light transmittance at 450 to 800 nm and a method for producing the same.

本発明はこの課題を解決するため、絶縁基板上に、基板温度を0〜100℃に保ち、X線回折的に非晶質なまたは微結晶からなる非晶質に近いITO薄膜を作製し、その後、減圧下または非酸化性雰囲気下100〜500℃でアニールし平板状に結晶成長させたITO膜を成膜し下地層とし、該ITO膜上に仕事関数が5.1eV〜6.0eVである透明導電層を100nm以下の膜厚で成膜することにより、表面高低差が1μm平方の範囲で1nm〜10nm、表面の仕事関数が5.1〜6.0eV、表面抵抗率が3〜50Ω/□、基板を含めた450〜800nmにおける可視光透過率が75〜90%である透明導電膜を提供する。 In order to solve this problem, the present invention produces an ITO thin film that is amorphous or microcrystalline in X-ray diffraction on an insulating substrate while keeping the substrate temperature at 0 to 100 ° C. Thereafter, an ITO film annealed at 100 to 500 ° C. under reduced pressure or in a non-oxidizing atmosphere and grown in a flat plate shape is formed as an underlayer, and the work function is 5.1 eV to 6.0 eV on the ITO film. By depositing a transparent conductive layer with a film thickness of 100 nm or less, the surface height difference is 1 nm to 10 nm in the range of 1 μm square, the surface work function is 5.1 to 6.0 eV, and the surface resistivity is 3 to 50Ω. / □ provides a transparent conductive film having a visible light transmittance of 75 to 90% at 450 to 800 nm including the substrate.

以上により明らかなように、本発明の製造方法により、表面平滑性が高く、低抵抗率で光透過率が高い透明導電膜が得ることが可能となった。この透明導電膜を有機薄膜EL素子等の面発光薄膜LED素子の透明陽極に用いると、素子の長寿命化に大きな効果があるものとなる。   As is apparent from the above, the production method of the present invention makes it possible to obtain a transparent conductive film having high surface smoothness, low resistivity and high light transmittance. When this transparent conductive film is used as a transparent anode of a surface emitting thin film LED element such as an organic thin film EL element, it has a great effect on extending the life of the element.

以下、本発明を詳細に説明する。   The present invention will be described in detail below.

本発明者は、鋭意研究を重ねた結果、基板加熱をせずにX線回折的に非晶質な微粒子を基板上に成膜した後、100〜500℃の温度、好ましくは200〜400℃の温度で結晶化させると、微粒子が平面方向に焼結しモザイク状に結晶成長するため、原子間力顕微鏡で測定した凹凸が3nm以下の極めて平滑な表面が得られることを見いだし、さらに、空気中等の酸化性雰囲気100℃〜500℃でアニールするか、または酸素やアルゴン等のプラズマを照射することにより、4.6〜4.8eVであった仕事関数が5.1eV以上になることを見いだした。   As a result of intensive studies, the inventor has formed fine particles which are amorphous in X-ray diffraction on the substrate without heating the substrate, and then a temperature of 100 to 500 ° C., preferably 200 to 400 ° C. When crystallizing at a temperature of 5 ° C., the fine particles sinter in the plane direction and grow into a crystal in a mosaic shape, and therefore, it was found that an extremely smooth surface having an unevenness measured by an atomic force microscope of 3 nm or less can be obtained. It was found that the work function which was 4.6 to 4.8 eV becomes 5.1 eV or more by annealing at a moderate oxidizing atmosphere of 100 ° C. to 500 ° C. or irradiating with a plasma such as oxygen or argon. It was.

本発明におけるX線回折的に非晶質な微粒子を基板上に成膜する方法としては、スパッタ法、電子ビーム蒸着法、プラズマCVD法等がある。
[作用]
本発明では、成膜後、空気中等の酸化性雰囲気でアニール、または、酸素やアルゴン等のプラズマを照射することにより表面の仕事関数を5.1eV以上に大きくすることを行った。この際、膜の内部はすでに結晶化し緻密になっているため、酸素がほとんど入り込めず、抵抗率が大きく増大することは無い。
Examples of the method for forming X-ray diffraction amorphous particles on the substrate in the present invention include sputtering, electron beam evaporation, and plasma CVD.
[Action]
In the present invention, after the film formation, the surface work function is increased to 5.1 eV or more by annealing in an oxidizing atmosphere such as in the air or irradiating plasma such as oxygen or argon. At this time, since the inside of the film is already crystallized and dense, oxygen hardly enters and the resistivity does not increase greatly.

また、本発明の方法により、従来の5.1eV以上の高仕事関数ではないが低抵抗、高透過率のITO膜が得られる条件で成膜し下地とした上に、本発明の製造方法による高仕事関数が得られる条件または材料で成膜し、多層構造の透明電極とすることも可能である。   In addition, according to the method of the present invention, an ITO film having a low resistance and a high transmittance, which is not a conventional high work function of 5.1 eV or higher, is formed and used as a base. It is possible to form a transparent electrode having a multilayer structure by forming a film under conditions or materials that provide a high work function.

例えば、蒸着またはスパッタ等の方法で基板温度100℃以下でITOを非晶質に成膜した後、非酸化性雰囲気や減圧雰囲気でアニールし結晶成長して得た表面の高低差が1μm四方の範囲で10nm以下、かつ、表面抵抗率40Ω/□以下、基板を含めた450〜800nmにおける可視光線透過率が80%以上であるITO膜を下地とし、その上に5.1eV以上の仕事関数の透明導電層を積層し2層構造の透明電極とする。   For example, after the ITO film is formed amorphous at a substrate temperature of 100 ° C. or lower by a method such as vapor deposition or sputtering, the surface height difference obtained by crystal growth by annealing in a non-oxidizing atmosphere or a reduced pressure atmosphere is 1 μm square. An ITO film having a range of 10 nm or less and a surface resistivity of 40 Ω / □ or less and a visible light transmittance of 80% or more including the substrate is 80% or more, and a work function of 5.1 eV or more is formed thereon. A transparent conductive layer is laminated to form a transparent electrode having a two-layer structure.

上層に用いる5.1eV以上の仕事関数の透明導電層は、下地と同じ成膜装置を用いて高仕事関数のITOを成膜する場合には、下地の低抵抗を優先して成膜したITO膜の成膜条件よりも高い酸素分圧(本発明の実施例の場合、2倍程度だが、用いる装置にもよるので特に限定せず)で、基板温度室温で100nm以下、好ましくは5〜20nmの厚さに成膜した後、空気中等の酸化性雰囲気下でアニール、または酸素やアルゴン等のプラズマを照射することで成膜される。   The transparent conductive layer having a work function of 5.1 eV or more used for the upper layer is formed by giving priority to the low resistance of the base when the high work function ITO is formed using the same film forming apparatus as the base. Oxygen partial pressure higher than the film forming conditions (in the case of the embodiment of the present invention, it is about 2 times, but it is not particularly limited because it depends on the apparatus used), and the substrate temperature is 100 nm or less, preferably 5 to 20 nm. Then, the film is formed by annealing in an oxidizing atmosphere such as air or by irradiating with a plasma such as oxygen or argon.

ITO以外の5.1eV以上の仕事関数を持つ物質を上層に用いる場合には、例えばアモルファスシリコンカーバイト、セレン等のカルコゲナイト族の単体および化合物等の非晶質半導体等を20nm程度以下の厚さで下地ITO上に成膜する。   When a material having a work function of 5.1 eV or more other than ITO is used for the upper layer, a thickness of about 20 nm or less of amorphous semiconductor such as amorphous silicon carbide, chalcogenite group simple substance such as selenium, etc. To form a film on the underlying ITO.

得られたITO膜を湿式のエッチングでパターニングする場合は、成膜後に行うアニール前後のどちらでも行うことができるが、アニールによる結晶化により膜が安定化する前に行うと、より速くエッチングを行うことができる。   When the obtained ITO film is patterned by wet etching, it can be performed either before or after annealing performed after film formation, but if the film is stabilized by crystallization by annealing, etching is performed faster. be able to.

また、より低抵抗な透明導電膜とするため、透光性金属薄膜層をITO膜の層と重ねて設けることもできる。   Moreover, in order to make a transparent conductive film having a lower resistance, a light-transmitting metal thin film layer can be provided so as to overlap with the ITO film layer.

透光性金属薄膜層は、厚さは20nm以下、好ましくは5〜10nm程度の金属層を、蒸着、イオンプレーティング、スパッタリング、または湿式メッキなどの方法により成膜する。   The light-transmitting metal thin film layer is formed by depositing a metal layer having a thickness of 20 nm or less, preferably about 5 to 10 nm, by a method such as vapor deposition, ion plating, sputtering, or wet plating.

金属材料としては、銅、銀、錫、ニッケル、プラチナ、パラジウム、クロム等の金属単体または合金を用いることができるが、上記例に特に限定されるわけでわない。   As the metal material, a simple metal or an alloy such as copper, silver, tin, nickel, platinum, palladium, and chromium can be used, but it is not particularly limited to the above example.

以下、RFマグネトロンスパッタリングにより行った場合の本発明の実施例について説明する。   Hereinafter, examples of the present invention in the case of performing by RF magnetron sputtering will be described.

スッパタリング装置は徳田製作所(株)製:「TOKUDA CFS− 10 EP−70」を用い、基板はダウ・コーニング(株)製:「コーニング7059(厚さ1.1mm、5インチ角)」を回転式ジグの中心に固定し、直径5インチのITOターゲット(酸化錫10wt%)とジグ面との距離を17.5cmとした。   The sputtering equipment uses Tokuda Seisakusho Co., Ltd .: “TOKUDA CFS-10 EP-70”, and the substrate is Dow Corning Co., Ltd .: “Corning 7059 (thickness 1.1 mm, 5 inch square)”. The distance between the ITO target (tin oxide 10 wt%) having a diameter of 5 inches and the jig surface was set to 17.5 cm.

スパッタリングはアルゴン/酸素=340/1の流量比(圧力0.31Pa)でRF出力300Wで基板温度は室温で30分間行った。   Sputtering was performed at a flow rate ratio of argon / oxygen = 340/1 (pressure 0.31 Pa), an RF output of 300 W, and a substrate temperature of 30 minutes at room temperature.

その結果、500nmでの光透過率71%、表面抵抗75Ω/□、仕事関数4.6eV、膜厚150nmのITO膜が得られた。膜の表面のSEM写真を図1に、X線回折図を図2に示すが、平滑な微結晶からなるほとんど非晶質に近い膜であることが分かる。   As a result, an ITO film having a light transmittance of 71% at 500 nm, a surface resistance of 75Ω / □, a work function of 4.6 eV, and a film thickness of 150 nm was obtained. An SEM photograph of the surface of the film is shown in FIG. 1, and an X-ray diffraction diagram is shown in FIG. 2, and it can be seen that the film is almost amorphous, consisting of smooth fine crystals.

つぎに、このITO膜を300℃、27Paの減圧下で10分間アニールすると、500nmでの光透過率85%、基板を含めた450〜800nmにおける可視光線透過率が80%以上であり、表面抵抗率27Ω/□、仕事関数4.6eVのITO膜となった。   Next, when this ITO film is annealed at 300 ° C. under a reduced pressure of 27 Pa for 10 minutes, the light transmittance at 500 nm is 85%, and the visible light transmittance at 450 to 800 nm including the substrate is 80% or more. The ITO film had a rate of 27Ω / □ and a work function of 4.6 eV.

SEM写真を図3に、X線回折図を図4の示すが、平板状に結晶成長していることが分かる。   The SEM photograph is shown in FIG. 3, and the X-ray diffraction diagram is shown in FIG.

さらに、このITO膜を空気中で300℃、10分間アニールすると、500nmでの光透過率86%、基板を含めた450〜800nmにおける可視光線透過率が80%以上であり、表面抵抗率32Ω/□、仕事関数5.2eVの高光透過率、低抵抗のITO膜となった。   Further, when this ITO film is annealed in air at 300 ° C. for 10 minutes, the light transmittance at 500 nm is 86%, the visible light transmittance at 450 to 800 nm including the substrate is 80% or more, and the surface resistivity is 32Ω / □, ITO film with high light transmittance and low resistance of work function 5.2 eV.

セイコー電子工業(株)製「SPM3700」原子間力顕微鏡で1μm四方の表面の凹凸を測定したところ、最大3nm以下の高平滑面であった。SEM写真を図5に示すが、平板状に結晶成長していることが分かる。   When the irregularities on the surface of 1 μm square were measured with an “SPM3700” atomic force microscope manufactured by Seiko Denshi Kogyo Co., Ltd., the surface was highly smooth with a maximum of 3 nm or less. The SEM photograph is shown in FIG. 5, and it can be seen that the crystal grows in a flat plate shape.

実施例1で空気中で300℃、10分間アニールする前のITO膜を、圧力27PaでRF100Wの出力のアルゴンプラズマを15分間さらした。表面の仕事関数は5.2eVとなった。   The ITO film before annealing at 300 ° C. for 10 minutes in the air in Example 1 was exposed to argon plasma with an output of RF 100 W at a pressure of 27 Pa for 15 minutes. The work function of the surface was 5.2 eV.

実施例1で空気中で300℃、10分間アニールする前のITO膜を、圧力27PaでRF100Wの出力の酸素プラズマを15分間さらした。表面の仕事関数は5.2eVとなった。
<比較例1>
実施例1で300℃、27Paの減圧下で10分間アニールする前のITO膜を、空気中、300℃で10分間アニールすると、500nmでの光透過率85%、基板を含めた450〜800nmにおける可視光線透過率が80%以上であり、仕事関数5.2eV、SEM写真図6に示すように平板状に結晶成長し、平滑な面が得られたが、表面抵抗率100Ω/□の高抵抗なITO膜となった。
<比較例2>
実施例1と同じ装置を用いて、同じ基板上にアルゴン/酸素流量比を425/1(圧力0.31Pa)としてスパッタを行った。その結果、500nmでの光透過率49%、表面抵抗率214Ω/□、仕事関数4.7eV、の低光透過率の非晶質ITO膜が得られた。
The ITO film before annealing for 10 minutes in air at 300 ° C. in Example 1 was exposed to oxygen plasma of RF 100 W output at a pressure of 27 Pa for 15 minutes. The work function of the surface was 5.2 eV.
<Comparative Example 1>
When the ITO film before annealing for 10 minutes at 300 ° C. under a reduced pressure of 27 Pa in Example 1 was annealed in air at 300 ° C. for 10 minutes, the light transmittance at 500 nm was 85%, and 450 to 800 nm including the substrate was observed. Visible light transmittance is 80% or more, work function is 5.2 eV, SEM photograph As shown in FIG. 6, a flat crystal was grown and a smooth surface was obtained, but a high resistivity with a surface resistivity of 100Ω / □ was obtained. ITO film was obtained.
<Comparative example 2>
Using the same apparatus as in Example 1, sputtering was performed on the same substrate with an argon / oxygen flow ratio of 425/1 (pressure 0.31 Pa). As a result, an amorphous ITO film having a light transmittance of 49% at 500 nm, a surface resistivity of 214Ω / □, and a work function of 4.7 eV and a low light transmittance was obtained.

さらに、このITO膜を空気中で250℃、1時間アニールしたが、500nmでの光透過率68%、表面抵抗率16Ω/□、仕事関数5.0eVの低抵抗だが、低光透過率のITO膜となった。   Further, this ITO film was annealed in air at 250 ° C. for 1 hour. However, the light transmittance at 500 nm is 68%, the surface resistivity is 16Ω / □, and the work function is 5.0 eV. It became a film.

実施例1において、空気中で300℃、10分間アニールし表面を高仕事関数化する代わりに、以下に示すように高仕事関数のITOを数10nm以下の厚さで積層する。   In Example 1, instead of annealing in air at 300 ° C. for 10 minutes to increase the work function of the surface, ITO having a high work function is laminated with a thickness of several tens of nm or less as shown below.

実施例1の300℃、27Paの減圧下で10分間アニールしたITO膜上に、実施例1と同じ装置を用いて、アルゴン/酸素流量比を170/1(圧力0.31Pa)、RF出力300W、基板温度室温で3分間スパッタを行い膜厚15nmの非晶質ITO膜を堆積する。   On the ITO film annealed for 10 minutes at 300 ° C. under a reduced pressure of 27 Pa in Example 1, using the same apparatus as in Example 1, the argon / oxygen flow rate ratio was 170/1 (pressure 0.31 Pa), RF output 300 W. Then, sputtering is performed at a substrate temperature of room temperature for 3 minutes to deposit an amorphous ITO film having a thickness of 15 nm.

さらに、このITO膜を空気中で250℃、1時間アニールし結晶化すると、500nmでの光透過率85%、基板を含めた450〜800nmにおける可視光線透過率が80%以上であり、表面抵抗率33Ω/□、仕事関数5.5eVの高光透過率、高仕事関数で、原子間力顕微鏡で計った表面の高低差が1μm四方の範囲で10nm以下の平滑なITO膜が得られる。
<比較例3>
実施例1と同じ装置で、基板温度200℃、アルゴン/酸素=340/1の流量比(圧力0.31Pa)、RF出力300Wで30分間スパッタリングしITOの成膜を行った。その結果、500nmでの光透過率88%、基板を含めた450〜800nmにおける可視光線透過率が75%以上であり、表面抵抗16Ω/□、仕事関数4.7eV、膜厚150nmのITO膜が得られた。膜の表面のSEM写真を図7に示す。低抵抗で光透過率が高いが、結晶成長し表面の凹凸が激しい。
Furthermore, when this ITO film is crystallized by annealing at 250 ° C. for 1 hour in the air, the light transmittance at 500 nm is 85%, and the visible light transmittance at 450 to 800 nm including the substrate is 80% or more. A smooth ITO film having a high light transmittance of 33 Ω / □, a work function of 5.5 eV, a high work function, and a surface height difference of 1 μm square measured by an atomic force microscope is 10 nm or less.
<Comparative Example 3>
Using the same apparatus as in Example 1, ITO was deposited by sputtering for 30 minutes at a substrate temperature of 200 ° C., a flow rate ratio of argon / oxygen = 340/1 (pressure 0.31 Pa), and RF output of 300 W. As a result, the light transmittance at 500 nm is 88%, the visible light transmittance at 450 to 800 nm including the substrate is 75% or more, an ITO film having a surface resistance of 16Ω / □, a work function of 4.7 eV, and a film thickness of 150 nm. Obtained. An SEM photograph of the film surface is shown in FIG. Low resistance and high light transmittance, but crystal growth and surface irregularities are severe.

実施例1で空気中で300℃、10分間アニールする前のITO膜上に、シラン、エタン、ジボラン、水素ガスを原料とし、ガスの原子比がSi:C:B:H=10:20:0.8:442となるように混合し、基板温度160℃、圧力0.15Torr、RF出力20Wの条件でプラズマCVD法を行いp型アモルファスシリコンカーバイトを15nm堆積し、2層構造の透明導電膜を作製した。   On the ITO film before annealing at 300 ° C. for 10 minutes in air in Example 1, silane, ethane, diborane, and hydrogen gas are used as raw materials, and the gas atomic ratio is Si: C: B: H = 10: 20: The mixture is mixed to 0.8: 442, plasma CVD is performed under the conditions of a substrate temperature of 160 ° C., a pressure of 0.15 Torr, and an RF output of 20 W to deposit 15 nm of p-type amorphous silicon carbide. A membrane was prepared.

その結果、500nmでの光透過率85%、基板を含めた450〜800nmにおける可視光線透過率が75%以上であり、表面抵抗率27Ω/□、仕事関数5.2eV(測定光量1nW)の高光透過率、高仕事関数で、原子間力顕微鏡で計った表面の高低差が1μm四方の範囲で10nm以下の平滑な透明導電膜が得られた。   As a result, the light transmittance at 500 nm is 85%, the visible light transmittance at 450 to 800 nm including the substrate is 75% or more, the surface resistivity is 27Ω / □, and the work function is 5.2 eV (measured light amount 1 nW). A smooth transparent conductive film having a transmittance and a high work function, and having a surface height difference of 1 μm square measured by an atomic force microscope of 10 nm or less was obtained.

実施例2で作製したITO膜を透明陽極とし、その上に順に、第一正孔輸送層として銅フタロシアニンを約15nm蒸着し、第2正孔輸送層として   The ITO film prepared in Example 2 was used as a transparent anode, and copper phthalocyanine was deposited as a first hole transporting layer in an order of about 15 nm on top of that as a second hole transporting layer.

Figure 0003849698
を48nmスピンコートし、さらに第3正孔輸送層としてN,N’−ジフェニル−N,N’−パラ−トリル−ベンジジンを5nm蒸着し、発光層としてキナクリドンを約0.5%添加したAlオキシン錯体を5nm蒸着し、電子輸送層としてAlオキシン錯体のみを45nm蒸着し、陰極としてAlLi合金を27nm共蒸着した後、Alのみを180nm積層(発光部面積8mm)し、封止層としてGeOを素子上全面に蒸着した後カバーガラスを感光性樹脂で接着した。
Figure 0003849698
Oxine having a thickness of 48 nm spin-coated, 5 nm of N, N′-diphenyl-N, N′-para-tolyl-benzidine as a third hole transporting layer, and about 0.5% of quinacridone added as a light emitting layer After depositing 5 nm of the complex, depositing only 45 nm of the Al oxine complex as the electron transporting layer, co-depositing 27 nm of the AlLi alloy as the cathode, and laminating only 180 nm of Al (light emitting part area 8 mm 2 ), and using GeO as the sealing layer After vapor deposition on the entire surface of the device, the cover glass was adhered with a photosensitive resin.

この素子を10mA/cmで駆動すると、初期輝度587cd/m(8.6V)、千時間後でも184cd/m(11.2V)と従来になく高輝度を保ち、目視観察で非発光点の発生が無く安定な発光をした。 Driving this element in 10 mA / cm 2, the initial luminance 587cd / m 2 (8.6V), maintaining the high luminance than ever and 184cd / m 2 (11.2V) even after thousands of hours, the non-emission by visual observation Stable light emission without generation of spots.

実施例1における、基板温度室温で成膜した非晶質なITO膜の表面SEM写真である。2 is a surface SEM photograph of an amorphous ITO film formed at a substrate temperature of room temperature in Example 1. 図1と同じ試料のX線回折の図である。It is a figure of the X-ray diffraction of the same sample as FIG. 図1の試料を減圧下アニールした実施例2の試料表面のSEM写真である。It is a SEM photograph of the sample surface of Example 2 which annealed the sample of FIG. 1 under pressure reduction. 図3と同じ試料のX線回折の図である。It is a figure of the X-ray diffraction of the same sample as FIG. 図3の試料を空気中でアニールした実施例3の試料の表面のSEM写真である。It is a SEM photograph of the surface of the sample of Example 3 which annealed the sample of FIG. 3 in the air. 図1の試料を空気中でアニールした実施例2の試料の表面のSEM写真である。It is the SEM photograph of the surface of the sample of Example 2 which annealed the sample of FIG. 1 in the air. 比較例3の試料表面のSEM写真である。4 is a SEM photograph of the sample surface of Comparative Example 3.

Claims (3)

絶縁基板上に、基板温度を0〜100℃に保ち、X線回折的に非晶質なまたは微結晶からなる非晶質に近いITO薄膜を作製し、その後、減圧下または非酸化性雰囲気下100〜500℃でアニールし平板状に結晶成長させ下地層とする工程と、On the insulating substrate, the substrate temperature is kept at 0 to 100 ° C., and an amorphous ITO film that is amorphous or microcrystalline in X-ray diffraction is produced, and thereafter, under reduced pressure or in a non-oxidizing atmosphere Annealing at 100-500 ° C. to grow a crystal in a plate shape to form an underlayer;
該ITO膜上に仕事関数が5.1eV〜6.0eVである透明導電層を100nm以下の膜厚で成膜し、該透明導電層の表面高低差を1μm平方の範囲で1nm〜10nmとする工程を備えることを特徴とする透明導電膜の製造方法。A transparent conductive layer having a work function of 5.1 eV to 6.0 eV is formed with a film thickness of 100 nm or less on the ITO film, and the surface height difference of the transparent conductive layer is set to 1 nm to 10 nm within a range of 1 μm square. The manufacturing method of the transparent conductive film characterized by including a process.
前記透明導電層がITO膜からなり、前記透明導電層を成膜する工程が、下地層のITO成膜条件よりも高い酸素分圧で成膜し、成膜後、酸化性雰囲気下でアニール、または、プラズマ照射する工程であることを特徴とする請求項1記載の透明導電膜の製造方法 The transparent conductive layer is made of an ITO film, and the step of forming the transparent conductive layer is formed with an oxygen partial pressure higher than the ITO film forming condition of the underlayer, and after the film formation, annealed in an oxidizing atmosphere, The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film is a step of plasma irradiation . 前記透明導電層が厚さ20nm以下の非晶質半導体からなることを特徴とする請求項1記載の透明導電膜の製造方法


The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive layer is made of an amorphous semiconductor having a thickness of 20 nm or less .


JP2004189360A 2004-06-28 2004-06-28 Method for producing transparent conductive film Expired - Fee Related JP3849698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189360A JP3849698B2 (en) 2004-06-28 2004-06-28 Method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189360A JP3849698B2 (en) 2004-06-28 2004-06-28 Method for producing transparent conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31045294A Division JP3586906B2 (en) 1994-12-14 1994-12-14 Method for manufacturing transparent conductive film

Publications (2)

Publication Number Publication Date
JP2004342618A JP2004342618A (en) 2004-12-02
JP3849698B2 true JP3849698B2 (en) 2006-11-22

Family

ID=33535853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189360A Expired - Fee Related JP3849698B2 (en) 2004-06-28 2004-06-28 Method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP3849698B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047516B2 (en) 2006-03-23 2012-10-10 昭和電工株式会社 Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device, and lamp using the same
JP6278241B2 (en) * 2014-08-29 2018-02-14 日本電気硝子株式会社 Manufacturing method of glass substrate with film
WO2018047977A1 (en) * 2016-09-12 2018-03-15 株式会社アルバック Production method of substrate with transparent conductive film, production device of substrate with transparent conductive film, and transparent conductive film

Also Published As

Publication number Publication date
JP2004342618A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3586906B2 (en) Method for manufacturing transparent conductive film
CN101295758B (en) Indium gallium aluminum nitrogen illuminating device containing carbon based underlay and its production method
US8916412B2 (en) High efficiency cadmium telluride solar cell and method of fabrication
US20080280119A1 (en) Conductive film and method for manufacturing the same
JP2004052102A (en) Target for transparent electroconductive thin-film, transparent electroconductive thin-film, manufacturing method therefor, electrode material for display, and organic electroluminescence element
TW200828639A (en) Diamond-like carbon electronic devices and methods of manufacture
TW200951235A (en) Thin film metal oxynitride semiconductors
TW201345015A (en) Transparent anode for an OLED
CN103774113A (en) Method for preparing hexagonal boron nitride film
JP3945395B2 (en) Transparent conductive thin film, method for forming the same, transparent conductive substrate for display panel using the same, and organic electroluminescence element
CN101494144B (en) Structure of nanometer line cold-cathode electron source array with grid and method for producing the same
CN104638071B (en) A kind of nitride LED epitaxial slice structure of use compound substrate and preparation method thereof
TWI803984B (en) Nano-twinned structure on metallic thin film surface and method for forming the same
JP6142363B2 (en) Method for manufacturing organic electroluminescent device
JPH09246577A (en) Formation method for metal electrode of solar cell
JP3849698B2 (en) Method for producing transparent conductive film
CN104091743B (en) The manufacture method of a kind of self-aligning grid structure nanometer wire cold-cathode electron source array and structure thereof
JP2004241296A (en) Transparent conductive thin film and its manufacturing method, transparent conductive base material for display panel and electroluminescent element using the same
CN101236872B (en) Making method for transmission array of field radiation cathode carbon nano pipe
US7923288B2 (en) Zinc oxide thin film electroluminescent devices
JP2004186245A (en) Manufacturing method of carbon nanotube, and carbon nanotube device
TW200947730A (en) Photovoltaic devices and associated methods
CN1227162A (en) Non-crystal multilayer diamond film material with metal titanium as interface layer and its preparing method and use
CN104120388B (en) The method of nanocrystalline forming method and manufacture organic light-emitting display device
KR100943975B1 (en) Indium tin oxide thin film and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees