JP3847831B2 - Continuous annealing furnace cooling zone - Google Patents

Continuous annealing furnace cooling zone Download PDF

Info

Publication number
JP3847831B2
JP3847831B2 JP06978096A JP6978096A JP3847831B2 JP 3847831 B2 JP3847831 B2 JP 3847831B2 JP 06978096 A JP06978096 A JP 06978096A JP 6978096 A JP6978096 A JP 6978096A JP 3847831 B2 JP3847831 B2 JP 3847831B2
Authority
JP
Japan
Prior art keywords
steel strip
roll
seal
cooling zone
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06978096A
Other languages
Japanese (ja)
Other versions
JPH0995741A (en
Inventor
隆昭 小橋
元己 今村
真 鈴木
泰隆 内田
直人 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP06978096A priority Critical patent/JP3847831B2/en
Publication of JPH0995741A publication Critical patent/JPH0995741A/en
Application granted granted Critical
Publication of JP3847831B2 publication Critical patent/JP3847831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯を連続的に焼鈍する所謂連続焼鈍炉のガスシール装置に関し、特に、該連続焼鈍炉のガス噴射冷却帯(以下、単に冷却帯という)において、炉内を仕切壁によって複数の領域に分け、各領域に独自の雰囲気を持たせるためのガスシール装置に係わる。
【0002】
【従来の技術】
鋼帯を連続的に焼鈍する連続焼鈍炉の冷却帯においては、通常、図7に示すようなガス噴射による冷却設備が設けられている。その設備は、ロール室14内のハースロール10を経た高温の鋼帯1が、プレナムチャンバ12のガス噴射ノズル群4間を通過する際に、該ノズル群4から噴射されるガスで冷却される。なお、図7は、高温の鋼帯1をプレナムチャンバ12へ供給する側のみが図示され、抜出側を省略してある。
【0003】
一方、上記ノズル群4から噴射されたガスの一部は、鋼帯1に衝突した後、該鋼帯1に沿って下降又は上昇し、上記ロール室14との仕切壁5のスリット状貫通孔6を抜けてハースロール10周辺に進入する。また、鋼帯1は、冷却中でも数百度℃と高温であるが、上記冷却ガスは100℃程度であるため、ハースロール10の鋼帯1と接触する部分と接触しない両端近傍部分では、温度差が生じ、ハースロール10には、該温度差による熱膨張差に起因した所謂サーマルクラウン(ふくれ)が形成される。そのため、鋼帯1には、ハースロール10の中央部に両端側の鋼帯1を移動させる分力が生じ、鋼帯1にバックリング(通称、クーリングバックル9という、所謂しわ)が発生して(図8参照)、最悪の場合は通板不能といった状況にもなる。
【0004】
そこで、従来は、前記仕切壁5のスリット状貫通孔6を絞り、その面積を小さくする1対の対向式シールロール13を設けて、該ロール室14への噴射ガスの流入を抑制して各領域を異なる温度条件にすると共に、ハースロール10のクラウンを抑制するようにしていた(図4及び5参照)。また、実開平5−69152号公報は、加熱帯の設定温度の変更に伴う鋼帯1の蛇行やクーリングバックル9の発生を防止するため、まったく同様なシールロール13を冷却帯の入出口に各1対ずつ設けることを提案している。かかる対策は、鋼帯1を完全に挟圧できれば良いが、鋼帯1には先行鋼帯と後行鋼帯とを溶接した厚肉の溶接部や、熱変形を生じた部分があり、それらの部分が該シールロール13を通過すると該ロールに疵をつけ、その後に通過する鋼帯1に転写したり、しわを発生させることが多い。したがって、上記対向シールロール13は、鋼帯1と接触しないように、板厚以上のロールギャップを考慮して対向させる必要があり、鋼帯表面近くの冷却ガスがハースロール10側の領域に侵入し、温度制御が精度よくできず、また冷却ガスの流速を上げることもできなかった。
【0005】
さらに、実開平4−69447号公報は、上記問題点を克服するため、上記仕切壁5のスリット状貫通孔6を挟み、上下流側に対向シールロール13を2組設け、各対向シールロール13の一方は鋼帯1面に接触させることでガスシールを万全にする技術を開示している。この技術は、確かにシールロール13の断面方向にのみ着眼した場合にはかなりの効果が期待できる。しかしながら、該シール部では、シールロールの幅方向でのシール性も重要であり、その点でこの技術はシール効果が不十分であった。すなわち、図9に示すように、シールロール2、3の両端部で冷却ガスがリークするという欠点がある。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情を鑑み、ガス噴射冷却帯において、所謂プレナムチャンバから吐出した噴射ガスのハースロール側への侵入量を従来より大幅に低減できる連続焼鈍炉のシール装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するため、上記仕切壁5のスリット状貫通孔6を通過する噴射ガスの流れを鋭意研究し、噴出ガスのハースロール10側への流出を防止する条件を見出した。その一例を図10に示す。これは、噴射速度 100m/secで鋼帯1に吹付けられた冷却ガス7の流れを乱流モデルによって解析したもので、矢印が冷却ガス7の流れの方向と大きさを示すベクトルとなっている。この図10より、2個のシールロール2、3をそれぞれ鋼帯1の片面に接触させ千鳥状に配置すると、冷却ガス7はそれらロール2、3にせき止められて流れの方向を変え、またこれらロール位置と仕切壁5までの距離を適切にすることで、該仕切壁5のスリット状貫通孔6からの流出量をかなり抑制できることが知られた。そこで、本発明は、この研究成果を具現化したもので,冷却ガスを噴射する対向ノズル群と、該対向ノズル群間に鋼帯を供給し、抜出すハースロールと、該対向ノズル群とハースロールの設置位置を上下に分け、鋼帯が通過するスリット状貫通孔を有する仕切壁と、該仕切壁よりも上記対向ノズル群側に、鋼帯の両面に対してそれぞれ片面のみが別個に接触するよう上下に千鳥配設したシールロールとを備え、これら全体を炉体で囲んでなることを特徴とする連続焼鈍炉の冷却帯である。従って、鋼帯と接触するロールを2本、鋼をはさみ込む形で有効に配置し、鋼とロールの間の隙間をなくしたので、従来の冷却帯より一段と冷却ガスの流出が防止できるようになる。
【0008】
また、本発明では、上記シールロールが、次式の関係を満足するようにしたので、対向ノズル群シールロールと仕切壁までの距離が大きくなり、噴射ガスがロール幅方向を回って板状貫通孔からハースロール側の領域へ侵入するのも防止できるようになる。
L/(D−d)≧3 ・・・(1)
ここで、d: 鋼帯と接触するシールロール径、
D: 上下シールロールの中心間距離
L: 対向ノズル群側シールロール中心と上記仕切壁内面までの距離
【0009】
【発明の実施の形態】
図1及び図2は、本発明にかかる連続焼鈍炉の冷却帯を下側のみ、及び上下側共に示す縦断面図の一例である。前述したように、プレナムチャンバ12間を上方へ移動する鋼帯1に、片面ずつ接触するシールロール2、3を千鳥に配置したので、ノズル4から噴射される冷却ガス7はハースロール10側への流出が抑えられる。そして、鋼帯1と接触するシールロール2、3の径dと、該シールロール2、3の中心間上下方向の距離Dと、ロール2の中心と仕切壁5の距離Lとにおいて、d及びDは装置設計で定まっているので、冷却ガス7が仕切壁5のスリット状貫通孔6からできるだけ流出しない条件を、冷却ガス7の噴射速度との関係において求めた。その結果の一例を噴射速度100m/secの場合で図3に示す。図3によると,噴射ノズル4からの冷却ガス7が前記貫通孔6を通ってハースロール10近傍へ侵入する量とL/(D−d)との間で一定の関係があることがわかった。つまり、ノズル4側のシールロール2と仕切壁までの距離Lは(D−d)の3倍以上あれば(無次元化距離)、冷却ガス7の侵入量を最小に抑えることができた。なお、(1)式は、冷却ガスの噴射速度を100m/secとした場合で導出してあるが、実用上の冷却帯ではこの100m/secが最大流速であるので、(1)式を満足すればこれ以下の噴射速度でも良好な結果が得られる。また、図4及び5に従来の冷却帯を示したが、この冷却帯と本発明に係る冷却帯を用いた場合の前記冷却ガス7の侵入量を比較して図6に示す。図6より、本発明に係る冷却帯では、該冷却ガス7の侵入量は従来冷却帯を用いた場合の13%と減少していた。なお、冷却ガス7の侵入量の測定は熱収支による計算値である。また、図1及び図2には、冷却帯を下側のみ、上下側共の場合を示したが、本発明には、上側のみ、つまり鋼帯の抜出側を対象にした場合も含むものである。
【0010】
【発明の効果】
以上述べたように、本発明により、所謂プレナムチャンバのノズルから噴射した冷却ガスのハースロール側への侵入量を従来より大幅に低減できる連続焼鈍炉の冷却帯を提供することができた。
【図面の簡単な説明】
【図1】本発明に係る連続焼鈍炉の冷却帯を下側のみ示す縦断面図である。
【図2】本発明に係る連続焼鈍炉の冷却帯を上下共に示す縦断面図である。
【図3】噴射ガスの侵入量とL/(D−d)の関係を示すグラフである。
【図4】従来の対向シールロールを備えた冷却帯を下側のみ示す縦断面図である。
【図5】従来の対向シールロールを備えた冷却帯を上下共に示す縦断面図である。
【図6】従来装置と本発明に係る装置とで、噴出ガスの侵入量を比較した棒グラフである。
【図7】従来のシールロールを備えていない冷却帯を示す図である。
【図8】鋼帯に発生するクーリングバックルを示す図である。
【図9】鋼帯両端側からハースロール側へ流出する噴射ガスの流れを示す図であり、(a)は斜視図、(b)は正面図である。
【図10】噴射ガスの冷却帯内の流れを解析した一例を示す図である。
【符号の説明】
1 鋼帯
2 上シールロール
3 下シールロール
4 噴射ノズル
5 仕切壁
6 スリット状貫通孔
7 冷却ガス
8 鋼帯進行方向
9 クーリングバックル
10 ハースロール
11 炉壁
12 プレナムチャンバ
13 対向シールロール
14 ロール室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas seal device for a so-called continuous annealing furnace for continuously annealing a steel strip, and in particular, in a gas injection cooling zone (hereinafter simply referred to as a cooling zone) of the continuous annealing furnace, a plurality of interiors of the furnace are provided by partition walls. This is related to a gas seal device for giving each region a unique atmosphere.
[0002]
[Prior art]
In a cooling zone of a continuous annealing furnace for continuously annealing a steel strip, cooling equipment by gas injection as shown in FIG. 7 is usually provided. The equipment is cooled by the gas injected from the nozzle group 4 when the hot steel strip 1 passing through the hearth roll 10 in the roll chamber 14 passes between the gas injection nozzle groups 4 of the plenum chamber 12. . In FIG. 7, only the side for supplying the hot steel strip 1 to the plenum chamber 12 is shown, and the extraction side is omitted.
[0003]
On the other hand, part of the gas injected from the nozzle group 4 collides with the steel strip 1, and then descends or rises along the steel strip 1, and the slit-like through hole of the partition wall 5 with the roll chamber 14. Pass through 6 and enter around Hearth Roll 10. Further, the steel strip 1 is as high as several hundred degrees C even during cooling, but the cooling gas is about 100 ° C. Therefore, in the vicinity of both ends where the steel strip 1 does not come into contact with the portion in contact with the steel strip 1 of the hearth roll 10, As a result, a so-called thermal crown is formed on the hearth roll 10 due to the difference in thermal expansion due to the temperature difference. Therefore, the steel strip 1 has a component force that moves the steel strips 1 on both ends in the center of the hearth roll 10, and buckling (commonly called a cooling buckle 9) occurs in the steel strip 1. (Refer to FIG. 8) In the worst case, the plate cannot be passed.
[0004]
Therefore, conventionally, the slit-like through-hole 6 of the partition wall 5 is narrowed down, and a pair of opposed seal rolls 13 are provided to reduce the area of the partition wall 5 so as to suppress the inflow of the injection gas into the roll chamber 14. The region was set to different temperature conditions, and the crown of the hearth roll 10 was suppressed (see FIGS. 4 and 5). Japanese Utility Model Laid-Open No. 5-69152 discloses that the same seal roll 13 is provided at the entrance and exit of the cooling zone in order to prevent the meandering of the steel strip 1 and the generation of the cooling buckle 9 due to the change of the set temperature of the heating zone. It is proposed to provide one pair at a time. Such a measure is sufficient if the steel strip 1 can be completely clamped, but the steel strip 1 has a thick welded portion where the preceding steel strip and the subsequent steel strip are welded, and a portion where thermal deformation has occurred. When this portion passes through the seal roll 13, the roll is often wrinkled and transferred to the steel strip 1 that passes thereafter, or wrinkles are often generated. Therefore, the opposing seal roll 13 needs to be opposed in consideration of a roll gap larger than the plate thickness so as not to come into contact with the steel strip 1, and the cooling gas near the steel strip surface enters the area on the hearth roll 10 side. However, the temperature cannot be controlled accurately, and the flow rate of the cooling gas cannot be increased.
[0005]
Further, Japanese Utility Model Laid-Open No. 4-69447 discloses a pair of opposing seal rolls 13 on the upstream and downstream sides of the slit-like through-hole 6 of the partition wall 5 in order to overcome the above problems. One of them discloses a technique for ensuring a gas seal by bringing it into contact with one surface of a steel strip. This technique can be expected to have a considerable effect when focused only on the cross-sectional direction of the seal roll 13. However, in the seal portion, the sealability in the width direction of the seal roll is also important, and in this respect, this technique has an insufficient sealing effect. That is, as shown in FIG. 9, there is a drawback that the cooling gas leaks at both ends of the seal rolls 2 and 3.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a sealing device for a continuous annealing furnace that can significantly reduce the amount of injected gas discharged from a so-called plenum chamber into the hearth roll side in the gas injection cooling zone. It is said.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor earnestly studied the flow of the injection gas passing through the slit-like through hole 6 of the partition wall 5 and found a condition for preventing the discharge gas from flowing out to the hearth roll 10 side. . An example is shown in FIG. This is an analysis of the flow of the cooling gas 7 sprayed on the steel strip 1 at an injection speed of 100 m / sec using a turbulent flow model, and the arrows are vectors indicating the direction and magnitude of the flow of the cooling gas 7. Yes. From FIG. 10, when two seal rolls 2 and 3 are respectively brought into contact with one surface of the steel strip 1 and arranged in a staggered manner, the cooling gas 7 is blocked by the rolls 2 and 3 to change the flow direction. It has been known that by appropriately adjusting the distance between the roll position and the partition wall 5, the amount of outflow from the slit-like through hole 6 of the partition wall 5 can be considerably suppressed. Accordingly, the present invention is obtained by embodying this research, a counter nozzle group for ejecting a cooling gas, the steel strip was subjected fed between the counter nozzle groups, the hearth rolls withdrawn, and the counter nozzle group Divide the installation position of the hearth roll into upper and lower parts , and have a partition wall with slit-shaped through-holes through which the steel strip passes, and only one side of each side of the steel strip separately from the partition wall on the opposite nozzle group side. It is a cooling zone of a continuous annealing furnace characterized in that it is provided with seal rolls arranged in a staggered manner so as to come into contact with each other, and the whole is surrounded by a furnace body . Therefore, two rolls that come into contact with the steel strip are effectively arranged so as to sandwich the steel strip, and the gap between the steel strip and the roll is eliminated, so that the cooling gas can be prevented from flowing out more than the conventional cooling zone. It becomes like this.
[0008]
In the present invention, since the seal roll satisfies the relationship of the following formula, the distance between the opposed nozzle group seal roll and the partition wall increases, and the injection gas passes through the roll width direction to penetrate the plate. Intrusion from the hole into the area on the hearth roll side can also be prevented.
L / (D−d) ≧ 3 (1)
Where d: the diameter of the seal roll in contact with the steel strip,
D: Distance between the centers of the upper and lower seal rolls L: Distance from the center of the opposing nozzle group side seal roll to the inner surface of the partition wall
DETAILED DESCRIPTION OF THE INVENTION
FIG.1 and FIG.2 is an example of the longitudinal cross-sectional view which shows only the lower side and the upper and lower sides of the cooling zone of the continuous annealing furnace concerning this invention. As described above, since the steel rolls 1 that move upward between the plenum chambers 12 are arranged in a zigzag manner with the seal rolls 2 and 3 that contact each side, the cooling gas 7 injected from the nozzle 4 is directed to the hearth roll 10 side. Outflow is suppressed. And in the diameter d of the seal rolls 2 and 3 in contact with the steel strip 1, the distance D in the vertical direction between the centers of the seal rolls 2 and 3, and the distance L between the center of the roll 2 and the partition wall 5, d and Since D is determined by the apparatus design, the condition that the cooling gas 7 does not flow out from the slit-like through hole 6 of the partition wall 5 as much as possible was obtained in relation to the injection speed of the cooling gas 7. An example of the result is shown in FIG. 3 in the case of an injection speed of 100 m / sec. According to FIG. 3, it was found that there is a certain relationship between L / (Dd) and the amount of cooling gas 7 from the injection nozzle 4 entering the vicinity of the hearth roll 10 through the through hole 6. . That is, if the distance L between the seal roll 2 on the nozzle 4 side and the partition wall is three times or more (D-d) (dimensionless distance), the intrusion amount of the cooling gas 7 can be minimized. The equation (1) is derived when the cooling gas injection speed is 100 m / sec. However, in the practical cooling zone, the maximum flow velocity is 100 m / sec, so the equation (1) is satisfied. As a result, good results can be obtained even at an injection speed lower than this. 4 and 5 show a conventional cooling zone. FIG. 6 shows a comparison of the intrusion amount of the cooling gas 7 when this cooling zone and the cooling zone according to the present invention are used. From FIG. 6, in the cooling zone according to the present invention, the intrusion amount of the cooling gas 7 was reduced to 13% when the conventional cooling zone was used. In addition, the measurement of the penetration | invasion amount of the cooling gas 7 is a calculated value by a heat balance. 1 and 2 show the case where the cooling zone is only on the lower side and the upper and lower sides, but the present invention includes the case where only the upper side, that is, the extraction side of the steel strip is targeted. .
[0010]
【The invention's effect】
As described above, according to the present invention, it has been possible to provide a cooling zone for a continuous annealing furnace that can significantly reduce the amount of cooling gas injected from a nozzle of a so-called plenum chamber into the hearth roll side.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing only a lower side of a cooling zone of a continuous annealing furnace according to the present invention.
FIG. 2 is a longitudinal sectional view showing a cooling zone of a continuous annealing furnace according to the present invention both vertically and vertically.
FIG. 3 is a graph showing the relationship between the intrusion amount of the injected gas and L / (D−d).
FIG. 4 is a longitudinal sectional view showing only a lower side of a cooling zone provided with a conventional opposed seal roll.
FIG. 5 is a longitudinal sectional view showing a cooling zone provided with a conventional opposed seal roll both vertically.
FIG. 6 is a bar graph comparing the intrusion amount of the ejected gas between the conventional apparatus and the apparatus according to the present invention.
FIG. 7 is a view showing a cooling zone not provided with a conventional seal roll.
FIG. 8 is a view showing a cooling buckle generated in a steel strip.
FIGS. 9A and 9B are diagrams showing a flow of a jet gas flowing out from both ends of a steel strip to a hearth roll side, wherein FIG. 9A is a perspective view and FIG. 9B is a front view.
FIG. 10 is a diagram showing an example of analyzing the flow of the injected gas in the cooling zone.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Upper seal roll 3 Lower seal roll 4 Injection nozzle 5 Partition wall 6 Slit-like through-hole 7 Cooling gas 8 Steel strip traveling direction 9 Cooling buckle 10 Hearth roll 11 Furnace wall 12 Plenum chamber 13 Opposing seal roll 14 Roll chamber

Claims (2)

冷却ガスを噴射する対向ノズル群と、該対向ノズル群間に鋼帯を供給し、抜出すハースロールと、該対向ノズル群とハースロールの設置位置を上下に分け、鋼帯が通過するスリット状貫通孔を有する仕切壁と、該仕切壁よりも上記対向ノズル群側に、鋼帯の両面に対してそれぞれ片面のみが別個に接触するよう上下に千鳥配設したシールロールとを備え、これら全体を炉体で囲んでなることを特徴とする連続焼鈍炉の冷却帯。Facing nozzle group for ejecting a cooling gas, the steel strip was subjected fed between the counter nozzle groups divided and hearth rolls withdrawing, the installation position of the counter nozzle group and hearth rolls in the vertical, slit strip passes Partition walls having a through-hole, and seal rolls arranged in a staggered manner on the upper and lower sides of the steel strip so that only one side is separately in contact with both sides of the steel strip , closer to the opposing nozzle group side than the partition wall , A cooling zone of a continuous annealing furnace characterized by being surrounded by a furnace body . 上記シールロールが、次式の関係を満足することを特徴とする請求項1記載の連続焼鈍炉の冷却帯。
L/(D−d)≧3 ・・・(1)
ここで、d: 鋼帯と接触するシールロール径、
D: 上下シールロールの中心間距離
L: 対向ノズル群側シールロール中心と上記仕切壁内面までの距離
The cooling zone of the continuous annealing furnace according to claim 1, wherein the seal roll satisfies the relationship of the following formula.
L / (D−d) ≧ 3 (1)
Where d: the diameter of the seal roll in contact with the steel strip,
D: Distance between the centers of the upper and lower seal rolls L: Distance between the center of the opposing nozzle group side seal roll and the inner surface of the partition wall
JP06978096A 1995-07-25 1996-03-26 Continuous annealing furnace cooling zone Expired - Fee Related JP3847831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06978096A JP3847831B2 (en) 1995-07-25 1996-03-26 Continuous annealing furnace cooling zone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18903195 1995-07-25
JP7-189031 1995-07-25
JP06978096A JP3847831B2 (en) 1995-07-25 1996-03-26 Continuous annealing furnace cooling zone

Publications (2)

Publication Number Publication Date
JPH0995741A JPH0995741A (en) 1997-04-08
JP3847831B2 true JP3847831B2 (en) 2006-11-22

Family

ID=26410944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06978096A Expired - Fee Related JP3847831B2 (en) 1995-07-25 1996-03-26 Continuous annealing furnace cooling zone

Country Status (1)

Country Link
JP (1) JP3847831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884513A (en) * 2016-04-05 2018-11-23 新日铁住金株式会社 Cooling equipment in continuous annealing furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884513A (en) * 2016-04-05 2018-11-23 新日铁住金株式会社 Cooling equipment in continuous annealing furnace
EP3441481A4 (en) * 2016-04-05 2019-08-21 Nippon Steel Corporation Cooling facility in continuous annealing furnace
CN108884513B (en) * 2016-04-05 2021-01-05 日本制铁株式会社 Cooling apparatus in continuous annealing furnace
US10927426B2 (en) 2016-04-05 2021-02-23 Nippon Steel Corporation Cooling equipment for continuous annealing furnace

Also Published As

Publication number Publication date
JPH0995741A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US3687145A (en) Quench system
KR19980702237A (en) Primary cooling method in continuous annealing of steel strip
JP3847831B2 (en) Continuous annealing furnace cooling zone
JP3117590B2 (en) Method and apparatus for cooling H-section steel
JPS59144513A (en) Cooling device of steel sheet
US3531334A (en) Quench system
JPS62174326A (en) Flange cooler for shape material
JPS5822525B2 (en) Sealing device in cooling section of steel strip
JPH0693342A (en) Device for sealing gas jet chamber
JPH0583619B2 (en)
CA1266602A (en) Method and apparatus for cooling steel strips
JPS60251230A (en) Method and device for cooling strip with heat treating furnace
JPS638752Y2 (en)
JPH07290136A (en) Method and device for cooling wide flange shape
JP3300594B2 (en) Cooling device for the underside of hot rolled steel strip
JPH0516206Y2 (en)
JPH10298667A (en) Device for sealing continuous type steel strip heat treatment furnace
JP2815086B2 (en) Vertical continuous annealing furnace for steel strip
JPH024373B2 (en)
JPH08206724A (en) Scale stripping device
JPH0987752A (en) Device for cooling steel strip and method for restraining curving or steel strip
JP2903988B2 (en) Cooling water control device for H-section steel inner surface
JP3327223B2 (en) Method and apparatus for cooling U-shaped sheet pile
JP2510926B2 (en) H-section steel cooling water stop device
JPH0437892Y2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees