JP3849086B2 - Method for producing aromatic carboxylic acid - Google Patents

Method for producing aromatic carboxylic acid Download PDF

Info

Publication number
JP3849086B2
JP3849086B2 JP23291498A JP23291498A JP3849086B2 JP 3849086 B2 JP3849086 B2 JP 3849086B2 JP 23291498 A JP23291498 A JP 23291498A JP 23291498 A JP23291498 A JP 23291498A JP 3849086 B2 JP3849086 B2 JP 3849086B2
Authority
JP
Japan
Prior art keywords
acetic acid
alkyl
water
carboxylic acid
entrainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23291498A
Other languages
Japanese (ja)
Other versions
JPH11171820A (en
Inventor
二三夫 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP23291498A priority Critical patent/JP3849086B2/en
Publication of JPH11171820A publication Critical patent/JPH11171820A/en
Application granted granted Critical
Publication of JP3849086B2 publication Critical patent/JP3849086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアルキル置換芳香族化合物の液相酸化による芳香族カルボン酸の製造方法に関し、詳しくは該液相酸化で溶媒として用いられる酢酸の回収方法に関するものである。
【0002】
【従来の技術】
テレフタル酸やイソフタル酸などの芳香族カルボン酸の製造方法として、アルキル置換芳香族化合物を触媒の存在下、酢酸溶媒中で分子状酸素ガスにより液相酸化する方法が一般的である。該製造方法において溶媒に用いられる酢酸は酸化反応による生成水により希釈されるので、蒸留脱水塔で生成水を分離して酸化反応器に戻す必要がある。
すなわち、例えばスラリー状の酸化反応生成物から芳香族カルボン酸を分離した反応母液を蒸発させて得た含水酢酸、あるいは酸化反応器からの排ガスを冷却凝縮して得た含水酢酸中には、液相酸化反応の生成水が混入しているために、溶媒として再使用するためには脱水塔で水を除去して濃縮酢酸にしなければならない。
【0003】
脱水塔では含水酢酸を塔中段へ供給して、塔頂部から水を留出させ塔底部から濃縮酢酸が抜き出される。しかるに塔頂部から留出する水は排水として系外へ排出されるので、水中の酢酸濃度は極力低く抑えなければならない。この要請に応えるためには多くの段数をもった脱水塔の建設と、かつ多大なエネルギー消費を余儀なくされる。
これらコスト増大要因を少しでも抑えるために、酢酸n−ブチル等を共沸剤とした共沸脱水法が提案されており、例えば特公昭61−31091号にエントレーナー(共沸剤)を用いた共沸蒸留による酢酸−水分離方法が示されている。
【0004】
【発明が解決しようとする課題】
発明者等は、商業的に操業しているテレフタル酸およびイソフタル酸の製造装置から発生する酸化反応生成水を含んだ酢酸−水混合物を原料とし、酢酸nブチルを共沸剤に使用して共沸脱水パイロットプラントを長期間にわたって運転を継続した結果、パイロットプラント運転開始から日時が経過するに従って酢酸と共沸成分(酢酸nブチル−水)との分離効率が次第に低下していく現象が観察された(比較例1および比較例2)。
本発明の目的は、含水酢酸の共沸脱水を行う、アルキル置換芳香族化合物の液相酸化による芳香族カルボン酸の製造方法において、酢酸と共沸成分の分離効率の悪化を防ぎ、効率良く脱水を行う方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等はパラキシレンを原料とするテレフタル酸製造装置において、以上の如き現象に対して原因の追求を行った結果、商業的に運転している酸化反応器の還流液中には微量の未反応パラキシレンが含まれており、共沸脱水装置の運転開始から日時が経過するに従って共沸剤である酢酸n−ブチル中に徐々にパラキシレンが蓄積し、その結果、分離効率が低下することを突き止めた。そして蒸留によりエントレーナーからパラキシレンを除去することにより、分離効率の悪化を防ぎ、効率良く脱水を行うことができるようになること、またメタキシレンを原料とするイソフタル酸の製造等においても同様の効果があることを見出し、本発明に到達した。
【0006】
即ち本発明は、アルキル置換芳香族化合物を酢酸溶媒中触媒の存在下、分子状酸素で液相酸化し、酸化反応器からの排ガスを冷却凝縮して得た含水酢酸、あるいは酸化反応液から芳香族カルボン酸を分離した後の酸化反応母液を蒸発させて得た含水酢酸を、共沸蒸留により脱水して溶媒として循環使用する芳香族カルボン酸の製造方法において、含水酢酸を共沸蒸留脱水塔の中段に供給し、塔頂部から留出する共沸混合物を冷却、凝縮させてデカンターへ導入し、デカンターで分離されたエントレーナーの少なくとも一部を蒸留によりアルキル置換芳香族化合物を除去した後、共沸蒸留脱水塔の上部に供給することにより、含水酢酸の共沸蒸留脱水塔の上部に供給するエントレーナー中のアルキル置換芳香族化合物の濃度を10%以下とすることを特徴とする芳香族カルボン酸の製造方法である。
【0007】
【発明の実施の形態】
本発明で酸化原料として用いられるアルキル置換芳香族化合物としてパラキシレンおよびメタキシレンが好適に用いられ、対応する芳香族カルボン酸としてテレフタル酸およびイソフタル酸が好適に製造される。
このようなアルキル置換芳香族化合物を液相酸化して芳香族カルボン酸を製造する酸化反応溶媒には酢酸が用いられる。触媒にはマンガン、コバルト、鉄、クロム、ニッケル等の遷移金属化合物が用いられる。また、助触媒として臭素化合物が用いられることもある。臭素触媒を用いない場合には、コバルト触媒に対して促進剤としてアセトアルデヒドやメチルエチルケトン等が使用される。
酸化剤には分子状酸素、通常は空気が使用される。酸素ガスを混じて酸素濃度を高めた空気、逆に窒素ガス等の不活性ガスを混じて酸素濃度を低くした空気を用いることもできる。
【0008】
液相酸化の反応温度は通常120℃から220℃の範囲が採用され、圧力は溶媒の酢酸が液相を維持できる範囲以上であればよい。臭素触媒を使わない酸化方法においては一般的に反応温度は160℃以下である。
酸化反応熱は主として含水酢酸溶媒のフラッシュ蒸発によって除去される。すなわち酸化反応器からの排ガスには蒸発した酢酸と水が多量に含まれており、この蒸気はコンデンサーによって冷却されて凝縮されて液体となり、再び酸化反応溶媒として酸化反応器内に還流されるが、その一部は酸化反応よって生成した水を除く目的で系外へ排出される。系外へ排出された液体は主として酢酸と水の混合物であるが、その他に酸化反応副生物のうちの低沸点生成物や未反応アルキル置換芳香族化合物等をわずかに含んでいる。この酸化反応器からの排ガスを冷却凝縮して得た含水酢酸は脱水塔へ送られる。
【0009】
アルキル置換芳香族化合物の液相酸化は通常1基あるいはそれ以上の反応器で行われる。酸化反応を終えた反応液は必要であれば1基または、連続した2基以上の順次降圧された晶析器に送られ、それぞれの圧力に対応する温度まで溶媒のフラッシュ冷却作用で冷却され、生成した芳香族カルボン酸の大部分が結晶として晶析しスラリー溶液となる。
スラリー溶液は結晶分離手段、例えばロータリーバキュームフィルター法あるいは遠心分離法あるいは他の適当な分離法で芳香族カルボン酸のケーキと酸化反応母液に分離される。
芳香族カルボン酸のケーキは、必要に応じて酢酸あるいは水で洗浄され、ドライヤーで付着溶媒を除去され芳香族カルボン酸が得られる。
【0010】
酸化反応母液の一部は、そのまま、あるいは酸化処理、還元処理などを経て再び酸化反応溶媒としてリサイクルされる。残りの部分は、酸化反応で生成した水や他の副生成物を除去するために、通常、蒸発器や薄膜蒸発器などを使って蒸発させ、主として酢酸と水および微量の未反応のアルキル置換芳香族化合物と低沸点生成物からなる蒸気と、蒸発残査に分けられる。該蒸気あるいはその凝縮液は脱水塔へ送られる。蒸発残査は種々の工程を経て触媒有効成分が回収された後、不要物は廃棄される。
【0011】
以上の如く酸化反応凝縮液あるいは酸化反応母液から酢酸溶媒を回収する共沸脱水塔(以下、単に脱水塔と称す)への供給液は酢酸と水が主成分であるが、その他に酸化反応の低沸点副生成物や未反応のアルキル置換芳香族化合物等が微量成分として含まれている。
脱水塔では供給液(原料含水酢酸)が脱水塔中段へ供給され、塔底からは酸化反応に使用できる程度に脱水濃縮された含水酢酸が抜き出される。この際、脱水塔塔頂部分にエントレーナーを供給する。塔頂からはエントレーナーと水の共沸混合物が留出し、通常の場合、留出液中の酢酸は極く低濃度である。
【0012】
本発明において脱水塔に使用されるエントレーナーとしては、酢酸および水からなる混合溶液に従来から使用されている共沸剤が用いられる。例えばギ酸ブチル、ギ酸アミル、酢酸n−ブチル、酢酸イソブチル、酢酸アリル、プロピオン酸n−プロピル、プロピオン酸イソプロピル、プロピオン酸n−ブチル、プロピオン酸イソブチルなどのエステル類、ジクロルメチルエーテル、エチルイソアミルエーテルなどのエーテル類、塩化アミル、二塩化エチレンなどのハロゲン化炭化水素、塩化アセトン、エチルプロピルケトンなどのケトン類、トルエンなどの芳香族炭化水素のように沸点が 100〜150 ℃の範囲で水と共沸混合物を作ることのできる化合物が使用される。これらのエントレーナーの中でエステル類が好ましく、特に酢酸n−ブチルが好ましい。
【0013】
塔頂から留出した共沸混合物はコンデンサーで冷却、凝縮されデカンター等適当な分離装置を用いてエントレーナーと水に分離される。水の一部は系外へ排出されるが、一部は再び塔頂部へ還流させる。水の還流比(=還流水量/排出水量)は通常0.1から3程度に設定される。本発明の方法においては、脱水塔上部に供給するエントレーナー中のアルキル置換芳香族化合物の濃度を10%以下とすることが必要である。このため、デカンター等で分離されたエントレーナーは再び脱水塔々頂部分へ供給される。本発明では分離されたエントレーナーの一部を抜き出して、エントレーナー精製塔(以下、単に精製塔と称す)へ導入し、エントレーナーの大部分を塔頂部から回収し、塔底部からは若干のエントレーナーを含んだアルキル置換芳香族化合物が抜き出される。
【0014】
実際の精製塔運転はデカンターにおけるエントレーナー中のアルキル置換芳香族化合物の濃度を監視し、アルキル置換芳香族化合物の濃度が危険な水準にまで上昇したとき、精製塔を稼働させるいわゆるバッチ式で運転してもよいが、連続運転の方が簡便である。
連続運転では、デカンターから抜き出したエントレーナーを精製塔中段へ供給する。精製塔々頂から留出した蒸気はコンデンサーで冷却されて主としてエントレーナーからなる凝縮液となり、凝縮液の一部は塔頂部へ還流させ、残りの部分はデカンターへ戻される。塔底部からは若干のエントレーナーを含んだアルキル置換芳香族化合物が排出される。
このエントレーナー含有アルキル置換芳香族化合物は、脱水塔や精製塔の性能や運転法にもよるが、通常、極少量なので焼却炉などで処理される。
本発明において、精製塔の構造や運転の実際の方法に特に制約はない。
【0015】
【実施例】
次に実施例により本発明を更に具体的に説明する。但し本発明は以下の実施例により制限されるものではない。以下において、「部」及び「%」は特にことわりがない限り、重量基準とする
【0016】
比較例1
図1に示した装置を用いて商業的に操業しているテレフタル酸製造装置の酸化反応還流液(酢酸分約60%、残分は主として水分、以下、含水酢酸と称す)の脱水を行った。
脱水塔1 には42段の多孔板を備えたガラス製のオルダーショー型分溜管を用い、あらかじめ、リボイラ2 に含水酢酸を仕込んだ。デカンター4 には酢酸n−ブチルと水を仕込み、酢酸n−ブチル層(上層)4pと水層(下層)4qを形成させた。リボイラ2 を加熱して蒸気を分溜管内へ炊き上げた。蒸気は塔頂のラインbを通ってコンデンサー3 で冷却され、凝縮した留出液をデカンター4 へ導入した。ポンプ5 を稼働させてデカンター上層部4pの酢酸n−ブチルをラインcを通って塔頂部へ供給した。次にポンプ6 を稼働させてデカンター下層部4qの水をラインdを通って塔頂部へ供給した。この状態で数時間運転を継続してから、ラインaから原料の含水酢酸を供給した。同時にバルブ7 を開けてポンプ6 から吐出された水の一部をラインeから系外へ排出した。リボイラ2 中に溜った濃縮された酢酸はラインfを通って逐次系外へ排出した。
【0017】
以上のフローにおいて、脱水塔の還流比(=ラインdから塔頂部へ供給された水量/ラインeから系外へ排出された水量)は1.0に設定した。なお、ラインeから系外へ排出した水中に溶解して排出される酢酸n−ブチルに相当する量を逐次デカンターへ補給した。
運転を開始し、ラインeから採取した水中の酢酸濃度を追跡したところ、表1の結果を得た。また、表1にはポンプ5 の吐出口から採取した酢酸n−ブチル中のパラキシレン濃度も併記した。
【0018】
【表1】

Figure 0003849086
【0019】
表1から明らかなように、連続運転日数の経過とともに排出水中の酢酸濃度が次第に増加している。つまり、運転の継続にしたがって共沸脱水の分離効率が悪化しており、また、同様に酢酸n−ブチル中のパラキシレン濃度も経過とともに上昇していくことが分かる。
【0020】
実施例1
比較例1で使用した装置に、図2に示す酢酸n−ブチル中に蓄積したパラキシレンを除く精製工程を追加し、同様の脱水操作を行った。
図2においてエントレーナー精製塔9 には6段の棚段を有するガラス製蒸留塔を用いた。まずリボイラ10にパラキシレンと酢酸nーブチルの混合液を仕込み、加熱して蒸気を炊き上げた。蒸気はラインhを通ってコンデンサー11で冷却、凝縮されラインiを通って再び塔頂へ全還流させた。全還流運転が安定したらポンプ8 を起動してデカンター上層部4pから酢酸n−ブチルを一部抜き出し、ラインgを通ってエントレーナー精製塔9 の中段へ供給した。同時にバルブ12を開いて留出液の一部をラインjを通ってデカンター4 へ戻した。
【0021】
以上の精製工程と操作を付け加え、比較例1と同様に連続運転を行った。エントレーナー精製塔の還流比(=ラインiから蒸留塔へ戻した液量/ラインjからデカンターへ戻した液量)は約8に設定した。リボイラ10に溜った酢酸n−ブチルを少量含有したパラキシレンは逐次ラインkを通って系外へ抜き出した。
連続運転を開始し、ラインeから採取した水中の酢酸濃度を追跡したところ、表2の結果を得た。また表2にはポンプ5の吐出口から採取した酢酸n−ブチル中のパラキシレン濃度も併記した。
【0022】
【表2】
Figure 0003849086
【0023】
参考例1〜4
共沸剤に用いた酢酸n−ブチル中にパラキシレンが混入したとき、脱水塔の効率がどのように変化するかを観察した。
比較例1において、試薬氷酢酸60重量部に水40重量部を調合した含水酢酸原料をラインaから脱水塔へ供給し、また試薬酢酸n−ブチルにあらかじめ0〜15%に相当するパラキシレン(pX)を添加した共沸剤を用いた。全系が安定運転に達した時点で、ラインeから採取した水中の酢酸濃度を分析した結果を表3に示す。
【0024】
【表3】
Figure 0003849086
表3から、酢酸n−ブチルにパラキシレンを添加して行くと脱水塔の分離効率が低下し、排出水中の酢酸濃度が上昇することが分かる。特にパラキシレン存在量が10%を越すと排出水中の酢酸濃度が急上昇している。
【0025】
比較例2
商業的に操業しているイソフタル酸製造装置の酸化反応還流液(酢酸約65%で、残分は主として水分)を原料に用いて、比較例1と同様の操作を行った。
運転を開始し、ラインeから採取した水中の酢酸濃度を追跡したところ、表4の結果を得た。また、表4にはポンプ5 の吐出口から採取した酢酸n−ブチル中のメタキシレン濃度も併記した。
【0026】
【表4】
Figure 0003849086
【0027】
表4から明らかなように、連続運転日数の経過とともに排出水中の酢酸濃度が次第に増加している。つまり、運転の継続に従って共沸脱水の分離効率が悪化しており、また、同様に酢酸n−ブチル中のメタキシレン濃度も経過とともに上昇していくことが分かる。
【0028】
実施例2
比較例2で使用した装置に、図2に示す酢酸n−ブチル中に蓄積したメタキシレンを除く精製工程を付け加え、比較例2と同様に連続運転を行った。
連続運転を開始し、ラインeから採取した水中の酢酸濃度を追跡したところ、表5の結果を得た。
【0029】
【表5】
Figure 0003849086
【0030】
表5から、酢酸n−ブチル中に蓄積したメタキシレンを精製塔で除くことによって、連続運転日数が経過しても排出水中の酢酸濃度が一定に維持されていることが分かる。また、同様に酢酸n−ブチル中のメタキシレン濃度も一定値に維持されていることが分かる。
【0031】
以上に述べた比較例、実施例および参考例をまとめると以下の通りである。
(1)商業的に操業している芳香族カルボン酸の製造装置の酸化反応還流液を脱水塔に供給して、酢酸n−ブチルを共沸剤に用いて共沸脱水を行うと、連続運転日数の経過とともに排出水中の酢酸濃度が次第に増加する。つまり、運転の継続にしたがって共沸脱水の分離効率が悪化する。また同時に、酢酸n−ブチル中のアルキル置換芳香族化合物の濃度が増加する。(比較例1および比較例2)
(2)酢酸n−ブチル中に蓄積したアルキル置換芳香族化合物を系外へ排出する工程を付加し、共沸剤中のアルキル置換芳香族化合物の濃度を低い水準に抑えることによって、連続運転日数が経過しても排出水中の酢酸濃度を充分低い水準に維持できる。(実施例1および実施例2)
(3)試薬酢酸と水の混合液を脱水塔に供給して、酢酸n−ブチルにアルキル置換芳香族化合物を順次添加した共沸剤を用いて運転を行なうと、酢酸n−ブチルへのアルキル置換芳香族化合物の添加量を増すに従い、排出水中の酢酸濃度が増加し、共沸脱水の分離効率が悪化する。(参考例1〜4)
【図面の簡単な説明】
【図1】比較例および参考例で使用した含水酢酸の脱水装置のフロー図である。
【図2】実施例で使用した含水酢酸の脱水装置のフロー図である。
【符号の説明】
1:共沸蒸留脱水塔
2:共沸蒸留脱水塔リボイラ
3:共沸蒸留脱水塔コンデンサー
4:共沸蒸留脱水塔デカンター
9:エントレーナー精製塔
10:エントレーナー精製塔リボイラ
11:エントレーナー精製塔コンデンサー
a:含水酢酸
4p:エントレーナー層(上層)
4q:水層(下層)
e:分離水
f:酢酸
k:エントレーナー含有アルキル置換芳香族化合物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aromatic carboxylic acid by liquid phase oxidation of an alkyl-substituted aromatic compound, and more particularly to a method for recovering acetic acid used as a solvent in the liquid phase oxidation.
[0002]
[Prior art]
As a method for producing an aromatic carboxylic acid such as terephthalic acid or isophthalic acid, a method in which an alkyl-substituted aromatic compound is liquid-phase oxidized with molecular oxygen gas in an acetic acid solvent in the presence of a catalyst is generally used. Since acetic acid used as a solvent in the production method is diluted with water produced by an oxidation reaction, it is necessary to separate the produced water in a distillation dehydration tower and return it to the oxidation reactor.
That is, for example, in the hydrous acetic acid obtained by evaporating the reaction mother liquor from which the aromatic carboxylic acid was separated from the slurry-like oxidation reaction product, or in the hydrous acetic acid obtained by cooling and condensing the exhaust gas from the oxidation reactor, Since the product water of the phase oxidation reaction is mixed, in order to reuse it as a solvent, it is necessary to remove the water in a dehydrating tower to make concentrated acetic acid.
[0003]
In the dehydration tower, hydrous acetic acid is supplied to the middle stage of the tower, water is distilled from the top of the tower, and concentrated acetic acid is withdrawn from the bottom of the tower. However, since water distilled from the top of the tower is discharged out of the system as waste water, the acetic acid concentration in the water must be kept as low as possible. In order to meet this demand, it is necessary to construct a dehydration tower having a large number of stages and to consume a large amount of energy.
In order to suppress these cost increase factors as much as possible, an azeotropic dehydration method using n-butyl acetate or the like as an azeotropic agent has been proposed. For example, an entrainer (azeotropic agent) was used in JP-B 61-31091. An acetic acid-water separation method by azeotropic distillation is shown.
[0004]
[Problems to be solved by the invention]
The inventors use an acetic acid-water mixture containing water produced by an oxidation reaction generated from commercially-produced terephthalic acid and isophthalic acid production equipment as a raw material, and use n-butyl acetate as an azeotropic agent. As a result of continuing the operation of the boiling dehydration pilot plant for a long period of time, a phenomenon was observed in which the separation efficiency of acetic acid and azeotropic components (n-butyl acetate-water) gradually declined as the date and time elapsed from the start of pilot plant operation. (Comparative Example 1 and Comparative Example 2).
An object of the present invention is to provide an azeotropic dehydration of hydrous acetic acid, in a method for producing an aromatic carboxylic acid by liquid phase oxidation of an alkyl-substituted aromatic compound, to prevent deterioration of the separation efficiency of acetic acid and azeotropic components, and to efficiently dehydrate Is to provide a way to do.
[0005]
[Means for Solving the Problems]
As a result of pursuing the cause of the above phenomenon in the terephthalic acid production apparatus using para-xylene as a raw material, the present inventors have found that a trace amount is not contained in the reflux liquid of an oxidation reactor that is operating commercially. Unreacted paraxylene is contained, and paraxylene gradually accumulates in n-butyl acetate, which is an azeotropic agent, as the date and time has elapsed since the start of operation of the azeotropic dehydrator, resulting in a decrease in separation efficiency. I found out. And by removing para-xylene from the entrainer by distillation, it is possible to prevent the separation efficiency from deteriorating and to efficiently perform dehydration, and also in the production of isophthalic acid using meta-xylene as a raw material. As a result, the present invention has been found.
[0006]
That is, the present invention relates to hydrous acetic acid obtained by liquid-phase oxidation of an alkyl-substituted aromatic compound with molecular oxygen in the presence of a catalyst in an acetic acid solvent and cooling and condensing the exhaust gas from the oxidation reactor, or from the oxidation reaction liquid. the hydrous acetic acid the oxidation reaction mother liquor was evaporated to give after separation of the family carboxylic acid, in the process for producing an aromatic carboxylic acid recycled as dehydrated solvent by azeotropic distillation, the water-containing acetic acid azeotropic distillation dehydration column The azeotropic mixture distilled from the top of the column is cooled, condensed and introduced into the decanter, and at least a part of the entrainer separated by the decanter is distilled to remove the alkyl-substituted aromatic compound. by supplying to the top of the azeotropic distillation dehydration column, the concentration of the alkyl-substituted aromatic compound in the entrainer is supplied to the top of the azeotropic distillation dehydration column of hydrous acetic acid is 10% or less A process for producing an aromatic carboxylic acid, wherein the door.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Paraxylene and metaxylene are preferably used as the alkyl-substituted aromatic compound used as the oxidation raw material in the present invention, and terephthalic acid and isophthalic acid are preferably produced as the corresponding aromatic carboxylic acids.
Acetic acid is used as an oxidation reaction solvent for producing an aromatic carboxylic acid by liquid phase oxidation of such an alkyl-substituted aromatic compound. As the catalyst, transition metal compounds such as manganese, cobalt, iron, chromium and nickel are used. A bromine compound may be used as a co-catalyst. When a bromine catalyst is not used, acetaldehyde, methyl ethyl ketone or the like is used as a promoter for the cobalt catalyst.
Molecular oxygen, usually air, is used as the oxidant. Air in which oxygen concentration is increased by mixing oxygen gas, and air in which oxygen concentration is decreased by mixing inert gas such as nitrogen gas can be used.
[0008]
The reaction temperature for liquid phase oxidation is usually in the range of 120 ° C. to 220 ° C., and the pressure may be at least the range in which acetic acid as a solvent can maintain the liquid phase. In an oxidation method not using a bromine catalyst, the reaction temperature is generally 160 ° C. or lower.
The heat of oxidation reaction is removed mainly by flash evaporation of hydrous acetic acid solvent. In other words, the exhaust gas from the oxidation reactor contains a large amount of evaporated acetic acid and water, and this vapor is cooled and condensed by the condenser to become a liquid, and is again refluxed into the oxidation reactor as an oxidation reaction solvent. , a portion is discharged out of the system for the purpose of removing the water that has thus generated to the oxidation reaction. The liquid discharged out of the system is mainly a mixture of acetic acid and water, but also contains a small amount of low-boiling products, unreacted alkyl-substituted aromatic compounds, etc. among oxidation reaction by-products. Hydrous acetic acid obtained by cooling and condensing the exhaust gas from the oxidation reactor is sent to a dehydration tower.
[0009]
Liquid phase oxidation of alkyl-substituted aromatic compounds is usually performed in one or more reactors. The reaction solution that has finished the oxidation reaction is sent to one or two or more successive crystallized crystallizers if necessary, and cooled by a flash cooling action of the solvent to a temperature corresponding to each pressure, Most of the produced aromatic carboxylic acid crystallizes as crystals to form a slurry solution.
The slurry solution is separated into an aromatic carboxylic acid cake and an oxidation reaction mother liquor by crystal separation means such as a rotary vacuum filter method, a centrifugal separation method, or other suitable separation method.
The aromatic carboxylic acid cake is washed with acetic acid or water as necessary, and the adhering solvent is removed with a dryer to obtain the aromatic carboxylic acid.
[0010]
A part of the oxidation reaction mother liquor is recycled again as an oxidation reaction solvent as it is or after undergoing oxidation treatment, reduction treatment or the like. The remaining part is usually evaporated using an evaporator or thin film evaporator to remove water and other by-products generated in the oxidation reaction, mainly acetic acid and water, and a trace amount of unreacted alkyl substitution. Divided into vapors consisting of aromatic compounds and low boiling products and evaporation residues. The vapor or its condensate is sent to a dehydration tower. In the evaporation residue, after the catalyst active component is recovered through various processes, unnecessary substances are discarded.
[0011]
As described above, the supply liquid to the azeotropic dehydration tower (hereinafter simply referred to as dehydration tower) for recovering the acetic acid solvent from the oxidation reaction condensate or the oxidation reaction mother liquor is mainly composed of acetic acid and water. Low boiling point by-products, unreacted alkyl-substituted aromatic compounds and the like are contained as trace components.
In the dehydration tower, the feed liquid (raw water-containing acetic acid) is supplied to the middle stage of the dehydration tower, and hydrous acetic acid that has been dehydrated and concentrated to the extent that it can be used for the oxidation reaction is extracted from the bottom of the tower. At this time, an entrainer is supplied to the top of the dehydration tower. An azeotropic mixture of entrainer and water is distilled from the top of the column, and usually acetic acid in the distillate has a very low concentration.
[0012]
As the entrainer used in the dehydration tower in the present invention, an azeotropic agent conventionally used in a mixed solution composed of acetic acid and water is used. For example, esters such as butyl formate, amyl formate, n-butyl acetate, isobutyl acetate, allyl acetate , n-propyl propionate, isopropyl propionate, n-butyl propionate, isobutyl propionate, dichloromethyl ether, ethyl isoamyl ether Such as ethers such as ethers, halogenated hydrocarbons such as amyl chloride and ethylene dichloride, ketones such as acetone chloride and ethyl propyl ketone, and aromatic hydrocarbons such as toluene and water with a boiling point in the range of 100 to 150 ° C. Compounds are used that can form an azeotrope. Among these entrainers, esters are preferred, and n-butyl acetate is particularly preferred.
[0013]
The azeotropic mixture distilled from the top of the column is cooled and condensed in a condenser, and separated into an entrainer and water using an appropriate separation device such as a decanter. A part of the water is discharged out of the system, but a part is again refluxed to the top of the column. The water reflux ratio (= the amount of reflux water / the amount of discharged water) is usually set to about 0.1 to 3. In the method of the present invention, the concentration of the alkyl-substituted aromatic compound in the entrainer supplied to the upper part of the dehydration tower needs to be 10% or less. For this reason, the entrainer separated by the decanter or the like is supplied again to the top of the dehydration tower. In the present invention, a part of the separated entrainer is extracted and introduced into an entrainer purification tower (hereinafter simply referred to as a purification tower), and most of the entrainer is recovered from the top of the tower, and a little from the bottom of the tower. The alkyl-substituted aromatic compound containing the entrainer is extracted.
[0014]
The actual purification tower operation monitors the concentration of the alkyl-substituted aromatic compound in the entrainer in the decanter, and operates in a so-called batch system that operates the purification tower when the concentration of the alkyl-substituted aromatic compound rises to a dangerous level. However, continuous operation is simpler.
In continuous operation, the entrainer extracted from the decanter is supplied to the middle stage of the purification tower. The steam distilled from the top of the purification tower is cooled by a condenser to become a condensate mainly composed of an entrainer. A part of the condensate is refluxed to the top of the tower, and the remaining part is returned to the decanter. Alkyl-substituted aromatic compounds containing some entrainer are discharged from the bottom of the column.
Although this entrainer-containing alkyl-substituted aromatic compound depends on the performance and operation method of the dehydration tower or purification tower, it is usually a very small amount and is processed in an incinerator or the like.
In the present invention, the structure of the purification tower and the actual method of operation are not particularly limited.
[0015]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples. In the following, “part” and “%” are based on weight unless otherwise specified .
[0016]
Comparative Example 1
Dehydration of the oxidation reaction reflux liquid (acetic acid content is about 60%, the remainder is mainly water, hereinafter referred to as hydrous acetic acid) of a terephthalic acid production apparatus that is commercially operated using the apparatus shown in FIG. .
In the dehydrating tower 1, a glass Oldershaw type fractionating pipe equipped with a 42-stage perforated plate was used, and water-containing acetic acid was charged into the reboiler 2 in advance. The decanter 4 was charged with n-butyl acetate and water to form an n-butyl acetate layer (upper layer) 4p and an aqueous layer (lower layer) 4q. Reboiler 2 was heated and steam was cooked into the distillation tube. The steam was cooled by the condenser 3 through the line b at the top of the tower, and the condensed distillate was introduced into the decanter 4. The pump 5 was operated and n-butyl acetate in the decanter upper layer 4p was supplied to the top of the column through the line c. Next, the pump 6 was operated to supply water in the lower decanter lower portion 4q through the line d to the top of the column. In this state, the operation was continued for several hours, and then raw water-containing acetic acid was supplied from line a. At the same time, the valve 7 was opened and a part of the water discharged from the pump 6 was discharged out of the system from the line e. Concentrated acetic acid accumulated in the reboiler 2 was sequentially discharged out of the system through the line f.
[0017]
In the above flow, the reflux ratio of the dehydration tower (= the amount of water supplied from the line d to the top of the tower / the amount of water discharged from the line e to the outside of the system) was set to 1.0. In addition, the amount corresponding to n-butyl acetate dissolved and discharged in water discharged out of the system from the line e was replenished to the decanter sequentially.
When the operation was started and the acetic acid concentration in the water collected from the line e was traced, the results shown in Table 1 were obtained. Table 1 also shows the paraxylene concentration in n-butyl acetate collected from the discharge port of the pump 5.
[0018]
[Table 1]
Figure 0003849086
[0019]
As is clear from Table 1, the acetic acid concentration in the discharged water gradually increases with the elapse of continuous operation days. That is, it can be seen that the separation efficiency of azeotropic dehydration deteriorates as the operation continues, and similarly, the paraxylene concentration in n-butyl acetate also increases with time.
[0020]
Example 1
A purification process for removing paraxylene accumulated in n-butyl acetate shown in FIG. 2 was added to the apparatus used in Comparative Example 1, and the same dehydration operation was performed.
In FIG. 2, a glass distillation column having 6 plates is used as the entrainer purification column 9. First, the reboiler 10 was charged with a mixed solution of paraxylene and n-butyl acetate and heated to cook steam. The steam was cooled by the condenser 11 through the line h, condensed, and returned to the top of the column again through the line i. When the total reflux operation was stabilized, the pump 8 was started and a part of n-butyl acetate was extracted from the decanter upper layer 4p and supplied to the middle stage of the entrainer purification tower 9 through the line g. At the same time, the valve 12 was opened and a part of the distillate was returned to the decanter 4 through the line j.
[0021]
The above purification process and operation were added, and continuous operation was performed in the same manner as in Comparative Example 1. The reflux ratio of the entrainer purification column (= the amount of liquid returned from line i to the distillation column / the amount of liquid returned from line j to the decanter) was set to about 8. Para-xylene containing a small amount of n-butyl acetate collected in the reboiler 10 was sequentially extracted out of the system through the line k.
When continuous operation was started and the acetic acid concentration in water collected from line e was traced, the results shown in Table 2 were obtained. Table 2 also shows the paraxylene concentration in n-butyl acetate collected from the discharge port of the pump 5.
[0022]
[Table 2]
Figure 0003849086
[0023]
Reference Examples 1-4
It was observed how the efficiency of the dehydration tower changed when para-xylene was mixed in n-butyl acetate used as an azeotropic agent.
In Comparative Example 1, a hydrous acetic acid raw material prepared by mixing 60 parts by weight of reagent glacial acetic acid with 40 parts by weight of water is supplied from line a to the dehydration tower, and paraxylene (0 to 15% corresponding to 0 to 15% in advance) is added to the reagent n-butyl acetate. An azeotropic agent to which pX) was added was used. Table 3 shows the results of analyzing the concentration of acetic acid in water collected from line e when the entire system reached stable operation.
[0024]
[Table 3]
Figure 0003849086
From Table 3, it can be seen that when para-xylene is added to n-butyl acetate, the separation efficiency of the dehydration tower decreases and the concentration of acetic acid in the discharged water increases. In particular, when the amount of paraxylene present exceeds 10%, the concentration of acetic acid in the discharged water increases rapidly.
[0025]
Comparative Example 2
The same operation as in Comparative Example 1 was carried out using as a raw material an oxidation reaction reflux liquid (about 65% acetic acid, the remainder being mainly water) of an isophthalic acid production apparatus that is commercially operated.
When the operation was started and the acetic acid concentration in the water collected from the line e was traced, the results shown in Table 4 were obtained. Table 4 also shows the metaxylene concentration in n-butyl acetate collected from the discharge port of the pump 5.
[0026]
[Table 4]
Figure 0003849086
[0027]
As is apparent from Table 4, the acetic acid concentration in the discharged water gradually increases with the passage of continuous operation days. That is, it can be seen that the separation efficiency of azeotropic dehydration deteriorates as the operation continues, and similarly, the metaxylene concentration in n-butyl acetate also increases with time.
[0028]
Example 2
The apparatus used in Comparative Example 2 was added with a purification step for removing meta-xylene accumulated in n-butyl acetate shown in FIG.
When continuous operation was started and the acetic acid concentration in water collected from line e was traced, the results shown in Table 5 were obtained.
[0029]
[Table 5]
Figure 0003849086
[0030]
From Table 5, it can be seen that by removing the meta-xylene accumulated in n-butyl acetate by the purification tower, the concentration of acetic acid in the discharged water is kept constant even after the continuous operation days. Similarly, it can be seen that the meta-xylene concentration in n-butyl acetate is maintained at a constant value.
[0031]
The comparative examples, examples and reference examples described above are summarized as follows.
(1) Supplying the oxidation reaction reflux liquid of a commercially-produced aromatic carboxylic acid production apparatus to a dehydration tower and performing azeotropic dehydration using n-butyl acetate as an azeotropic agent, continuous operation As the number of days passes, the concentration of acetic acid in the effluent gradually increases. That is, the separation efficiency of azeotropic dehydration deteriorates as the operation continues. At the same time, the concentration of the alkyl-substituted aromatic compound in n-butyl acetate increases. (Comparative Example 1 and Comparative Example 2)
(2) By adding a step of discharging the alkyl-substituted aromatic compound accumulated in n-butyl acetate to the outside of the system, the concentration of the alkyl-substituted aromatic compound in the azeotropic agent is suppressed to a low level, thereby continuously operating days Even after the lapse of time, the concentration of acetic acid in the discharged water can be maintained at a sufficiently low level. (Example 1 and Example 2)
(3) Supplying a mixed solution of reagent acetic acid and water to the dehydration tower, and using an azeotropic agent in which alkyl-substituted aromatic compounds are sequentially added to n-butyl acetate, the alkyl to n-butyl acetate is obtained. As the amount of the substituted aromatic compound added increases, the concentration of acetic acid in the discharged water increases and the separation efficiency of azeotropic dehydration deteriorates. (Reference Examples 1-4)
[Brief description of the drawings]
FIG. 1 is a flow diagram of a dehydration apparatus for hydrous acetic acid used in Comparative Examples and Reference Examples.
FIG. 2 is a flow diagram of a dehydrating apparatus for hydrous acetic acid used in Examples.
[Explanation of symbols]
1: azeotropic distillation dehydration tower 2: azeotropic distillation dehydration tower reboiler 3: azeotropic distillation dehydration tower condenser 4: azeotropic distillation dehydration tower decanter 9: entrainer purification tower 10: entrainer purification tower reboiler 11: entrainer purification tower Condenser a: Hydrous acetic acid 4p: Entrainer layer (upper layer)
4q: Aqueous layer (lower layer)
e: separated water f: acetic acid k: entrainer-containing alkyl-substituted aromatic compound

Claims (3)

アルキル置換芳香族化合物を酢酸溶媒中触媒の存在下、分子状酸素で液相酸化し、酸化反応器からの排ガスを冷却凝縮して得た含水酢酸、あるいは酸化反応液から芳香族カルボン酸を分離した後の酸化反応母液を蒸発させて得た含水酢酸を、共沸蒸留により脱水して溶媒として循環使用する芳香族カルボン酸の製造方法において、含水酢酸を共沸蒸留脱水塔の中段に供給し、塔頂部から留出する共沸混合物を冷却、凝縮させてデカンターへ導入し、デカンターで分離されたエントレーナーの少なくとも一部を蒸留によりアルキル置換芳香族化合物を除去した後、共沸蒸留脱水塔の上部に供給することにより、含水酢酸の共沸蒸留脱水塔の上部に供給するエントレーナー中のアルキル置換芳香族化合物の濃度を10%以下とすることを特徴とする芳香族カルボン酸の製造方法。Liquid-phase oxidation of alkyl-substituted aromatic compounds with molecular oxygen in the presence of catalyst in acetic acid solvent, and separation of aromatic carboxylic acid from hydrous acetic acid obtained by cooling and condensing exhaust gas from oxidation reactor or oxidation reaction liquid The hydrous acetic acid obtained by evaporating the oxidized reaction mother liquor after dehydration is dehydrated by azeotropic distillation and recycled as a solvent, and the hydrous acetic acid is fed to the middle stage of the azeotropic distillation dehydration tower. The azeotropic mixture distilled from the top of the column is cooled, condensed and introduced into a decanter, and at least a part of the entrainer separated by the decanter is removed by distillation to remove the alkyl-substituted aromatic compound. be of by supplying to the top, characterized in that the concentration of the alkyl-substituted aromatic compound in the entrainer is supplied to the top of the azeotropic distillation dehydration column of hydrous acetic acid and 10% or less The process for producing an aromatic carboxylic acid. 原料のアルキル置換芳香族化合物がパラキシレンまたはメタキシレンであり、製造される芳香族カルボン酸がテレフタル酸またはイソフタル酸である請求項1に記載の芳香族カルボン酸の製造方法。The method for producing an aromatic carboxylic acid according to claim 1, wherein the raw material alkyl-substituted aromatic compound is para-xylene or meta-xylene, and the produced aromatic carboxylic acid is terephthalic acid or isophthalic acid. エントレーナーが酢酸n−ブチルである請求項1に記載の芳香族カルボン酸の製造方法。The method for producing an aromatic carboxylic acid according to claim 1, wherein the entrainer is n-butyl acetate.
JP23291498A 1997-10-03 1998-08-19 Method for producing aromatic carboxylic acid Expired - Fee Related JP3849086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23291498A JP3849086B2 (en) 1997-10-03 1998-08-19 Method for producing aromatic carboxylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-271321 1997-10-03
JP27132197 1997-10-03
JP23291498A JP3849086B2 (en) 1997-10-03 1998-08-19 Method for producing aromatic carboxylic acid

Publications (2)

Publication Number Publication Date
JPH11171820A JPH11171820A (en) 1999-06-29
JP3849086B2 true JP3849086B2 (en) 2006-11-22

Family

ID=26530733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23291498A Expired - Fee Related JP3849086B2 (en) 1997-10-03 1998-08-19 Method for producing aromatic carboxylic acid

Country Status (1)

Country Link
JP (1) JP3849086B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759938B2 (en) * 2004-06-10 2011-08-31 住友化学株式会社 Method for producing aniline
KR100826448B1 (en) 2004-12-30 2008-04-29 주식회사 효성 Deviece and Process of Acetic Acid Recovery and Removal in Oxidation Reaction of Dimethylnaphthalene
KR100871776B1 (en) * 2004-12-31 2008-12-05 주식회사 효성 Recycling of Acetic Acid in Oxidation Reaction of Dimethylnaphthalene

Also Published As

Publication number Publication date
JPH11171820A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
EP0764627B1 (en) Process for producing highly pure terephthalic acid
RU2382761C2 (en) Method of removing impurities from mother liquids during synthesis of carboxylic acid using pressure filtration
KR100690034B1 (en) Method for production of acrylic acid
JPH0558948A (en) Preparation of terephthalic acid
JP2793038B2 (en) Process for producing a constant purity DMT intermediate and process for reworking the product to very pure DMT and / or medium to high purity terephthalic acid
JPH1025266A (en) Production of high-purity isophthalic acid
JPS639498B2 (en)
JPS6241219B2 (en)
EP0102642B1 (en) Process for purifying methacrylic acid
JP3849086B2 (en) Method for producing aromatic carboxylic acid
US5959140A (en) Process for producing aromatic carboxylic acid
CN1135215C (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
KR101943115B1 (en) Improving terephthalic acid purge filtration rate by controlling % water in filter feed slurry
KR20150139820A (en) Dehydration of acetic acid by azeotropic distillation in the production of an aromatic acid
JP2017095391A (en) Manufacturing method of aromatic dicarboxylic acid
TWI535696B (en) Process for preparation of methacrylic acid and methacrylic acid ester
KR101946657B1 (en) Improving terephthalic acid purge filtration rate by controlling % water in filter feed slurry
EA027100B1 (en) Improving terephthalic acid purge filtration rate by controlling water percentage in filter fed slurry
JP2002326001A (en) Azeotropic distillation method
WO2002068375A1 (en) Azeotropic distillation process
RU2083550C1 (en) Process for preparing terephthalic acid
JP2003171347A (en) Method for producing acrylic ester
JPH10306059A (en) Production of high purity 2,6-naphthalenedicarboxylic acid dimethyl
KR20010022871A (en) Improved Process for Separating Pure Terephthalic Acid
KR20080037007A (en) Process for removal of benzoic acid from an oxidizer purge stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees