JP3848025B2 - Steel pipe cap - Google Patents
Steel pipe cap Download PDFInfo
- Publication number
- JP3848025B2 JP3848025B2 JP25024699A JP25024699A JP3848025B2 JP 3848025 B2 JP3848025 B2 JP 3848025B2 JP 25024699 A JP25024699 A JP 25024699A JP 25024699 A JP25024699 A JP 25024699A JP 3848025 B2 JP3848025 B2 JP 3848025B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- rubber
- paper
- steel pipe
- cap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Buffer Packaging (AREA)
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
Description
【0001】
【発明の属する技術分野】
本願発明は、鋼管用キャップに関するものである。
【0002】
【従来の技術】
従来より、鋼管用キャップは、鋼管の端部に装着・脱着可能に取り付けられ、外部からの埃等の物質進入や内部の液体(水や油)の漏れ等、物質の内外流通を防止するために用いられている。その代表的な形状を、図1に示す。このキャップ1は、鋼管2の内面に嵌入される有底筒状部3と、その端部に外方向に張り出すように形成されたフランジ4とを備える。有底筒状部3は、底部5と、この底部5から徐々に径が大きくなるテーパ部6と、テーパ部6とフランジ4との間のストレート部7とを備える。そして、底部5から鋼管2の端部内に嵌入され、ストレート部7が鋼管2の内周面に密接して、物質の内外流通を防止する。このキャップ1は、鋼管2に一時的に嵌め込まれ、使用後は、ペンチ等で引き抜き、廃棄される。このキャップ1は、通常、1つの大きさのキャップ1で、内径が数mm異なる複数種類の鋼管2に対して使用されるため、これらの内径の異なる鋼管2の内面との間で密着性を保つことができ、適度の剛性、ゴム弾性、耐水性や耐油性を備えたものであることが必要となる。また、ペンチ等で引き抜く際に、キャップ1が破損してしまい、キャップ1を引き抜くことが出来ないものであってはならず、さらに、必要に応じて再利用も可能なように、破損が全く生じないことが最も望ましい。
【0003】
このような要求を満たすために、従来の鋼管用キャップには、合成樹脂が用いられていた。ところが、鋼管用キャップは、通常、使用後は廃棄されるため、廃棄が容易であることが望ましいにもかかわらず、合成樹脂は廃棄性が悪く、環境を損なう問題があり、廃棄処理コストが高くなってしまう。逆に、環境適応性に優れた紙や古紙をキャップ材料に使用すると、加工性が悪く、強度が低く、ゴム弾性に欠け、耐水性がないため、これらの材料は鋼管用キャップに使用することが困難である。
【0004】
他方、紙と樹脂、特に熱可塑性樹脂と混練して、成形原材料として利用する技術は、古紙のリサイクルの一つの方法や燃焼カロリーの低減策として着目され、また、紙成分が50wt%を超える場合には紙として一般ゴミの扱いとなり廃棄性の観点からも注目されている。
【0005】
ところが、この複合材は、紙との配合をなすため、全体としての物性が、剛性が強く、引張伸びが低く、いわゆる硬くて脆い材質となってしまい、鋼管用キャップには適するものではなく、紙と樹脂との複合材製の鋼管用キャップの開発はなされていなかった。より詳しくは、剛性が高くても、脆く、衝撃緩衝性の低いものしか得ることができず、その傾向は、樹脂の量を少なく紙の量を多くすると、一層顕著に現れる。例えば、ポリエチレンやポリプロピレンと、紙との複合材については、樹脂を60重量%とすると、引張破壊伸びが約3〜7%を越えるのに対して、樹脂を50重量%未満とすると、引張破壊伸びが約2〜3%以下となる。さらに、伸びと強度が高く、適度の剛性を有することが最も望ましいと考えられるが、紙による易廃棄性、伸びと強度、剛性、の3つの要求を同時に満たすことは極めて困難であり、鋼管用キャップには通常の合成樹脂製のものしか実用化されていなかった。
【0006】
ここで、紙と樹脂との複合材の製造方法について、若干説明を加えておくと、その製法は、紙を小片状として樹脂と混練する方法と、紙を解繊し、この繊維状の解繊物と樹脂と混練する方法とに大別し得る。前者は小片状の紙の存在が成形品内で見える場合があり外観上の点から使用用途が限られる場合があるが、後者は、そのような外観上の制約は殆どなく、さらに、解繊物の植物繊維が樹脂の強化材として作用し、樹脂単体に比して機械的強度を向上させることができるという利点がある。
【0007】
後者の方法については、紙を小片状に粗砕し、この小片状の紙を溶融した樹脂液中で叩解して解繊することにより、叩解による解繊と混練とを一つの工程で行う方法が知られている。ところがこの方法では、叩解を溶融した樹脂液中で行うため、叩解中に大きなせん断力と熱とが加わり、繊維が劣化してしまう。
後者の他の方法としては、紙を予め解繊し、この解繊した紙と樹脂とを混練する方法があるが、この方法については、解繊を大量の水を用いて溶解させる湿式法と、溶解のための水を用いない乾式法の2つの方法がある。
【0008】
湿式法の場合得られた繊維を公定水分量(8〜9%程度)に乾燥すると繊維間の水素結合力が大きくなり、物理的な力で混練分散させることが困難となったり、熱エネルギーを大量に必要とすると言った問題が指摘されている。
【0009】
乾式法としては、特開平5−269736号公報に記載の方法が提案されている。この方法は、溶解のための水を用いない乾式法により紙を解繊し、これに分散性改良剤を加えて造粒し、この粒状とした解繊繊維を樹脂とを混練するものであるが、品質の安定や生産性の点で問題を残すものである。
【0010】
【発明が解決しようとする課題】
上記の事情に鑑み、本願発明は、鋼管用キャップとして必要な適度の弾性、耐水性や耐油性を備えたものであって、しかも、比較的低い燃焼カロリーで焼却でき、特殊な廃棄処理が不要で、環境適応性に優れた鋼管用キャップを提供することを目的とする。
また、本願発明は、解繊された紙と樹脂との複合材であって、易廃棄性、適度の弾性、並びに機械的強度を担保する剛性、の3つの要求を同時に満たすことのできる鋼管用キャップを提供することを目的とする。
本願発明のさらに他の目的は、安定した品質を有しており、しかも、高い生産性のもと低コストで生産され得る鋼管用キャップを提供することにある。
【0011】
【課題を解決するための手段】
そこで本願発明は、次の構成を特徴とするものを提供することにより、上記の課題を解決する。
本願の請求項1に係る発明は、外部からの埃等の物質進入や内部の液体の漏れ等の物質の内外流通を防止するために鋼管の端部を封緘する装着・脱着可能な鋼管用キャップにおいて、51重量%の紙と49重量%の樹脂とを含有した複合材によって成形され、上記の複合材は、紙を解繊して綿状の繊維にした解繊繊維と樹脂とが混練されることによって得られるものであり、上記の樹脂が、ゴム弾性樹脂と、このゴム弾性樹脂よりゴム弾性の低い非ゴム弾性樹脂との少なくとも2種からなり、上記のゴム弾性樹脂が、エチレン−酢酸ビニル共重合体(EVA)、エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンゴム(EDPM)、アクリル−ニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、スチレンゴム(SR)、イソプレンゴム(IR)、天然ゴム、からなる群から選択された1種又は2種以上を用いたものであり、上記の非ゴム弾性樹脂として、高密度ポリエチレン(HDPE)、直鎖低密度ポリエチレン(LLPE)、ポリプロピレン(PP)、ABS樹脂からなる群から選択された1種又は2種以上を用いたものであり、上記の複合材の物性が、引張破壊伸び5%以上であり、且つ、曲げ弾性率1,000〜20,000kgf/cm2であって、少なくとも、鋼管(2)の内面に嵌入される有底筒状部(3)を備え、上記の有底筒状部(3)は、少なくとも、底部(5)と、この底部(5)から徐々に径が大きくなるテーパ部(6)とを備えるものであることを特徴とする鋼管用キャップを提供する。
本願の請求項2に係る発明は、引張破壊伸びが4.79〜18.01%、曲げ弾性率が5,989〜19,421kgf/cm2の範囲にあることを特徴とする請求項1記載の鋼管用キャップを提供する。
本願の請求項3に係る発明は、全成分中にゴム弾性樹脂が4〜44重量%配合され、非ゴム弾性樹脂が5〜45重量%配合されたことを特徴とする、請求項1又は2に記載の鋼管用キャップを提供する。
【0012】
鋼管用キャップの形状としては、図1に示すものと同様のものとして実施することができ、前述の従来の技術にて説明した構造とすることができる。そして、その製造に際しては、本願の各発明の複合材を用いて、樹脂成形の常法に従って製造することができる。勿論、図1に示すもの以外の形状であっても、鋼管の端部に装着・脱着でき、鋼管端部を封緘することができるものであれば、その形状は適宜変更して実施することができる。
【0013】
本願発明の実施に際して用いられる紙は、新しい紙であってもよいが、資源の再利用の観点からは、古紙を利用することができる。古紙の種類も特に問わないが、紙管等の厚みの大きな古紙を利用することも可能である。また、焼却時にダイオキシンの発生を防止する観点からすると、上質紙等の塩素系の漂白剤等の薬剤を用いて処理された紙を除いて、言い換えれば、塩素化合物を含まない紙を利用することが望ましい。
【0014】
この紙は、解繊されるが、この解繊の能率を高めるために、粗砕装置によって数mmなしい数cm角状の粗砕片に粗砕しておくことも望ましい。
解繊は、必要に応じて粗砕処理を施した紙を、綿状の繊維になすもので、溶解のために水を用いた湿式法によるものであってもよいが、溶解のための水を用いない乾式法によりなすことが好ましい。
この解繊によって得られる繊維の繊維長は、一定長さの繊維群に揃えることが望ましい。
【0015】
次に、解繊繊維を、必要に応じて、紙の公定水分量より少ない含水率に乾燥する。乾燥方法としては特に制限はないが、熱風を利用した熱風循環乾燥方式の他、時間短縮のために有利な高周波加熱乾燥方式や赤外線照射加熱乾燥方式を用いることができる。
【0016】
この乾燥後の解繊繊維は、樹脂と調合され、混練される。この樹脂は、1種又は2種以上の樹脂を用いることができるが、その少なくとも1種にゴム弾性樹脂を用いる。具体的には、エチレン−酢酸ビニル共重合体(EVA)、エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンゴム(EDPM)、アクリル−ニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、スチレンゴム(SR)、イソプレンゴム(IR)、天然ゴム等を例示でき、これらのゴム弾性樹脂を1種又は2種以上用いることができる。このゴム弾性樹脂を用いることによって、従来のポリエチレンやポリプロピレン等の樹脂を用いた場合に比して、飛躍的に、複合材の物性(特に、伸びと衝撃耐性)を向上させることができる。より具体的には、紙を50重量%を越える値で配合した場合において、引張破壊伸びを5%以上とし、好ましくは10%以上とする。これによって、鋼管キャップをペンチ等で引き抜いて脱着する際、キャップの引き抜きが不可能となる程度の大きな破損が生ずることを防止し得る。最も望ましくは、引張破壊伸びを15%以上とすることによって、鋼管キャップをペンチ等で引き抜いて脱着する際、キャップに破損が生ずることなく無理なく引き抜くことができ、再利用も可能となる。また、鋼管用キャップとしては、引張破壊伸びが高くとも、適度の剛性を備えていることが望ましく、具体的には、曲げ弾性率1,000〜20,000kgf/cm2であることが望ましい。
【0017】
上記のゴム弾性樹脂に加えて、ゴム弾性樹脂よりゴム弾性の低い非ゴム弾性樹脂を併用する。この非ゴム弾性樹脂としては、高密度ポリエチレン(HDPE)、直鎖低密度ポリエチレン(LLPE)、ポリプロピレン(PP)、ABS樹脂等の熱可塑性樹脂を例示し得るが、熱硬化性樹脂を併用することもできる。これらの樹脂を併用することによって、伸び、強度を保ちながら、剛性を付加することができる。
【0018】
樹脂と紙の調合と混練とは別工程としてもよく、同じ工程としてもよい。また、繊維長の異なる複数の繊維群を、調合してもよい。解繊繊維と樹脂との配合比率は、重量比率(以下同じ)で5:95〜90:10程度とすることが好ましいが、解繊繊維を50%を越える値とする(51:49〜90:10程度とする)ことによって、得られた製品が紙として焼却し得る点で特に好ましく、物性を考慮すると、51:49程度とする。ゴム弾性樹脂は、全体の4%以上を加えることが望ましく、より望ましくは、10%以上とし、最も望ましくは、30%以上とする。これにより、伸びと強度を向上させることができる。非ゴム弾性樹脂(特に、直鎖低密度ポリエチレン)は、全体の45%程度以内の範囲で加えることが望ましく、より好ましくは、20%程度とする。余り低いと添加する意味が失われ、逆に多く添加すると、伸びを向上させることが困難となる。尚、この解繊繊維と樹脂との他に、着色剤、安定剤等の添加物を加えることもできる。
【0019】
解繊繊維と樹脂の混練は、混練装置によってなすことができる。この混練装置は、加熱しながら樹脂を溶解させ、攪拌することによって、樹脂を解繊繊維と混合させるもので、これにより解繊繊維と樹脂との複合化が図られる。
【0020】
さらに、混練に際しては、圧力を加えながら攪拌する、加圧攪拌式混練製造方法を用いることができる。この方法では、圧力を加えながら攪拌するため、時間短縮、混合の良好性、物性の安定化、紙繊維体積の低減を図ることができる。
【0021】
尚、焼却時にダイオキシンの発生を防止する目的から、上記のように、利用する紙の種類を選択するのも一つの方法であるが、確実に選択し得ないおそれもあるため、混練開始までの段階、即ち、粗砕、解繊、乾燥、調合の段階で脱塩素処理を行っておくことも望ましい。また、樹脂に関しても、ダイオキシンの発生の抑制の観点からは、再生樹脂を使用しないことやポリ塩化ビニル樹脂等の塩素化合物を含む樹脂を用いないことが好ましい。
【0022】
混練によって得られた、解繊繊維と樹脂との複合材(以下、単に本件複合材と言う)は、合成樹脂の常法によって、成形され、鋼管キャップが製造される。即ち、通常は、造粒処理によってペレット状にし、各種の樹脂成形機によって鋼管キャップの形状に成形される。成形の方法と、これに用いられる成形機の種類は、合成樹脂成形に利用されるものから種々選択して使用できる。
【0023】
【実施例】
以下、本件発明の実施例を比較例と共に表1〜4に示すが、本件発明はこの実施例に限定して解釈されるべきではない。
【0024】
実施例1は、紙管を粗砕装置によって10〜30mm角の粗砕片に粗砕し、乾式解繊装置によって解繊し、紙の公定水分量より少ない含水率に乾燥した。得られた解繊繊維を51重量%と、ゴム弾性樹脂であるEVA44重量%と、非ゴム弾性樹脂であるLLPE5重量%と共に加圧攪拌式混練装置によって混練し、得られた実施例1に係る複合材を造粒機によって造粒し、ペレット状とした。この複合材を1ケ月放置した後、射出成形機で図1に示す鋼管キャップを成形した。尚、射出成形機に投入時の複合材の含水率を示す成形前含水率は、1.13%であった。また、以降の説明における実施例及び比較例に係る鋼管キャップ1は、内径40〜42mmの鋼管2用のもので、全長(軸方向長さ)26.5mm、底部5の外径40mm、ストレート部7の外径42.4mm、ストレート部7の内径40.2mm、ストレート部7の軸方向長さ8.0mm、テーパ部6の軸方向長さ17.0mmとされている。
表1に、この実施例1の原材料と機械的物性を示す。
同様に、実施例2〜4についても、同様の製造方法で製造し、その原材料と機械的物性を表1に示す。
【0025】
【表1】
【0026】
表1以降の各表における各実施例も同様の方法で製造されたものであり、各表における原材料物性試験の引張破壊伸びは、JISK7113に準拠し、曲げ強度と曲げ弾性率は、JISK7203に準拠する。
また、表1〜表4のキャップ物性試験は、下記の方法で試験した。
偏平耐圧強度は図2(A)に示すように、キャップ1を水平面上に横向きに載置して、上方から押圧体aを介して速度10mm/minで圧力を加えて、最大荷重を測定したものである。
軸耐圧強度は図2(B)に示すように、キャップ1を水平面上に縦向きに載置して、上方から押圧体aを介して速度10mm/minで圧力を加えて、最大荷重を測定したものである。
軸耐圧強度は図2(C)に示すように、キャップ1を内径41mmの鋼管2にセットし、上方から押圧体aを介して速度10mm/minで圧力を加えて、最大荷重を測定したものである。
透水透油試験は、キャップの凹面に水及び油を入れて半年間放置し、液体浸透によるキャップ底から漏れの有無を確認したものであり、漏れのなかった場合には、表に「なし」と表示した。
低圧水圧試験は、鋼管にキャップを嵌めて、キャップに0.05kgf/cm2(50cmAq.)の圧力がかかるように水をパイプ内に入れて接合部分からの漏れの有無を確認したものであり、漏れのなかった場合には、表に「なし」と表示した。
引抜試験は、一旦鋼管に嵌め込んだキャップを幅2.5mmのペンチにて引っ張って抜き取り、その時の作業性や破損などの欠点の有無を調べたものである。表において、
Aは、破損なく円滑に引き抜くことができた事を示す。
Bは、円滑に引き抜くことができたが、キャップに少し破損が発生した事を示す。
Cは、引き抜くことができたが、キャップに破損が発生した事を示す。
Dは、引き抜くことが困難で、キャップに大きな破損が発生した事を示す。
最後に、燃焼カロリーは、JIS M8814に準拠した。
【0027】
表2は、実施例5及び6を示すものであり、実施例5及び6については、解繊繊維51重量%と、ゴム弾性樹脂であるEVAと、非ゴム弾性樹脂であるLLPEとを表2に示す配合量で配合し、同表で示す機械的物性値を得た。
【0028】
【表2】
【0029】
表3は、実施例7〜11を示すものであり、実施例7〜9については、解繊繊維51重量%と、ゴム弾性樹脂であるEPRと、非ゴム弾性樹脂であるLLPEとを表3に示す配合量で配合し、同表で示す機械的物性値を得た。また、実施例10及び11については、解繊繊維51重量%と、ゴム弾性樹脂であるNBRと、非ゴム弾性樹脂であるLLPEとを表3に示す配合量で配合し、同表で示す機械的物性値を得た。
【0030】
【表3】
【0031】
次に、比較例1及び2として、紙繊維を用いずに樹脂100重量%を配合した場合の原材料と機械的物性を表4に示す。また、比較例3乃至6として解繊繊維を51重量%、非ゴム弾性樹脂(HDPE又はLLPE)49重量%で実施した場合の原材料と機械的物性を表4に示す。
【0032】
【表4】
【0033】
以上の実施例及び比較例から明らかなように、引張破壊伸び(%)は、全ての実施例1〜11において、紙繊維51%と非ゴム弾性樹脂49%とを配合した複合材である比較例3、4より2〜7倍以上の高い値を示す。比較例5、6に示すように、紙繊維と非ゴム弾性樹脂との配合で引張破壊伸び5%以上を得るためには、紙繊維を40%と低くする必要があり、これでは、易廃棄性を満足させることができない。
ちなみに、この特性は、EVAのみの特性に基づくものではなく、紙繊維との配合並びに上記の製造過程に基づくものであると考えられる。即ち、樹脂100%の比較例1、2に示すように、引張破壊伸びについては、2種の樹脂の内、低い値であり、LLPEよりも劣るものである。
次に、曲げ弾性率(kgf/cm2)については、全ての実施例1〜11において、1,000〜20,000以下に対し、紙繊維51%と非ゴム弾性樹脂49%とを配合した複合材である比較例3、4は20,000以上と高すぎる値を示す。また、紙繊維を40%と低くした比較例5、6も比較的に剛性が高すぎる。
【0034】
上記の比較例1は、現在使用されている鋼管用キャップに相当するものであるが、LLPE樹脂のみであり、廃棄性が悪い。
比較例2は、EVA樹脂のみであり、廃棄性が悪いことは勿論、柔らかすぎるという問題もある。
比較例3は、紙繊維51%とHDPE樹脂49%の複合材製の鋼管用キャップであり、強度が高すぎて、硬くてゴム弾性や、伸び特性がない。その結果、キャップの引き抜きが困難であり、破損が生じてしまう。
比較例4は、紙繊維51%とLLPE樹脂49%の複合材製の鋼管用キャップであり、やや強度が高く、硬くてゴム弾性や、伸び特性に劣る。その結果、キャップの引き抜きに際して、やや破損が生じてしまう。
比較例5は廃棄性が悪い上、伸び特性に劣る。
比較例6は伸びが良いが廃棄性が悪い。
【0035】
これに対して、本願発明では、各実施例に示すように、燃焼カロリーが低く、廃棄性、焼却性が良好であることは勿論、適度の硬さで、ゴム弾性や、伸び特性が良好であり、キャップ引き抜きに際しても、大きな問題がない。さらに詳しくは、紙繊維51%とEVA樹脂49%、若しくは、紙繊維51%とEVA樹脂とLLPE樹脂との複合材製の鋼管用キャップである実施例1〜3については、引張破壊伸びが15%以上であり、キャップ引き抜きに際して、全く問題なく、破損も生ずることがない。また、曲げ特性も現状品(比較例1)より高い値を示し、その剛性も改善されたものであり、比較例2のように、柔らかすぎるという問題も生じない。尚、実施例4〜11については、曲げ強度並びに曲げ弾性率については問題がないものの、引張破壊伸びが、実施例1〜3の15%より低く、5%以上或いは10%以上程度に止まるため、キャップ引き抜きに際して小さな破損が生ずるおそれがあるが、使用が不可能ではない。
【0036】
【発明の効果】
本願発明は、鋼管用キャップとして必要な適度の弾性を備えたものであって、しかも、比較的低い燃焼カロリーで焼却でき、特殊な廃棄処理が不要で、環境適応性に優れた鋼管用キャップを提供することができたものである。また、紙100%の場合には、成形が困難で精度や形状保持性が悪いが、樹脂との複合材として成形することにより、これらの問題を解決し、しかも、耐水、耐油性も良好なものを得ることができたものである。
また、紙繊維と共に配合する樹脂として、ゴム弾性樹脂と、このゴム弾性樹脂よりゴム弾性の低い非ゴム弾性樹脂との少なくとも2種を採用したことによって、易廃棄性、適度の弾性、並びに機械的強度を担保する剛性、の3つの要求を同時に満たすことのできる鋼管用キャップを提供することができたものである。
また、適切な物性を備え、上記の各発明の効果を奏する鋼管用キャップを提供することができたものである。
【図面の簡単な説明】
【図1】本願発明に係る鋼管用キャップの説明図である。
【図2】実施例並びに比較例の試験方法の説明図であり、(A)は偏平耐圧強度試験を示し、(B)は軸圧縮強度試験を示し、(C)は嵌合強度試験を示す。
【符号の説明】
1 鋼管用キャップ
2 鋼管
3 有底筒状部
4 フランジ部
5 底部
6 テーパ部
7 ストレート部[0001]
BACKGROUND OF THE INVENTION
The present invention is to be related to steel cap.
[0002]
[Prior art]
Conventionally, caps for steel pipes are attached to the ends of the steel pipes so that they can be attached and detached, to prevent substances from entering and exiting, such as entry of substances such as dust from outside and leakage of internal liquids (water and oil). It is used for. The typical shape is shown in FIG. The cap 1 includes a bottomed
[0003]
In order to satisfy such a requirement, a synthetic resin has been used for a conventional cap for a steel pipe. However, since steel pipe caps are usually discarded after use, it is desirable that they be easy to dispose of, but synthetic resins have poor disposal properties and have a problem of damaging the environment, resulting in high disposal costs. turn into. Conversely, if paper or waste paper with excellent environmental adaptability is used for the cap material, the processability is poor, the strength is low, the rubber is not elastic, and there is no water resistance, so these materials should be used for steel pipe caps. Is difficult.
[0004]
On the other hand, the technology of kneading paper and resin, especially thermoplastic resin, and using it as a raw material for molding is attracting attention as one method of recycling used paper and reducing calories, and when the paper component exceeds 50 wt% The paper is treated as general waste as paper and is attracting attention from the standpoint of disposal.
[0005]
However, since this composite material is blended with paper, the overall physical properties are strong, the tensile elongation is low, and it becomes a so-called hard and brittle material, which is not suitable for a steel pipe cap. Development of a steel pipe cap made of a composite material of paper and resin has not been made. More specifically, even if the rigidity is high, only brittle and low impact buffering properties can be obtained, and this tendency becomes more prominent when the amount of paper is small and the amount of paper is large. For example, for a composite material of polyethylene or polypropylene and paper, if the resin is 60% by weight, the tensile fracture elongation exceeds about 3-7%, whereas if the resin is less than 50% by weight, the tensile fracture Elongation becomes about 2-3% or less. Furthermore, it is considered most desirable to have high elongation and strength and moderate rigidity, but it is extremely difficult to simultaneously satisfy the three requirements of easy disposal by paper, elongation and strength, and rigidity. Only ordinary synthetic resin caps have been put to practical use.
[0006]
Here, the manufacturing method of the composite material of paper and resin will be described a little. The manufacturing method includes a method of kneading paper with a resin as a small piece, a method of defibrating paper, and this fibrous It can be roughly divided into a method of kneading the defibrated material and the resin. In the former case, the presence of small pieces of paper may be visible in the molded product, and its use may be limited in terms of appearance. However, the latter has almost no such restriction on appearance, and There is an advantage that the vegetable fiber of the fine substance acts as a reinforcing material for the resin and can improve the mechanical strength as compared with the resin alone.
[0007]
For the latter method, the paper is roughly crushed into pieces, and the pieces of paper are beaten in a melted resin solution for defibration. How to do is known. However, in this method, since the beating is performed in a molten resin liquid, a large shearing force and heat are applied during the beating, and the fiber is deteriorated.
As the other method of the latter, there is a method in which the paper is defibrated in advance and the defibrated paper and the resin are kneaded. For this method, a wet method in which the defibration is dissolved using a large amount of water and There are two methods, a dry method that does not use water for dissolution.
[0008]
In the case of the wet method, when the obtained fiber is dried to the official moisture content (about 8-9%), the hydrogen bonding force between the fibers increases, making it difficult to knead and disperse with physical force, The problem that it is necessary in large quantities has been pointed out.
[0009]
As a dry method, a method described in Japanese Patent Laid-Open No. 5-269737 has been proposed. In this method, paper is defibrated by a dry method that does not use water for dissolution, granulated by adding a dispersibility improver, and the defibrated fibers that have been granulated are kneaded with a resin. However, problems remain in terms of quality stability and productivity.
[0010]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention is provided with appropriate elasticity, water resistance and oil resistance required as a steel pipe cap, and can be incinerated with relatively low calorie calories and does not require special disposal processing. Thus, an object of the present invention is to provide a steel pipe cap excellent in environmental adaptability.
The invention of the present application is a composite material of defibrated paper and resin, for steel pipes that can simultaneously satisfy the three requirements of easy disposal, moderate elasticity, and rigidity to ensure mechanical strength. The purpose is to provide a cap.
Still another object of the present invention is to provide a steel pipe cap that has stable quality and can be produced at low cost with high productivity.
[0011]
[Means for Solving the Problems]
Accordingly, the present invention solves the above-described problems by providing a device characterized by the following configuration.
The invention according to claim 1 of the present application is a steel pipe cap that can be attached / detached to seal the end of the steel pipe in order to prevent the inside and outside distribution of the substance such as the entry of the substance such as dust from the outside and the leakage of the liquid inside. In the above, the composite material containing 51% by weight paper and 49% by weight resin is molded, and the above composite material is obtained by kneading the defibrated fiber and the resin into which the paper is defibrated into cotton-like fibers. and those obtained by Rukoto, the resin is a rubber elastic resin, this made of elastomeric resin of at least two and less elastic non-rubber elastic resin, said rubber elastic resin is an ethylene - acetate Vinyl copolymer (EVA), ethylene-propylene rubber (EPR), ethylene-propylene-diene rubber (EDPM), acrylic-nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR) , One or more selected from the group consisting of styrene rubber (SR), isoprene rubber (IR), and natural rubber, and high density polyethylene (HDPE) as the non-rubber elastic resin. , One or more selected from the group consisting of linear low density polyethylene (LLPE), polypropylene (PP), and ABS resin, and the physical properties of the above composite material have a tensile elongation at breakage of 5% The above-mentioned bottomed cylindrical part (3) having a bending elastic modulus of 1,000 to 20,000 kgf / cm 2 and at least fitted into the inner surface of the steel pipe (2). The tubular part (3) includes at least a bottom part (5) and a taper part (6) whose diameter gradually increases from the bottom part (5). .
The invention according to claim 2 of the present application is characterized in that the tensile fracture elongation is in the range of 4.79 to 18.01% and the flexural modulus is in the range of 5,989 to 19,421 kgf / cm 2. A steel pipe cap is provided.
The invention according to
[0012]
The shape of the steel pipe cap can be carried out in the same manner as shown in FIG. 1, and the structure described in the above-described conventional technology can be used. And in the case of the manufacture, it can manufacture in accordance with the conventional method of resin molding using the composite material of each invention of this application. Of course, even if it is a shape other than the one shown in FIG. 1, the shape can be appropriately changed and implemented as long as it can be attached to and detached from the end of the steel pipe and can seal the end of the steel pipe. it can.
[0013]
The paper used in the practice of the present invention may be new paper, but waste paper can be used from the viewpoint of resource reuse. The type of waste paper is not particularly limited, but waste paper having a large thickness such as a paper tube may be used. From the viewpoint of preventing dioxin generation during incineration, except for paper treated with chemicals such as chlorine bleach such as high-quality paper, in other words, use paper that does not contain chlorine compounds. Is desirable.
[0014]
This paper is defibrated. In order to increase the efficiency of the defibration, it is desirable that the paper is crushed into a few centimeters or several centimeters of crushed pieces by a pulverizer.
Defibration is a process in which paper that has been crushed as necessary is made into cotton-like fibers and may be obtained by a wet method using water for dissolution. It is preferable to use a dry method that does not use.
It is desirable that the fiber length of the fiber obtained by this defibration is aligned with a fiber group of a certain length.
[0015]
Next, the defibrated fiber is dried to a moisture content lower than the official moisture content of the paper, if necessary. Although there is no restriction | limiting in particular as a drying method, The high frequency heating drying system and infrared irradiation heating drying system which are advantageous for time shortening other than the hot air circulation drying system using hot air can be used.
[0016]
The defibrated fiber after drying is mixed with a resin and kneaded. As this resin, one type or two or more types of resins can be used, and at least one of them is a rubber elastic resin. Specifically, ethylene-vinyl acetate copolymer (EVA), ethylene-propylene rubber (EPR), ethylene-propylene-diene rubber (EDPM), acrylic-nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR) Styrene rubber (SR), isoprene rubber (IR), natural rubber and the like can be exemplified, and one or more of these rubber elastic resins can be used. By using this rubber elastic resin, the physical properties (particularly, elongation and impact resistance) of the composite material can be dramatically improved as compared with the case where conventional resins such as polyethylene and polypropylene are used. More specifically, when the paper is blended at a value exceeding 50% by weight, the tensile elongation at break is 5% or more, preferably 10% or more. As a result, when the steel pipe cap is pulled out and detached with pliers or the like, it is possible to prevent the occurrence of such a large damage that the cap cannot be pulled out. Most desirably, by setting the tensile fracture elongation to 15% or more, when the steel pipe cap is pulled out and detached with pliers or the like, it can be pulled out without any damage to the cap and can be reused. Moreover, it is desirable that the steel pipe cap has an appropriate rigidity even if the tensile elongation at break is high. Specifically, the bending elastic modulus is desirably 1,000 to 20,000 kgf / cm 2 .
[0017]
In addition to the rubber elastic resin, a non-rubber elastic resin having a lower rubber elasticity than the rubber elastic resin is used in combination . Examples of the non-rubber elastic resin include thermoplastic resins such as high-density polyethylene (HDPE), linear low-density polyethylene (LLPE), polypropylene (PP), and ABS resin, but a thermosetting resin should be used in combination. You can also. By using these resins in combination, rigidity can be added while maintaining elongation and strength.
[0018]
The preparation and kneading of the resin and paper may be separate processes or the same process. Moreover, you may mix several fiber groups from which fiber length differs. The blending ratio of the defibrated fiber and the resin is preferably about 5:95 to 90:10 by weight ratio (hereinafter the same), but the defibrated fiber is more than 50% (51:49 to 90). : About 10), the product obtained is particularly preferable in that it can be incinerated as paper. In view of physical properties, it is about 51:49 . It is desirable to add 4% or more of the rubber elastic resin, more desirably 10% or more, and most desirably 30% or more. Thereby, elongation and intensity | strength can be improved. The non-rubber elastic resin (particularly linear low density polyethylene) is desirably added within a range of about 45% of the whole, and more preferably about 20%. If it is too low, the meaning of adding is lost. Conversely, if adding too much, it is difficult to improve the elongation. In addition to the defibrated fibers and the resin, additives such as a colorant and a stabilizer can be added.
[0019]
Kneading of the defibrated fiber and the resin can be performed by a kneading apparatus. In this kneading apparatus, the resin is mixed with the defibrated fiber by dissolving and stirring the resin while heating, whereby the defibrated fiber and the resin are combined.
[0020]
Furthermore, in the case of kneading, a pressurized stirring kneading production method in which stirring is performed while applying pressure can be used. In this method, since stirring is performed while applying pressure, it is possible to shorten the time, to improve the mixing, to stabilize the physical properties, and to reduce the paper fiber volume.
[0021]
In addition, for the purpose of preventing the generation of dioxins during incineration, as described above, it is also one method to select the type of paper to be used, but there is a possibility that it cannot be reliably selected. It is also desirable to carry out dechlorination treatment at the stage, that is, the stages of coarse crushing, defibration, drying and blending. Further, regarding the resin, it is preferable not to use a regenerated resin or a resin containing a chlorine compound such as a polyvinyl chloride resin from the viewpoint of suppressing the generation of dioxins.
[0022]
A composite material of defibrated fibers and resin obtained by kneading (hereinafter simply referred to as the present composite material) is molded by a conventional method of synthetic resin to produce a steel pipe cap. In other words, it is usually formed into a pellet by granulation and formed into a shape of a steel pipe cap by various resin molding machines. The molding method and the type of molding machine used for this can be selected from those used for synthetic resin molding.
[0023]
【Example】
Hereinafter, although the Example of this invention is shown to Tables 1-4 with a comparative example, this invention should not be limited and limited to this Example.
[0024]
In Example 1, a paper tube was crushed into 10 to 30 mm square crushed pieces by a crushing device, defibrated by a dry defibrating device, and dried to a moisture content lower than the official moisture content of the paper. The obtained defibrated fiber was kneaded with a pressure-stirring kneader together with 51% by weight, EVA, which is a rubber elastic resin, 44 % by weight, and 5% by weight, LLPE, which is a non-rubber elastic resin. The composite material was granulated with a granulator to form a pellet. After leaving this composite material for one month, a steel pipe cap shown in FIG. 1 was formed by an injection molding machine. In addition, the moisture content before shaping | molding which shows the moisture content of the composite material at the time of injection | throwing-in to an injection molding machine was 1.13%. Moreover, the steel pipe cap 1 which concerns on the Example and comparative example in subsequent description is for the steel pipe 2 with an internal diameter of 40-42 mm, full length (axial direction length) 26.5mm, the outer diameter of the bottom part 40mm, a straight part 7 has an outer diameter of 42.4 mm, an inner diameter of the straight portion 7 of 40.2 mm, an axial length of the straight portion 7 of 8.0 mm, and an axial length of the tapered portion 6 of 17.0 mm.
Table 1 shows the raw materials and mechanical properties of Example 1.
Similarly, Examples 2 to 4 were also produced by the same production method, and the raw materials and mechanical properties thereof are shown in Table 1.
[0025]
[Table 1]
[0026]
Each Example in each table after Table 1 is also manufactured by the same method. The tensile fracture elongation of the raw material physical property test in each table conforms to JISK7113, and the bending strength and the flexural modulus conform to JISK7203. To do.
Moreover, the cap physical property test of Table 1-Table 4 was tested by the following method.
As shown in FIG. 2A, the flat pressure strength was measured by placing the cap 1 sideways on a horizontal plane and applying pressure from above through the pressing body a at a speed of 10 mm / min to measure the maximum load. Is.
As shown in Fig. 2 (B), the axial pressure strength is measured by placing the cap 1 vertically on a horizontal surface and applying pressure from above through the pressing body a at a speed of 10 mm / min. It is a thing.
As shown in FIG. 2 (C), the axial pressure strength is measured by setting the cap 1 on a steel pipe 2 having an inner diameter of 41 mm, applying pressure from above through the pressing body a at a speed of 10 mm / min, and measuring the maximum load. It is.
The water and oil permeability test is a test in which water and oil are put into the concave surface of the cap and left for half a year to check for leakage from the bottom of the cap due to liquid permeation. Is displayed.
In the low pressure water pressure test, a cap was fitted to a steel pipe, and water was put into the pipe so that 0.05 kgf / cm 2 (50 cmAq.) Of pressure was applied to the cap, and the presence or absence of leakage from the joint was confirmed. When there was no leakage, “None” was displayed in the table.
In the pull-out test, a cap once fitted into a steel pipe is pulled out with a pliers having a width of 2.5 mm and checked for defects such as workability and breakage at that time. In the table,
A shows that it was able to be pulled out smoothly without breakage.
B indicates that the cap was able to be pulled out smoothly, but that the cap was slightly damaged.
C indicates that the cap could be pulled out but the cap was damaged.
D indicates that it was difficult to pull out and that the cap was severely damaged.
Finally, the burned calories were in accordance with JIS M8814.
[0027]
Table 2, Examples and shows the 5 and 6, for Examples 5 and 6, the defibrated fibers 51 wt%, and EVA is an elastomeric resin, Table 2 and LLPE a non-rubber elastic resin The mechanical properties shown in the same table were obtained.
[0028]
[Table 2]
[0029]
Table 3 shows Examples 7 to 11. For Examples 7 to 9 , Table 3 shows 51% by weight of defibrated fibers, EPR that is a rubber elastic resin, and LLPE that is a non-rubber elastic resin. The mechanical properties shown in the same table were obtained. For Examples 10 and 11 , 51% by weight of defibrated fibers, NBR which is a rubber elastic resin, and LLPE which is a non-rubber elastic resin are blended in the blending amounts shown in Table 3, and the machine shown in the table is used. The physical property values were obtained.
[0030]
[Table 3]
[0031]
Next, as Comparative Examples 1 and 2, raw materials and mechanical properties when 100% by weight of resin is blended without using paper fibers are shown in Table 4. In addition, Table 4 shows raw materials and mechanical properties when
[0032]
[Table 4]
[0033]
As is clear from the above Examples and Comparative Examples, the tensile fracture elongation (%) is a composite material in which 51% paper fiber and 49% non-rubber elastic resin are blended in all Examples 1 to 11 . 2 to 7 times higher value than Examples 3 and 4. As shown in Comparative Examples 5 and 6, in order to obtain a tensile fracture elongation of 5% or more by blending paper fiber and non-rubber elastic resin, it is necessary to make the paper fiber as low as 40%. Can't satisfy sex.
Incidentally, it is considered that this characteristic is not based on the characteristic of EVA alone but based on the blending with paper fiber and the above manufacturing process. That is, as shown in Comparative Examples 1 and 2 with 100% resin, the tensile elongation at break is a lower value of the two resins and is inferior to LLPE.
Next, regarding the flexural modulus (kgf / cm 2 ), in all of Examples 1 to 11 , 51% of paper fibers and 49% of non-rubber elastic resin were blended with respect to 1,000 to 20,000 or less. Comparative Examples 3 and 4 which are composite materials show values that are too high, such as 20,000 or more. Moreover, the comparative examples 5 and 6 which made paper fiber low as 40% are also comparatively too rigid.
[0034]
Although the above Comparative Example 1 corresponds to a steel pipe cap that is currently used, it is only LLPE resin, and its discardability is poor.
Comparative Example 2 is only EVA resin, and there is a problem that it is too soft as well as having poor discardability.
Comparative Example 3 is a steel pipe cap made of a composite material of 51% paper fibers and 49% HDPE resin, which is too strong and hard and has no rubber elasticity and elongation characteristics. As a result, it is difficult to pull out the cap, resulting in breakage.
Comparative Example 4 is a steel pipe cap made of a composite material of 51% paper fibers and 49% LLPE resin, which is slightly high in strength, hard and inferior in rubber elasticity and elongation characteristics. As a result, the cap is slightly damaged when the cap is pulled out.
Comparative Example 5 has poor discardability and inferior elongation characteristics.
Comparative Example 6 has good elongation but poor discardability.
[0035]
On the other hand, in the present invention, as shown in each example, the combustion calorie is low, the disposal property and the incineration property are good, as well as the moderate hardness, the rubber elasticity and the elongation property are good. There is no big problem when pulling out the cap. More specifically, for Examples 1 to 3, which are steel pipe caps made of 51% paper fiber and 49% EVA resin, or 51% paper fiber, EVA resin and LLPE resin, the tensile fracture elongation is 15 %, There is no problem at the time of pulling out the cap, and no breakage occurs. Further, the bending characteristics are higher than those of the current product (Comparative Example 1) and the rigidity is improved, and the problem of being too soft as in Comparative Example 2 does not occur. In Examples 4 to 11 , although there is no problem with respect to bending strength and flexural modulus, the tensile fracture elongation is lower than 15% of Examples 1 to 3 and remains at 5% or more or about 10% or more. Although there is a risk of minor damage when the cap is pulled out, it is not impossible to use.
[0036]
【The invention's effect】
The present invention is a steel pipe cap that has the appropriate elasticity required for a steel pipe cap, can be incinerated with relatively low calorie calories, does not require special disposal, and has excellent environmental adaptability. It was possible to provide. Also, in the case of 100% paper, molding is difficult and accuracy and shape retention are poor, but these problems are solved by molding as a composite material with resin, and water and oil resistance are also good. I was able to get something.
In addition, by adopting at least two types of resins, rubber elastic resins and non-rubber elastic resins having a lower rubber elasticity than the rubber elastic resins, as resin to be blended with paper fibers, easy disposal, moderate elasticity, and mechanical It was possible to provide a steel pipe cap capable of simultaneously satisfying the three requirements of rigidity to ensure strength.
Moreover, the cap for steel pipes which has an appropriate physical property and has the effect of said each invention was able to be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a steel pipe cap according to the present invention.
FIGS. 2A and 2B are explanatory diagrams of test methods of Examples and Comparative Examples, in which FIG. 2A shows a flat pressure resistance test, FIG. 2B shows an axial compression strength test, and FIG. 2C shows a fitting strength test. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel pipe cap 2
Claims (3)
51重量%の紙と49重量%の樹脂とを含有した複合材によって成形され、
上記の複合材は、紙を解繊して綿状の繊維にした解繊繊維と樹脂とが混練されることによって得られるものであり、
上記の樹脂が、ゴム弾性樹脂と、このゴム弾性樹脂よりゴム弾性の低い非ゴム弾性樹脂との少なくとも2種からなり、
上記のゴム弾性樹脂が、エチレン−酢酸ビニル共重合体(EVA)、エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンゴム(EDPM)、アクリル−ニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、スチレンゴム(SR)、イソプレンゴム(IR)、天然ゴム、からなる群から選択された1種又は2種以上を用いたものであり、
上記の非ゴム弾性樹脂として、高密度ポリエチレン(HDPE)、直鎖低密度ポリエチレン(LLPE)、ポリプロピレン(PP)、ABS樹脂からなる群から選択された1種又は2種以上を用いたものであり、
上記の複合材の物性が、引張破壊伸び5%以上であり、且つ、曲げ弾性率1,000〜20,000kgf/cm2であって、
少なくとも、鋼管(2)の内面に嵌入される有底筒状部(3)を備え、
上記の有底筒状部(3)は、少なくとも、底部(5)と、この底部(5)から徐々に径が大きくなるテーパ部(6)とを備えるものであることを特徴とする鋼管用キャップ。In steel pipe caps that can be attached and removed to seal the ends of steel pipes to prevent the entry of substances such as dust from the outside and the flow of substances inside and outside such as leakage of liquid inside,
Molded by a composite containing 51% by weight paper and 49% by weight resin,
The above-mentioned composite material is obtained by kneading a defibrated fiber and a resin obtained by defibrating paper into cotton-like fibers,
The resin is composed of at least two types of rubber elastic resin and non-rubber elastic resin having lower rubber elasticity than the rubber elastic resin,
The rubber elastic resin is an ethylene-vinyl acetate copolymer (EVA), ethylene-propylene rubber (EPR), ethylene-propylene-diene rubber (EDPM), acryl-nitrile-butadiene rubber (NBR), styrene-butadiene rubber ( SBR), styrene rubber (SR), isoprene rubber (IR), natural rubber, or one or more selected from the group consisting of,
As the non-rubber elastic resin, one or more selected from the group consisting of high density polyethylene (HDPE), linear low density polyethylene (LLPE), polypropylene (PP), and ABS resin are used. ,
The composite material has a tensile fracture elongation of 5% or more and a flexural modulus of 1,000 to 20,000 kgf / cm 2 ,
At least a bottomed cylindrical part (3) fitted into the inner surface of the steel pipe (2),
The bottomed cylindrical part (3) includes at least a bottom part (5) and a tapered part (6) whose diameter gradually increases from the bottom part (5). cap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25024699A JP3848025B2 (en) | 1999-09-03 | 1999-09-03 | Steel pipe cap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25024699A JP3848025B2 (en) | 1999-09-03 | 1999-09-03 | Steel pipe cap |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001074195A JP2001074195A (en) | 2001-03-23 |
JP3848025B2 true JP3848025B2 (en) | 2006-11-22 |
Family
ID=17205029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25024699A Expired - Fee Related JP3848025B2 (en) | 1999-09-03 | 1999-09-03 | Steel pipe cap |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3848025B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111220481A (en) * | 2020-01-21 | 2020-06-02 | 大连理工大学 | Method for testing elastic modulus of three-layer composite paper in each layer surface |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103434748B (en) * | 2013-07-26 | 2015-05-13 | 永新股份(黄山)包装有限公司 | Production method of plug for paper tube |
JP2019026335A (en) * | 2017-07-31 | 2019-02-21 | 石塚硝子株式会社 | Paper resin composite cap and liquid container made of paper using the same |
-
1999
- 1999-09-03 JP JP25024699A patent/JP3848025B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111220481A (en) * | 2020-01-21 | 2020-06-02 | 大连理工大学 | Method for testing elastic modulus of three-layer composite paper in each layer surface |
CN111220481B (en) * | 2020-01-21 | 2021-06-25 | 大连理工大学 | Method for testing elastic modulus of three-layer composite paper in each layer surface |
Also Published As
Publication number | Publication date |
---|---|
JP2001074195A (en) | 2001-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bengtsson et al. | Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites | |
JP4365529B2 (en) | Method for continuously producing composite of polymer and cellulose fiber and hybrid material obtained by using the method | |
Bettini et al. | Investigation on the use of coir fiber as alternative reinforcement in polypropylene | |
JP4452740B2 (en) | Recycling method of fiber reinforced plastic | |
JP5395496B2 (en) | Method for producing cellulose fiber-containing thermoplastic resin composition | |
JP4818662B2 (en) | Thermoplastic resin composition | |
WO2007107527A1 (en) | Fiber-reinforced thermoplastic | |
BR112015006940B1 (en) | COMPOSITION OF VEGETABLE FIBER REINFORCED THERMOPLASTIC RESIN | |
JP2010502811A (en) | Seaweed fiber reinforced biocomposite and method for producing biocomposite using high-temperature grinding technology | |
CN106893273A (en) | Calcium carbonate high-filling biodegradable plastic film material used as shopping bag and preparation method thereof | |
Espinach Orús et al. | High stiffness performance alpha-grass pulp fiber reinforced thermoplastic starch-based fully biodegradable composites | |
JPWO2015178483A1 (en) | Polymer resin composite containing biomass nanofiber, method for producing biomass nanofiber, and method for producing the same | |
CN107022201A (en) | It is a kind of for composite of 3D printing and preparation method thereof | |
JP3848025B2 (en) | Steel pipe cap | |
Rozman et al. | Mechanical properties of polyethylene-oil palm empty fruit bunch composites | |
JP2007119559A (en) | Vegetable fiber compressed pellet, vegetable fiber resin composite composition and molded article | |
JP2010138238A (en) | Thermoplastic resin composition and manufacturing method of molded article thereof | |
MX2009007816A (en) | Method and apparatus for manufacturing a product of integrated cellulose and fibrous materials. | |
CN109777096A (en) | A kind of polyamide compoiste material and preparation method thereof | |
JP3673403B2 (en) | Composite material of paper and biodegradable resin and method for producing the same | |
Beckermann | The processing, production and improvement of hemp-fibre reinforced polypropylene composite materials | |
CN106432860A (en) | Recycled modified material of waste drip-irrigation tape and preparation method thereof | |
KR20200058682A (en) | Kenaf fiber and recycled polypropylene compounds and manufacturing method of the same | |
JP2006077048A (en) | Plastic molded article in which carbon dioxide is reduced | |
CN102504380B (en) | Preparation method of organic molecule insertion type natural fiber composite plastics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050610 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051026 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060824 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |