JP3846218B2 - Structural steel with excellent weather resistance - Google Patents

Structural steel with excellent weather resistance Download PDF

Info

Publication number
JP3846218B2
JP3846218B2 JP2001111135A JP2001111135A JP3846218B2 JP 3846218 B2 JP3846218 B2 JP 3846218B2 JP 2001111135 A JP2001111135 A JP 2001111135A JP 2001111135 A JP2001111135 A JP 2001111135A JP 3846218 B2 JP3846218 B2 JP 3846218B2
Authority
JP
Japan
Prior art keywords
amount
mass
less
steel
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001111135A
Other languages
Japanese (ja)
Other versions
JP2002309340A (en
Inventor
誠洋 竹村
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001111135A priority Critical patent/JP3846218B2/en
Publication of JP2002309340A publication Critical patent/JP2002309340A/en
Application granted granted Critical
Publication of JP3846218B2 publication Critical patent/JP3846218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、構造用鋼材、特に、海岸付近または凍結防止剤が散布される地域等、飛来塩化物が多い地域に建設される橋梁や鉄塔などの、塩化物が関与した腐食環境の溶接構造物材料に適した高耐食性且つ高溶接性で靭性の良好な耐候性鋼に関するものである。
【0002】
【従来の技術】
橋梁などの鋼構造物は、その実用期間が数十年に及ぶため、その多くは塗装等の防食処置を施す必要がある。塗装は、防食効果の高い手段であるが、時間の経過と共に塗膜が劣化して防食機能が低減するため、定期的な補修を必要とする。
【0003】
しかし、特に近年は、人件費の高騰や塗装工の減少などにより、その補修が困難になるという問題が生じている。この問題を回避するため、橋梁などの鋼構造物には、耐候性鋼が適用される例が増えている。
【0004】
耐候性鋼では、大気暴露環境において、銅、りん、クロムなどの合金元素が濃化した防食性の高い錆層に覆われることにより、腐食速度が著しく低減する鋼材である。その耐候性の高さのため、耐候性鋼を使用した橋梁は、しばしば無塗装のまま数十年間の供用に耐えることが知られている。
【0005】
しかし、海岸地域のように飛来塩分が多い環境では、耐候性鋼の錆層の保護性は低く、実用に耐える耐食性が得難いことが知られている。こうした環境で実用に耐える鋼材を製造するため、銅、りん、クロム、タングステンなどの有効元素を多量に添加するなどの方法が、特公昭51−28048号公報、特公昭57−10941号公報、特開平3−158436号公報、特開平4−6245号公報等に開示されている。
【0006】
近年、建設省は、耐候性鋼を日本国内各所に暴露腐食試験した結果から、耐候性鋼を無塗装で使用可能な地域として、飛来する塩分量が0.05mdd(mg/dm2/day)以下の地域に限るという指針を提示している。
【0007】
従って、特公昭51−28048号公報、特公昭57−10941号公報、特開平3−158436号公報、特開平4−6245号公報などで製造される耐候性鋼は、無塗装使用するのに十分な耐候性を有していない。
【0008】
さらに、耐候性鋼の無塗装使用に際して、構造物を汚損するものとしてしばしば問題視されるのが流れ錆である。これは、鉄がアノード溶解して生じた2価のイオンが鋼材表面に生成した錆層の外に流出した後、橋脚等で乾燥して錆となったもので、橋脚等を茶色く汚損する。流れ錆の発生量は、使用開始から1年以内に多い。これは、この時期において錆層がまだ十分に緻密化せず、保護性が低いためである。
【0009】
一方、海岸地域における耐候性を改善した鋼の製造技術としては、クロムやニッケルなどの元素を多量に添加することにより、飛来塩分が比較的に多い環境における鋼の耐候性を改善する方法が特開平7−207340号公報、特開平7−242993号公報などに開示されている。
【0010】
しかし、クロムを多量に含有する鋼は、低温割れなどの溶接欠陥が生じやすく、予熱を実施するなどの溶接欠陥を防止する処置が必要である。橋梁などの屋外構造物の場合、予熱や溶接欠陥の検査などの現場作業は困難であり、建設コストが増加するなどの弊害が生じる。
【0011】
また、ニッケルを多量に含有する鋼は、焼入れ性が増大しており、通常の熱間圧延によっては、ベイナイト組織が析出し、靭性が不十分なものとなる。すなわち、これら技術では、実用的な溶接性と靭性を有する鋼を製造することが困難である。
【0012】
これに対して、特開平8−134587号公報、特開平11−21622号公報には、クロムを含まないNi−Mo系成分の耐候性鋼が開示されている。これは、塩分の多い環境においては、クロムは穴あき腐食を助長することを見出したものであり、優れた耐候性を示すことが報告されている。
【0013】
しかしながら、これらの耐候性は最大穴あき深さで評価されており、外観を損なう初期の流れ錆については検討されていない。
【0014】
【発明が解決しようとする課題】
以上のように、上記従来技術によっては、飛来塩分量が0.05mdd以上の地域において、実用的な耐候性と溶接性を有し、且つ流れ錆が少なく靭性の良好な溶接構造用鋼を製造することは、不可能であった。
【0015】
従って、この発明の目的は、0.05mdd以上0.5mdd未満の塩分が飛来する環境において耐候性に優れ、流れ錆が少なく、靭性の良好な構造用鋼を提供することにある。
【0016】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべくNi−Mo成分系において流れ錆抑制の観点から鋼材の成分組成について鋭意検討した。その結果、流れ錆の発生は、P含有量と相関があり、P含有量の低減が効果的なことを知見した。また、Ni量の下限を1mass%と従来より添加量を増やすことによって、流れ錆の発生がさらに抑制されることを見出し、これにより、高い耐候性と溶接性を両立し、且つ流れ錆が少なく靭性の良好な鋼材の製造が可能であることを知見した。
【0017】
この発明は、上記知見に基づきなされたものであって、下記を特徴とするものである。
【0018】
請求項1記載の発明は、C:0.15%以下、Si:0.7%以下、Mn:0.2から1.5%、S:0.02%以下、Ni:1から4%、Mo:0.30から1.5%、Al:0.01から0.1%を含有し、P:0.03%未満、Cr:0.1%以下(以上、mass%)に規制し、且つ、NiとMoがNi+3Mo≧1.5mass%、Pcm:0.25mass%以下(但し、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15)を満たし、残部Fe及び不可避不純物からなることに特徴を有するものである。
【0019】
請求項2記載の発明は、請求項1記載の発明において、0.25mass%以下のCuを含有していることに特徴を有するものである。
【0020】
【発明の実施の形態】
まず、この発明で、成分組成を上記の範囲に限定した理由について説明する。
【0021】
C:
Cは、所定の強度を確保するために添加するが、0.15mass%を超えると溶接性および靭性が劣化するので、C含有量を0.15mass%以下とした。
【0022】
Si:
Siは、製鋼時の脱酸剤および強度向上元素として添加するが、0.7mass%を超えて過剰に添加すると靭性が著しく低下する。従って、Si含有量は、0.7mass%以下とした。
【0023】
Mn:
Mnは、所定の強度を確保するために0.2mass%以上添加する必要がある。しかし、1.5mass%を超えて過剰に添加するとベイナイト組織が生じやすくなり、機械的特性、特に、靭性が劣化する。従って、Mn含有量は、0.2から1.5mass%の範囲内とした。
【0024】
P:
Pは、使用初期の錆層が薄い段階では、水にリン酸イオンとして溶解して錆層外に出やすい。錆層外に出たリン酸イオンは鉄の2価イオンを錆として沈殿させやすく、橋脚を汚損させる原因となり得る。
【0025】
図1に、1.5Ni−0.3Moの成分系での流れ錆発生に及ぼすP量の影響を示す。これは飛来塩分量0.4mddの海岸地帯に1年間暴露し、試験片の下に広口の容器を置き、雨水等と共に流れ錆を捕集し、水溶液中のFeイオン量を原子吸光法により定量し、1年間の流れ錆量を求めた結果である。
【0026】
図1からP量が0.03mass%を超えると、Feイオンの流出量が急激に増えることが分かる。また、従来、Pは、長期使用における防食性の効果を有するため一定量添加されてきたが、Ni含有量、Mo含有量を増加させることでこれを補うことが可能である。従って、P含有量は、流れ錆抑制の観点から0.03mass%、好ましくは0.02mass%以下に制限する。
【0027】
S:
Sは、溶接性および靭性に有害な元素であるので、0.02mass%以下とした。
【0028】
Al:
Alは、製鋼時の脱酸剤として0.01mass%以上添加するが、過剰に添加すると、腐食の起点となる介在物が生じやすくなるので、0.1mass%以下とした。
【0029】
Cr:
Crは、塩分の少ない環境においては、耐候性を向上させる効果を有するため、従来鋼では積極的に添加されてきた。しかし、本発明鋼の対象とする塩分の多い環境においては、穴あき腐食を助長する効果がある。また、溶接部の硬さを増して低温割れを助長して溶接性を著しく劣化させる。そのため、0.1mass%以下、好ましくは0.05mass%以下に規制することが重要である。
【0030】
Ni:
Niは、Moとの共存により塩分の多い環境における耐食性を向上させる効果がある。また、錆の早期安定化に寄与して流れ錆を抑制する効果も有する。流れ錆を抑えるため、さらに低P化に伴う錆安定化効果を補うためには1mass%以上の添加が必要である。一方、4mass%を超える添加では、効果が飽和し経済性の点で不利であり、また、ベイナイト組織が生じやすくなり、機械的特性、特に靭性が劣化する。従って、Ni含有量は、1から4mass%の範囲内とした。
【0031】
Mo:
Moは、Niとの共存により塩分の多い環境における耐食性を向上させる効果がある。0.30mass%未満の添加では効果がなく、1.5mass%を超える添加では経済性の点で不利であり、また、ベイナイト組織が生じやすくなり、機械的特性、特に靭性が劣化する。従って、Mo含有量は、0.30から1.5mass%の範囲内とした。
【0032】
Ni+3Mo:
Moを適当な量のNiと共に添加することにより、耐候性は著しく改善される。NiおよびMoの耐候性に与える効果の詳細は、明らかではないが、以下のように考えられる。
【0033】
Moは、錆の凋密性を高め、水分や塩分といった腐食因子が鋼表面に接触するのを妨げる効果があると考えられる。その一方、Moは、錆を脆くする性質があり、クラックなどの欠陥が生じやすくなる。Niは、割れやすい錆の性質を改善し、クラックなどの欠陥を生じにくくする性質がある。これら2つの異なる性質による相乗効果が発揮されるため、Moを適当な量のNiと共に添加することにより、耐候性が著しく改善すると考えられる。P含有量の低減による錆安定化の低下を補うためには、Ni+3Mo≧1.5mass%を満足するNiとMoの添加が必要である。
【0034】
Cu:
Cuは、耐食性を向上させる効果があるため必要に応じて添加できるが、0.25mass%を超える添加では効果が飽和し、且つ経済性の点で不利であるので、添加する場合は0.25mass%以下とした。
【0035】
また、溶接での低温割れを防止し、溶接施工時の予熱温度を50℃以下の実操業上問題ないレペルにするためには、下記式で定義されるPcmが0.25mass%以下であることが好ましい。
【0036】
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
【0037】
なお、残部はFe及び不可避不純物である。
【0038】
本発明では、通常の連続鋳造や分塊法により得られたスラブを熱間圧延することにより厚板や形鋼等の鋼材に製造される。加熱、圧延条件は、要求される材質に応じて適宜決定すればよく、制御圧延、加速冷却、あるいは再加熱熱処理等の組み合わせも可能である。
【0039】
【実施例】
表1に示す成分組成の鋼塊を溶製し、1200℃に加熱して熱間圧延を開始し、950℃以下で30%の累積圧下率にて850℃で圧延を終了し、厚さ25mmの鋼板を調製した。圧延終了後は、室温まで空冷した。得られた鋼板を150mm×70mm×5mm、表面△△△仕上げの試験片に加工し、年間飛来塩分量0.4mddの海岸に1年間暴露した。暴露期間中、試験片の下に広口の容器を置き、雨水等と共に流れ錆を捕集し、毎月1回回収した。捕集した水溶液中のFeイオン量を原子吸光法により定量し、1年間の流れ錆量を求めた。暴露終了後、試験片を塩酸にヘキサメチレンテトラミンを加えた水溶液に浸漬して脱錆してから重量を測定し、初期重量との差を求めて板厚減少量に換算した。また、溶接性の評価としてy形溶接割れ試験を実施した。
【0040】
【表1】

Figure 0003846218
【0041】
暴露試験結果と溶接割れ防止温度を表2に示す。耐候性鋼を無塗装で橋梁に適用する場合、腐食環境が厳しい内桁も含めて50年間の板厚減少量が0.3mm以下であるためには、実施例の暴露形式では1年間の板厚減少量が0.030mm以下でなければならない。また1年間の流れ錆量が0.15g/m2を超えると、構造物の汚損が目立つようになる。
【0042】
【表2】
Figure 0003846218
【0043】
本発明鋼A〜は、すべて板厚減少量が0.025mm以下であり、1年間の流れさび量が0.15g/m以下である。従って、耐候性は十分優れており、流れさび量も十分小さい。また、溶接割れ防止予熱温度は室温であり、良好な溶接性も有している。
【0044】
比較鋼H、Iについては、板厚減少量は小さいが、P含有量が本発明の範囲を超えて高すぎたために流れ錆量が多すぎた。
【0045】
比較鋼Jについては、Ni含有量が本発明の範囲以下で低すぎたために、板厚減少量が大きすぎ、流れ錆量も多すぎた。
【0046】
比較鋼Kについては、Mo含有量が本発明の範囲以下で低すぎたために、板厚減少量が大きすぎ、流れ錆量も多すぎた。
【0047】
比較鋼Lについては、Ni、Mo含有量は本発明の範囲内であるが、Ni+3Mo量が本発明の範囲以下のため、板厚減少量が大きすぎ、流れ錆量も多すぎた。
【0048】
比較鋼Mについては、Ni、Mo含有量がいずれも発明の範囲以下で低すぎたために、板厚減少量が大きすぎ、流れ錆量も多すぎた。
【0049】
比較鋼Nについては、Cr含有量が本発明の範囲を超えて高すぎたために穴あき腐食が生じた結果、板厚減少量が大きすぎ、流れ錆量も多すぎた。
【0050】
比較鋼O、Pについては、Pcmが0.25を超えて大きいために、溶接割れ防止予熱温度が100℃と高く、溶接性に劣っていた。
【0051】
【発明の効果】
以上説明したように、この発明によれば、飛来塩分量が0.05mddを超える環境においても良好な耐候性を有し、且つ初期の流れ錆発生の少ない耐候性鋼を提供でき、また、溶接性、靭性にも優れるため、溶接構造用鋼としても充分な性能を有し、産業上有用な効果をもたらすことが可能である。
【図面の簡単な説明】
【図1】流れ錆発生に及ぼすP含有量の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
This invention relates to a structural steel material, particularly a welded structure in a corrosive environment involving chlorides, such as bridges and steel towers constructed in areas where there is a lot of incoming chloride, such as near the coast or in areas where antifreeze is sprayed. The present invention relates to a weather resistant steel having high corrosion resistance, high weldability and good toughness suitable for materials.
[0002]
[Prior art]
Steel structures such as bridges have a practical period of several decades, and many of them need to be subjected to anticorrosion treatment such as painting. Painting is a means having a high anticorrosion effect, but the coating film deteriorates over time and the anticorrosion function is reduced, so that periodic repair is required.
[0003]
However, particularly in recent years, there has been a problem that the repair becomes difficult due to a rise in labor costs and a decrease in the number of painters. In order to avoid this problem, an example in which weathering steel is applied to steel structures such as bridges is increasing.
[0004]
Weather-resistant steel is a steel material whose corrosion rate is remarkably reduced by being covered with a highly corrosion-resistant rust layer in which alloy elements such as copper, phosphorus and chromium are concentrated in an air exposure environment. Because of its high weather resistance, it is known that bridges using weathering steel can withstand service for decades, often unpainted.
[0005]
However, it is known that in an environment where there is a lot of incoming salt, such as the coastal area, the protection of the rust layer of the weather resistant steel is low, and it is difficult to obtain corrosion resistance that can withstand practical use. In order to produce a steel material that can be practically used in such an environment, methods such as adding a large amount of effective elements such as copper, phosphorus, chromium, tungsten, etc. are disclosed in Japanese Patent Publication Nos. 51-28048 and 57-10941, It is disclosed in Japanese Laid-Open Patent Publication No. 3-158436, Japanese Patent Laid-Open No. 4-6245, and the like.
[0006]
In recent years, the Ministry of Construction has conducted exposure corrosion tests on weathering steel at various locations in Japan, and as a region where weathering steel can be used without coating, the amount of salt that comes in is 0.05 mdd (mg / dm 2 / day). The guideline is limited to the following areas.
[0007]
Therefore, the weathering steel produced in Japanese Patent Publication No. 51-28048, Japanese Patent Publication No. 57-10941, Japanese Patent Laid-Open No. 3-158436, Japanese Patent Laid-Open No. 4-6245, etc. is sufficient for use without coating. Does not have good weather resistance.
[0008]
Furthermore, flowing rust is often regarded as a problem of soiling structures when using weather-resistant steel without painting. This is because divalent ions generated by the dissolution of iron in the anode flow out of the rust layer formed on the steel surface, and then are dried by piers to become rust, which stains the piers brown. The amount of flowing rust is large within one year from the start of use. This is because the rust layer is not yet sufficiently densified at this time and the protective property is low.
[0009]
On the other hand, steel manufacturing technology with improved weather resistance in coastal areas is characterized by the method of improving the weather resistance of steel in environments with relatively high levels of incoming salt by adding a large amount of elements such as chromium and nickel. It is disclosed in, for example, Kaihei 7-207340 and Japanese Patent Laid-Open No. 7-242993.
[0010]
However, steel containing a large amount of chromium is liable to cause welding defects such as low-temperature cracking, and requires measures to prevent welding defects such as preheating. In the case of outdoor structures such as bridges, on-site work such as preheating and inspection of welding defects is difficult, resulting in adverse effects such as an increase in construction costs.
[0011]
Further, steel containing a large amount of nickel has increased hardenability, and bainite structure is precipitated and the toughness becomes insufficient by ordinary hot rolling. That is, with these techniques, it is difficult to produce steel having practical weldability and toughness.
[0012]
In contrast, JP-A-8-134487 and JP-A-11-21622 disclose Ni-Mo based weathering steel that does not contain chromium. It has been found that, in a salty environment, chromium promotes perforation corrosion and is reported to exhibit excellent weather resistance.
[0013]
However, these weather resistances are evaluated by the maximum perforation depth, and the initial flow rust that impairs the appearance has not been studied.
[0014]
[Problems to be solved by the invention]
As described above, according to the above-described conventional technology, in a region where the amount of incoming salt is 0.05 mdd or more, a welded structural steel having practical weather resistance and weldability, and less flow rust and good toughness is manufactured. It was impossible to do.
[0015]
Accordingly, an object of the present invention is to provide a structural steel having excellent weather resistance, low flow rust and good toughness in an environment where a salt content of 0.05 mdd or more and less than 0.5 mdd is flying.
[0016]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors diligently studied the component composition of the steel material from the viewpoint of suppressing flow rust in the Ni-Mo component system. As a result, the occurrence of flow rust was correlated with the P content, and it was found that the reduction of the P content was effective. In addition, it has been found that the lower limit of the amount of Ni is 1 mass% and the addition amount is increased from the conventional level, whereby the occurrence of flow rust is further suppressed, thereby achieving both high weather resistance and weldability and less flow rust. It was found that it is possible to produce steel materials with good toughness.
[0017]
The present invention has been made on the basis of the above findings, and is characterized by the following.
[0018]
The invention according to claim 1 is: C: 0.15% or less, Si: 0.7% or less, Mn: 0.2 to 1.5%, S: 0.02% or less, Ni: 1 to 4%, Mo: 0.30 to 1.5%, Al: 0.01 to 0.1%, P: less than 0.03%, Cr: 0.1% or less (more than, mass%), Ni and Mo satisfy Ni + 3Mo ≧ 1.5 mass%, Pcm: 0.25 mass% or less (provided that Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15), and the balance is Fe and inevitable impurities. It has the characteristics.
[0019]
The invention described in claim 2 is characterized in that, in the invention described in claim 1, it contains 0.25 mass% or less of Cu.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason why the component composition is limited to the above range in the present invention will be described.
[0021]
C:
C is added to ensure a predetermined strength, but if it exceeds 0.15 mass%, the weldability and toughness deteriorate, so the C content is set to 0.15 mass% or less.
[0022]
Si:
Si is added as a deoxidizing agent and a strength improving element at the time of steelmaking, but if it is added excessively exceeding 0.7 mass%, the toughness is remarkably lowered. Therefore, the Si content is set to 0.7 mass% or less.
[0023]
Mn:
Mn needs to be added in an amount of 0.2 mass% or more in order to ensure a predetermined strength. However, when it exceeds 1.5 mass% and it adds excessively, it will become easy to produce a bainite structure, and mechanical characteristics, especially toughness will deteriorate. Therefore, the Mn content is in the range of 0.2 to 1.5 mass%.
[0024]
P:
P is easily dissolved out in water as phosphate ions when the rust layer at the initial stage of use is thin, and easily comes out of the rust layer. Phosphate ions that have come out of the rust layer tend to precipitate iron divalent ions as rust, and may cause the piers to be soiled.
[0025]
FIG. 1 shows the effect of the amount of P on flow rust generation in a component system of 1.5Ni-0.3Mo. This is exposed to a coastal zone with a salt content of 0.4 mdd for one year, a wide-mouthed container is placed under the test piece, rust is collected with rainwater, etc., and the amount of Fe ions in the aqueous solution is determined by atomic absorption spectrometry. It is the result of obtaining the flow rust amount for one year.
[0026]
It can be seen from FIG. 1 that when the amount of P exceeds 0.03 mass%, the amount of Fe ions flowing out increases rapidly. Conventionally, P has been added in a certain amount because it has an anticorrosive effect in long-term use, but this can be compensated for by increasing the Ni content and the Mo content. Therefore, the P content is limited to 0.03 mass%, preferably 0.02 mass% or less from the viewpoint of suppressing flow rust.
[0027]
S:
Since S is an element harmful to weldability and toughness, it was set to 0.02 mass% or less.
[0028]
Al:
Al is added in an amount of 0.01 mass% or more as a deoxidizer during steelmaking. However, if excessively added, inclusions that become the starting point of corrosion tend to occur, so the content was made 0.1 mass% or less.
[0029]
Cr:
Since Cr has an effect of improving the weather resistance in an environment with a low salt content, Cr has been actively added to conventional steels. However, in the salty environment targeted by the steel of the present invention, there is an effect of promoting perforated corrosion. In addition, the hardness of the welded portion is increased to promote cold cracking, and the weldability is remarkably deteriorated. Therefore, it is important to regulate to 0.1 mass% or less, preferably 0.05 mass% or less.
[0030]
Ni:
Ni has the effect of improving the corrosion resistance in a salty environment due to the coexistence with Mo. Moreover, it contributes to the early stabilization of rust and has the effect of suppressing flow rust. In order to suppress flow rust, addition of 1 mass% or more is necessary to supplement the rust stabilization effect associated with the lowering of P. On the other hand, when the amount exceeds 4 mass%, the effect is saturated and disadvantageous in terms of economy, and a bainite structure is likely to occur, and mechanical properties, particularly toughness, are deteriorated. Therefore, the Ni content is in the range of 1 to 4 mass%.
[0031]
Mo:
Mo has the effect of improving the corrosion resistance in a salty environment due to the coexistence with Ni. Addition of less than 0.30 mass% is ineffective, while addition over 1.5 mass% is disadvantageous in terms of economy, and a bainite structure is likely to occur, and mechanical properties, particularly toughness, deteriorate. Therefore, the Mo content is set in the range of 0.30 to 1.5 mass%.
[0032]
Ni + 3Mo:
By adding Mo with an appropriate amount of Ni, the weather resistance is significantly improved. The details of the effect of Ni and Mo on the weather resistance are not clear, but are considered as follows.
[0033]
Mo is considered to have an effect of enhancing the tightness of rust and preventing corrosion factors such as moisture and salt from contacting the steel surface. On the other hand, Mo has the property of making rust brittle, and defects such as cracks are likely to occur. Ni has the property of improving the property of rust which is easily broken and making it difficult to cause defects such as cracks. Since the synergistic effect by these two different properties is exhibited, it is considered that the weather resistance is remarkably improved by adding Mo together with an appropriate amount of Ni. In order to compensate for the decrease in rust stabilization due to the reduction in the P content, it is necessary to add Ni and Mo that satisfy Ni + 3Mo ≧ 1.5 mass%.
[0034]
Cu:
Cu has the effect of improving the corrosion resistance, and can be added as necessary. However, if it exceeds 0.25 mass%, the effect is saturated and disadvantageous in terms of economy . It was made into 25 mass% or less.
[0035]
In addition, in order to prevent cold cracking in welding and make the preheating temperature at the time of welding work 50 degrees C or less, there is no problem in actual operation, Pcm defined by the following formula is 0.25 mass% or less Is preferred.
[0036]
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
[0037]
The balance is Fe and inevitable impurities.
[0038]
In this invention, it manufactures to steel materials, such as a thick plate and a shape steel, by hot-rolling the slab obtained by the normal continuous casting and the block method. The heating and rolling conditions may be appropriately determined according to the required material, and a combination of controlled rolling, accelerated cooling, reheating heat treatment, or the like is also possible.
[0039]
【Example】
Steel ingots having the composition shown in Table 1 were melted and heated to 1200 ° C. to start hot rolling, rolling was completed at 850 ° C. at a cumulative reduction of 30% at 950 ° C. or less, and the thickness was 25 mm. A steel plate was prepared. After rolling, the product was air cooled to room temperature. The obtained steel plate was processed into 150 mm × 70 mm × 5 mm, surface ΔΔΔ finished test pieces and exposed to the coast with an annual salt content of 0.4 mdd for one year. During the exposure period, a wide-mouthed container was placed under the test piece, and the rust was collected with rain water and collected once a month. The amount of Fe ions in the collected aqueous solution was quantified by atomic absorption spectrometry, and the amount of flowing rust for one year was determined. After the exposure was completed, the test piece was immersed in an aqueous solution of hexamethylenetetramine added to hydrochloric acid and derusted, and then the weight was measured. The difference from the initial weight was obtained and converted into a reduction in thickness. Moreover, the y-type weld cracking test was implemented as weldability evaluation.
[0040]
[Table 1]
Figure 0003846218
[0041]
Table 2 shows the results of the exposure test and the weld cracking prevention temperature. When weatherproof steel is applied to a bridge without painting, the reduction in thickness in 50 years, including the inner girder where the corrosive environment is severe, is 0.3 mm or less. The thickness reduction amount must be 0.030 mm or less. Moreover, when the flow rust amount for one year exceeds 0.15 g / m < 2 >, the structure becomes conspicuous.
[0042]
[Table 2]
Figure 0003846218
[0043]
The steels A to F of the present invention all have a plate thickness reduction amount of 0.025 mm or less and a flow rust amount of 0.15 g / m 2 or less for one year. Therefore, the weather resistance is sufficiently excellent, and the flow rust amount is sufficiently small. Further, the preheating temperature for preventing weld cracking is room temperature, and it has good weldability.
[0044]
Regarding the comparative steels H and I, although the thickness reduction amount was small, the P content was too high exceeding the range of the present invention, so that the flow rust amount was too much.
[0045]
Regarding the comparative steel J, since the Ni content was too low below the range of the present invention, the thickness reduction amount was too large and the flow rust amount was too large.
[0046]
About comparative steel K, since Mo content was too low below the range of the present invention, the amount of board thickness reduction was too large, and the amount of flow rust was too much.
[0047]
Regarding the comparative steel L, the contents of Ni and Mo are within the range of the present invention, but since the amount of Ni + 3Mo is less than the range of the present invention, the thickness reduction amount is too large and the flow rust amount is too large.
[0048]
For the comparative steel M, the Ni and Mo contents were both too low within the scope of the invention, so that the reduction in plate thickness was too large and the flow rust amount was too large.
[0049]
As for the comparative steel N, the Cr content was too high exceeding the range of the present invention, and as a result of perforation corrosion, the thickness reduction amount was too large and the flow rust amount was too large.
[0050]
About comparative steel O and P, since Pcm was large exceeding 0.25, the welding crack prevention preheating temperature was as high as 100 degreeC, and it was inferior to weldability.
[0051]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a weather resistant steel having good weather resistance even in an environment where the amount of incoming salt exceeds 0.05 mdd, and with less initial flow rust generation, and welding. Since it has excellent properties and toughness, it has sufficient performance as a welded structural steel and can bring about industrially useful effects.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of P content on flow rust generation.

Claims (2)

C:0.15%以下、
Si:0.7%以下、
Mn:0.2から1.5%、
S:0.02%以下、
Ni:1から4%、
Mo:0.30から1.5%、
Al:0.01から0.1%
を含有し、
P:0.03%未満、
Cr:0.1%以下(以上、mass%)
に規制し、且つ、NiとMoが
Ni+3Mo≧1.5mass%、
Pcm:0.25mass%以下、
但し、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
を満たし、残部Fe及び不可避不純物からなる耐候性に優れた構造用鋼材。
C: 0.15% or less,
Si: 0.7% or less,
Mn: 0.2 to 1.5%,
S: 0.02% or less,
Ni: 1 to 4%,
Mo: 0.30 to 1.5%,
Al: 0.01 to 0.1%
Containing
P: less than 0.03%,
Cr: 0.1% or less (above, mass%)
And Ni and Mo are Ni + 3Mo ≧ 1.5 mass%,
Pcm: 0.25 mass% or less,
However, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
The structural steel material which satisfy | fills and is excellent in the weather resistance which consists of remainder Fe and inevitable impurities .
0.25mass%以下のCuを含有していることを特徴とする、請求項1記載の耐候性に優れた構造用鋼材。  The structural steel material excellent in weather resistance according to claim 1, wherein Cu is contained in an amount of 0.25 mass% or less.
JP2001111135A 2001-04-10 2001-04-10 Structural steel with excellent weather resistance Expired - Lifetime JP3846218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111135A JP3846218B2 (en) 2001-04-10 2001-04-10 Structural steel with excellent weather resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111135A JP3846218B2 (en) 2001-04-10 2001-04-10 Structural steel with excellent weather resistance

Publications (2)

Publication Number Publication Date
JP2002309340A JP2002309340A (en) 2002-10-23
JP3846218B2 true JP3846218B2 (en) 2006-11-15

Family

ID=18962792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111135A Expired - Lifetime JP3846218B2 (en) 2001-04-10 2001-04-10 Structural steel with excellent weather resistance

Country Status (1)

Country Link
JP (1) JP3846218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003165A (en) 2013-05-10 2016-01-08 제이에프이 스틸 가부시키가이샤 Steel material for welded structure
KR20180022996A (en) 2015-09-11 2018-03-06 제이에프이 스틸 가부시키가이샤 Structural steel material with excellent weather resistance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886314B1 (en) * 2005-05-26 2007-07-20 Industeel France STEEL FOR SUBMARINE CASES WITH REINFORCED WELDABILITY
CN113755751B (en) * 2021-08-20 2023-07-07 首钢集团有限公司 Low-alloy corrosion-resistant steel for 235 MPa-level marine atmospheric environment coating and manufacturing process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003165A (en) 2013-05-10 2016-01-08 제이에프이 스틸 가부시키가이샤 Steel material for welded structure
KR20180022996A (en) 2015-09-11 2018-03-06 제이에프이 스틸 가부시키가이샤 Structural steel material with excellent weather resistance

Also Published As

Publication number Publication date
JP2002309340A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP5691350B2 (en) Structural steels and steel structures with excellent weather resistance
JP5058574B2 (en) Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks
JP5120472B2 (en) Structural steel with excellent weather resistance
JP5120510B2 (en) Steel material with excellent weather resistance
JP6405910B2 (en) Corrosion resistant steel
JP5446278B2 (en) Structural steel with excellent weather resistance
JP5796403B2 (en) Steel material for welded structures with excellent weather resistance
KR101723459B1 (en) Steel material for welded structure
JP3846218B2 (en) Structural steel with excellent weather resistance
JP5600986B2 (en) Structural steel with excellent weather resistance
JP3524790B2 (en) Coating steel excellent in coating film durability and method for producing the same
JP3845366B2 (en) Corrosion resistant steel with excellent weld heat affected zone toughness
JP3542209B2 (en) Welded structural steel with excellent weather resistance
JP7192824B2 (en) Structural steel materials and structures with excellent fire resistance and paint corrosion resistance
JP6988858B2 (en) Steel for bolts
KR101442366B1 (en) Steel plate exhibiting little welding deformation and excellent corrosion resistance
JP6405909B2 (en) Corrosion resistant steel
JPH10330880A (en) Steel for welded structure, excellent in seawater corrosion resistance, and its production
TW202235637A (en) H-shaped steel
JPH1046285A (en) Steel excellent in weatherability and its production
JP2000001752A (en) Welded joint excellent in corrosion resistance and fatigue strength
JPH1096027A (en) Manufacture of steel for welded structure, excellent in toughness, as well as in corrosion resistance
JPH111740A (en) High toughness steel excellent in seawater corrosion resistance and weldability, and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Ref document number: 3846218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

EXPY Cancellation because of completion of term