JP3845995B2 - Recycling mold processing method - Google Patents

Recycling mold processing method Download PDF

Info

Publication number
JP3845995B2
JP3845995B2 JP34265197A JP34265197A JP3845995B2 JP 3845995 B2 JP3845995 B2 JP 3845995B2 JP 34265197 A JP34265197 A JP 34265197A JP 34265197 A JP34265197 A JP 34265197A JP 3845995 B2 JP3845995 B2 JP 3845995B2
Authority
JP
Japan
Prior art keywords
mold
processing
nitrided
die
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34265197A
Other languages
Japanese (ja)
Other versions
JPH11172411A (en
Inventor
訓宏 藪野
和義 柘野
介治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34265197A priority Critical patent/JP3845995B2/en
Publication of JPH11172411A publication Critical patent/JPH11172411A/en
Application granted granted Critical
Publication of JP3845995B2 publication Critical patent/JP3845995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、再生利用される金型の加工方法に関し、さらに詳しくは、窒化処理された金型表面に形成された窒化硬化層を除去してのち、再生加工を行うことにより、再生加工時の工具寿命および加工能率を大幅に向上させる再生用金型の加工方法に関するものである。
【0002】
【従来の技術】
近年、鍛造加工の分野では、省資源、省エネルギー、後工程の切削加工を省略するなどの効率化によるコスト低減が強く求められ、精度の高い鍛造加工への動きが活発になってきている。それと同時に、複雑形状等の一体成形、大型製品の加工などの高機能化および大型化の面からも、使用される金型には高精度化にあわせて、一層の長寿命化および低コスト化が強く要請されるようになる。
【0003】
このような要請に対応するため、最近の表面処理技術の進展にあわせて、金型には各種の表面処理が施されて、高温強度や耐摩耗性の向上が図られる。なかでも、窒化処理は、処理歪みが少なく、母材との密着性が良好で、表面硬さに優れ、その上処理費用も適当であることから、金型に施される表面処理の主体となっている。
【0004】
ところで、上記のような表面処理によって、所期の金型の長寿命化とそれに基づく低コスト化が達成されるが、さらに一層のコスト低減の要請に対しては、通常、金型の再生利用による再加工が前提とされている。
【0005】
図3は、従来の鍛造用金型の再生利用を前提とした加工工程を説明するフローチャートである。図3に示すように、型鍛造に用いられる金型の加工には、彫り下げ加工、型彫り加工、仕上加工、表面処理および検査の工程に区分されるが、次ぎに各工程の内容を説明する。
【0006】
彫り下げ加工は、金型用素材または型鍛造に使用された金型の表面を型彫り加工するために、平面切削を行う工程である。通常、採用される金型素材鋼としては、用途に応じて種々の選択がされるが、高強度化や金型寿命の安定性の面から破壊強度の向上が重要な要点となっており、JIS規定の工具鋼、例えば、鋼種としてSKD鋼、またはSKT鋼が基本的に選択される。この工程での金型素材の表面への平面切削にはフライス加工が施され、採用される切削代は、金型の寸法にもよるが15mm〜80mmが採用されている。
【0007】
型彫り加工は、対象となる製品の形状に応じて、金型を所定の形状に削り仕上げを行う工程である。金型の型彫り加工には、各種のエンドミルが用いられるが、ボールエンドミル、抜き勾配を付けるテーパエンドミル等がある。
【0008】
仕上加工は、型彫り加工工程の仕上である。具体的には、切削によって型彫り加工された金型の切削面を手作業を主体としてグラインダー研磨、放電加工、または電解加工が行われて、金型表面は平滑に仕上げられる。
【0009】
表面処理では、前述の通り、高温強度や耐摩耗性の向上を図り、金型寿命の延長を図るため、基本的には窒化処理が行われている。窒化方法としては、ガス窒化、ガス軟窒化、イオン窒化、さらに塩浴による軟窒化等があるが、いずれの方法であっても、その表面に窒化硬化層が形成される。なかでも、イオン窒化法では、N2+H2混合ガス中でグロー放電を発生させ、このグロー放電によって生成したN+を被処理材の表面に衝突させることによって、加熱と同時に窒素を侵入させる方法であるから、無公害である。しかも、N2とH2との混合比などの処理条件を調整することによって窒化層の組成を調整できるので、窒化処理および窒化層の調整が容易であり、被処理材を加熱する装置も不要である。イオン窒化法にはこのような特徴があることから、金型の窒化法として多用されている。通常、金型のイオン窒化処理では、金型素材の硬度Hs50〜60に対して、表面でHs70〜90にまで高硬度化される。そして、表面に形成される窒化硬化層の深さは約0.1mm程度である。
【0010】
検査工程では、金型の型彫り寸法が詳細にチェックされるとともに、金型表面の硬度が測定され、窒化処理の適否が判断される。当然ながら、外観目視によって、表面の破損状況も検査される。検査された金型は、型鍛造に供給される。通常の条件で型鍛造に使用され、限界寿命に達した金型は、再び彫り下げ加工が施され、型彫り加工以降の再加工を経て再生利用される。このように、多数回にわたる再生利用によって、金型の製造コストは低減することができる。
【0011】
【発明が解決しようとする課題】
前述の通り、金型の加工工程では、一層のコスト低減の観点からは、再生利用による再加工が前提とされている。ところが、窒化処理された金型表面には窒化硬化層が形成されるので、彫り下げ加工の際に平面切削が著しく困難になる。そのため、彫り下げ加工での工具寿命および加工能率が極端に低下し、金型の製造コストを上昇させる要因になっている。
【0012】
このような問題を解決するため、金型によっては窒化処理をせずに、Crメッキ等の他の表面処理を施す方策を採用する場合もあるが、金型寿命に一定の制限があることから有効なものとなっていない。また、彫り下げ加工の前段階で窒化硬化層の除去として、ショットブラストおよびグラインダーによる研削除去や高温真空炉による脱窒素法も試みたが、いずれも処理工数が大きく、加工コスト面で効果的なものではない。
【0013】
本発明は、従来の金型の再加工における問題点に鑑み、窒化処理された金型の再加工前に、表面に形成された窒化硬化層を除去して、金型寿命を満足させつつ、金型の加工コスト(切削工具費、加工工数)の低減を図る再生用金型の加工方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明は、下記の再生用金型の加工方法を要旨としている。
すなわち、表面に窒化硬化層が形成された金型を再生する再生用金型の加工方法であって、塩化第二鉄の水溶液に使用後の型を浸漬して、表面に形成された前記窒化硬化層を除去し、次いで彫り下げ加工および型彫り加工を行って、再び窒化処理を行うことを特徴とする再生用金型の加工方法である
【0018】
本発明は、主に鍛造加工に用いられる金型に基づいて説明をしているが、本発明の金型は鍛造用型に限定されるものではなく、表面処理として窒化処理が施され、再生利用が前提とされる金型が対象とされる。したがって、本発明が対象とする金型の「使用」には、単に冷間、熱間による型鍛造のみでなく、アルミ、プラスチックの押し出し成型、粉末成型、ガラス成形、ゴム成型などによる使用も含まれる。
【0019】
【発明の実施の形態】
本発明の金型では、再加工前に窒化処理で形成された表面の窒化硬化層を除去することを特徴としている。窒化硬化層を除去するには、研磨具で研磨除去したり、切削除去する方法もあるが、前述の通り、製造コストの面で有効ではない。特に、底を有し被加工物にならうように凹凸面で形成された金型にあっては機械的な研磨、切削除去は適しておらず、化学的に窒化硬化層を溶解除去する方法が効率的である。
【0020】
本発明者らは、各種の化学的な窒化硬化層の除去法を検討した。例えば、HNO3+HF溶液を50℃程度に加熱して、対象となる金型の表面を所定時間浸漬して除去する方法も、本発明の窒化硬化層を溶解除去する方法として採用できるものである。
【0021】
さらに検討を加え、本発明者らは、化学的に窒化硬化層を溶解除去するには、塩化第二鉄水溶液を用いて、下記(a)式に示すように、窒化硬化層を酸化腐食反応によって溶解するが望ましいことを見出した。塩化第二鉄水溶液によれば、被処理材から鉄イオンが溶出され、水酸化鉄が生成されて沈殿するので、表面が酸化腐食反応によって溶解除去される。
【0022】

Figure 0003845995
上記(a)式によって、金型表面に形成された窒化硬化層を充分に除去するには、処理時間および処理温度の管理が重要である。
【0023】
図1は、塩化第二鉄水溶液を用いて窒化硬化層を溶解除去する場合の処理温度と除去量の関係を説明する図である。同図では、水溶液濃度が38%で、水溶液温度を変化させたとき(50℃〜15℃)の表面に形成される窒化硬化層の除去状況を示している。水溶液の温度は高温であるほど溶解能力に優れるが、作業性や作業コストを考慮すると、40℃から70℃の範囲にするのが望ましい。この場合に、形成される窒化硬化層の厚さは0.1mm程度であるから、水溶液に浸漬する時間は2時間程度にするのが望ましい。また、水溶液の濃度は、30〜50%にするのが望ましい。
【0024】
図2は、塩化第二鉄水溶液を用いて窒化硬化層を溶解除去する場合の処理装置の構成例を示す図である。同図に示すように、金型の溶解除去槽1に引き続いて水洗槽2および乾燥台3が設けられて、金型洗浄によって汚れ等が除去された金型は、順次、溶解除去槽1内で塩化第二鉄水溶液に浸漬されて、表面に形成された窒化硬化層が溶解されて除去される。
【0025】
塩化第二鉄によって窒化硬化層を除去した後は、水洗槽2に浸漬して金型表面に残留する塩化第二鉄を水洗、または必要ある場合には中和して、必要以上の溶解除去を防止する。また、水洗処理の後は、金型の腐食促進を完全に停止させるため、乾燥台3で金型を充分に乾燥する。
【0026】
表面に形成された窒化硬化層が除去された金型は、再生利用を図るため、その後彫り下げ加工および型彫り加工を行い、再び窒化処理を施して、型鍛造に供給される。以下に、本発明の再生用金型の加工方法の効果を、実施例に基づいて詳細に説明する。
【0027】
【実施例】
金型素材として、JIS規定のSKD鋼、SKT鋼を用いて、窒化層の除去有無による彫り下げ加工での工具寿命および加工能率を比較した。窒化処理はイオン窒化法を採用して、母材硬度Hs50〜60に対して窒化硬化層厚さ0.1mmで表面硬度Hs70〜90とした。
【0028】
本発明の金型は前記図2に示す窒化硬化層の除去装置によって、窒化層の除去を行った。充分に洗浄された金型は、塩化第二鉄水溶液が満たされている溶解除去槽1に浸漬され、表面の窒化硬化層が除去される。溶解除去槽内には、濃度38%に調整された塩化第二鉄水溶液が補給されており、槽内に設けられた加熱ヒーターによって、常時、水溶液の液温は50℃に制御されて、金型の浸漬時間は2時間とした。このとき、金型の対象面を液中でバブリング攪拌すると、窒化硬化層の溶解反応が促進されるので、溶解除去槽1内にバブリング攪拌装置を設けるのが望ましい。
【0029】
溶解除去槽1に浸漬の後、金型は水洗槽2に移されて、腐食反応を停止させるために、塩化第二鉄水溶液が水洗いされて、金型表面から除去される。その水洗後は、金型は乾燥台3上に載置した状態で充分に乾燥されて、窒化硬化層の除去作業は完了する。
【0030】
比較例となる金型は金型を洗浄したままの状態で、また本発明の金型は窒化硬化層が除去された状態で、彫り下げ加工の工程に送られ、切削代15mmで平面研削を実施した。
【0031】
比較例および本発明の金型の彫り下げ加工における工具寿命および加工能率の比較結果を比較すると、SKD鋼、SKT鋼のいずれの鋼種の金型加工においても、工具寿命で約5倍以上の延長効果がみられ、加工能率において20%以上の能率向上が可能であることが分かる。
【0032】
【発明の効果】
本発明の再生用金型およびその加工方法によれば、切削加工が困難であった彫り下げ加工での効率化が図れ、再加工処理を高能率で低コストで実施することができる。しかも、金型加工に要求される高精度化、長寿命化に支障を来すものではない。
【図面の簡単な説明】
【図1】塩化第二鉄水溶液を用いて窒化硬化層を溶解除去する場合の処理温度と除去量の関係を説明する図である。
【図2】塩化第二鉄水溶液を用いて窒化硬化層を溶解除去する場合の処理装置の構成例を示す図である。
【図3】従来の鍛造用金型の再生利用を前提とした加工工程を説明するフローチャートである。[0001]
[Industrial application fields]
The present invention relates to a method for processing a reclaimed mold , and more specifically, after removing a nitrided hard layer formed on the surface of a nitridized mold, and performing a regenerating process, relates machining method of reproduction molds significantly improve the tool life and machining efficiency.
[0002]
[Prior art]
In recent years, in the field of forging, there has been a strong demand for cost reduction by improving efficiency, such as saving resources, energy, and post-processing, and movement toward high-precision forging has become active. At the same time, from the viewpoints of higher functionality and larger size, such as integral molding of complex shapes, processing of large products, etc., the mold used will have a longer life and cost reduction in line with higher precision. Is strongly demanded.
[0003]
In order to meet such demands, various surface treatments are applied to the mold in accordance with the recent progress of surface treatment technology to improve the high temperature strength and wear resistance. Above all, the nitriding treatment has little processing distortion, good adhesion to the base material, excellent surface hardness, and appropriate processing cost. It has become.
[0004]
By the way, by the surface treatment as described above, the expected life of the mold and the cost reduction based thereon are achieved. However, in order to further reduce the cost, the mold is usually recycled. It is assumed that reworking will be performed.
[0005]
FIG. 3 is a flowchart for explaining processing steps based on the premise of recycling a conventional forging die. As shown in Fig. 3, the die used for die forging is divided into the following processes: carving, die carving, finishing, surface treatment, and inspection. To do.
[0006]
The engraving process is a process of performing plane cutting in order to engrave the surface of the mold used for the mold material or the mold forging. Usually, as the mold material steel to be adopted, various selections are made depending on the application, but the improvement of fracture strength is an important point from the viewpoint of high strength and stability of the mold life, JIS-defined tool steel, for example, SKD steel or SKT steel is basically selected as the steel type. Milling is applied to the surface cutting of the mold material in this process, and the cutting allowance is 15 mm to 80 mm depending on the dimensions of the mold.
[0007]
The mold carving process is a process in which a die is cut into a predetermined shape according to the shape of a target product. Various end mills are used for mold carving, but there are a ball end mill and a tapered end mill with a draft angle.
[0008]
Finishing is the finishing of the mold carving process. Specifically, grinder polishing, electric discharge machining, or electrolytic machining is performed mainly on the cutting surface of the die that has been die-carved by cutting, and the die surface is finished smoothly.
[0009]
In the surface treatment, as described above, nitriding treatment is basically performed in order to improve the high temperature strength and wear resistance and extend the mold life. Nitriding methods include gas nitriding, gas soft nitriding, ion nitriding, and soft nitriding using a salt bath, and any method can form a nitrided hard layer on the surface. Among them, the method in the ion nitriding method, to generate a glow discharge in N 2 + H 2 mixed gas, by impinging the N + generated by the glow discharge on the surface of the material to be treated, for heating and penetrate the nitrogen at the same time Therefore, it is pollution free. Moreover, since the composition of the nitride layer can be adjusted by adjusting the processing conditions such as the mixing ratio of N 2 and H 2 , the nitriding process and the adjustment of the nitride layer are easy, and no apparatus for heating the material to be processed is required It is. Since the ion nitriding method has such characteristics, it is frequently used as a mold nitriding method. Usually, in the ion nitriding treatment of the mold, the hardness is increased to Hs 70 to 90 on the surface with respect to the hardness Hs 50 to 60 of the mold material. The depth of the nitrided hard layer formed on the surface is about 0.1 mm.
[0010]
In the inspection process, the mold engraving dimensions of the mold are checked in detail, the hardness of the mold surface is measured, and the suitability of the nitriding treatment is determined. Of course, the appearance of the surface is also inspected by visual inspection. The inspected mold is supplied for die forging. A mold that has been used for die forging under normal conditions and has reached its limit life is re-carved and recycled after re-working after die-cutting. Thus, the manufacturing cost of a metal mold | die can be reduced by the recycling | reuse for many times.
[0011]
[Problems to be solved by the invention]
As described above, in the mold processing step, reprocessing by recycling is premised from the viewpoint of further cost reduction. However, since a nitriding hardened layer is formed on the surface of the nitridized mold, it becomes extremely difficult to perform plane cutting during the engraving process. For this reason, the tool life and the machining efficiency in the engraving process are extremely lowered, and this is a factor that increases the manufacturing cost of the mold.
[0012]
In order to solve such problems, some molds may adopt other surface treatments such as Cr plating without nitriding, but there are certain restrictions on the mold life. It is not effective. We also tried shot blasting and grinding with a grinder and denitrification with a high-temperature vacuum furnace to remove the nitrided hardened layer before the engraving process, but they all have a large number of processing steps and are effective in terms of processing cost. It is not a thing.
[0013]
In view of the problems in the conventional mold rework, the present invention removes the nitrided hard layer formed on the surface before reworking the nitrided mold, and satisfies the mold life, mold processing cost (cutting tool costs, processing steps) are intended to provide a method for processing a reproduction die reduced.
[0014]
[Means for Solving the Problems]
The present invention is directed to subject matter a method for processing a playback mold below.
That is, a method for processing a recycling mold for regenerating a mold having a nitrided hard layer formed on the surface, wherein the used mold is immersed in an aqueous solution of ferric chloride and formed on the surface. This is a method for processing a recycling mold, in which a nitrided hard layer is removed, and then a carving process and a mold carving process are performed, and then a nitriding process is performed again .
[0018]
Although the present invention is described based on a mold mainly used for forging, the mold of the present invention is not limited to a forging mold, and is subjected to nitriding treatment as a surface treatment and regenerated. The target mold is assumed to be used. Therefore, the “use” of the mold targeted by the present invention includes not only cold and hot die forging but also use of aluminum, plastic extrusion, powder molding, glass molding, rubber molding, etc. It is.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The mold of the present invention is characterized in that the nitrided hard layer on the surface formed by nitriding treatment is removed before reworking. There are methods for removing the nitrided hard layer by polishing with a polishing tool or cutting and removing, but as described above, it is not effective in terms of manufacturing cost. In particular, mechanical polishing and cutting removal are not suitable for molds that have a bottom and have a concavo-convex surface so as to follow the work piece, and a method for chemically dissolving and removing the nitrided hardened layer. Is efficient.
[0020]
The present inventors examined various methods for removing a chemically hardened nitride layer. For example, a method of heating the HNO 3 + HF solution to about 50 ° C. and immersing and removing the surface of the target mold for a predetermined time can also be adopted as a method for dissolving and removing the nitrided hardened layer of the present invention. .
[0021]
In addition, in order to chemically dissolve and remove the nitrided hardened layer, the present inventors used an aqueous ferric chloride solution to convert the nitrided hardened layer into an oxidative corrosion reaction as shown in the following formula (a). Was found to be desirable. According to the ferric chloride aqueous solution, iron ions are eluted from the material to be treated, and iron hydroxide is generated and precipitated, so that the surface is dissolved and removed by an oxidative corrosion reaction.
[0022]
Figure 0003845995
In order to sufficiently remove the nitrided hard layer formed on the mold surface by the above formula (a), it is important to manage the processing time and the processing temperature.
[0023]
FIG. 1 is a diagram for explaining the relationship between the treatment temperature and the removal amount when the nitrided hardened layer is dissolved and removed using an aqueous ferric chloride solution. This figure shows the removal of the nitrided hard layer formed on the surface when the aqueous solution concentration is 38% and the aqueous solution temperature is changed (50 ° C. to 15 ° C.). The higher the temperature of the aqueous solution, the better the dissolving ability. However, in consideration of workability and work cost, it is desirable that the temperature be in the range of 40 ° C to 70 ° C. In this case, since the thickness of the formed nitrided hardened layer is about 0.1 mm, it is desirable that the time of immersion in the aqueous solution is about 2 hours. The concentration of the aqueous solution is desirably 30 to 50%.
[0024]
FIG. 2 is a diagram illustrating a configuration example of a processing apparatus when a nitrided hardened layer is dissolved and removed using an aqueous ferric chloride solution. As shown in the drawing, the washing tank 2 and drying stage 3 is provided subsequent to dissolution removal Saso 1 of the mold, mold contamination and the like are removed by cleaning the mold, in turn, dissolved dividing Saso 1 is immersed in an aqueous ferric chloride solution, and the nitrided hard layer formed on the surface is dissolved and removed.
[0025]
After removing the nitrided hard layer with ferric chloride, immerse it in the rinsing tank 2 and wash the ferric chloride remaining on the mold surface with water, or neutralize it if necessary, and remove it more than necessary. To prevent. Further, after the water washing treatment, the mold is sufficiently dried by the drying table 3 in order to completely stop the corrosion promotion of the mold.
[0026]
The die from which the nitrided hard layer formed on the surface has been removed is subjected to engraving processing and die engraving processing, and then subjected to nitriding treatment again and supplied to die forging for recycling. Below, the effect of the processing method of the reproduction | regeneration metal mold | die of this invention is demonstrated in detail based on an Example.
[0027]
【Example】
The tool life and machining efficiency in the engraving process with and without removal of the nitride layer were compared using JIS stipulated SKD steel and SKT steel as the mold material. The nitriding treatment employs an ion nitriding method to have a surface hardness Hs 70 to 90 with a nitrided hardened layer thickness 0.1 mm with respect to the base material hardness Hs 50 to 60.
[0028]
In the metal mold of the present invention, the nitrided layer was removed by the nitrided hard layer removing apparatus shown in FIG. Thoroughly washed mold is immersed in the dissolution removal Saso 1 aqueous solution of ferric chloride is satisfied, nitrided hard layer of the surface is removed. The dissolution and removal tank is replenished with a ferric chloride aqueous solution adjusted to a concentration of 38%, and the temperature of the aqueous solution is constantly controlled to 50 ° C. by a heater provided in the tank. The mold immersion time was 2 hours. At this time, if the target surface of the mold is bubbled and stirred in the liquid, the dissolution reaction of the nitrided hardened layer is promoted.
[0029]
After immersion in the dissolution removal Saso 1, the mold is transferred to the washing tub 2, in order to stop the corrosion reaction, aqueous solution of ferric chloride is rinsed, is removed from the mold surface. After the water washing, the mold is sufficiently dried in a state of being placed on the drying table 3, and the removal work of the nitriding hardened layer is completed.
[0030]
The mold as a comparative example was sent to the engraving process while the mold was washed, and the mold of the present invention was removed from the nitrided hardened layer, and surface grinding was performed at a cutting allowance of 15 mm. Carried out.
[0031]
Comparing the comparison results of the tool life and the machining efficiency in the engraving process of the comparative example and the mold of the present invention, the tool life is extended by about 5 times or more in the mold machining of either SKD steel or SKT steel. A long effect is seen, and it can be seen that the processing efficiency can be improved by 20% or more.
[0032]
【The invention's effect】
According to the recycling mold and the processing method thereof of the present invention, it is possible to improve the efficiency in the engraving process that has been difficult to perform the cutting process, and it is possible to perform the rework process at a high efficiency and at a low cost. In addition, it does not hinder the high accuracy and long life required for die machining.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the relationship between a treatment temperature and a removal amount when a nitrided hardened layer is dissolved and removed using a ferric chloride aqueous solution.
FIG. 2 is a diagram showing a configuration example of a processing apparatus when a nitrided hardened layer is dissolved and removed using a ferric chloride aqueous solution.
FIG. 3 is a flowchart for explaining a processing process on the premise of recycling of a conventional forging die.

Claims (1)

表面に窒化硬化層が形成された金型を再生する再生用金型の加工方法であって
塩化第二鉄の水溶液に使用後の金型を浸漬して、表面に形成された前記窒化硬化層を除去し、次いで彫り下げ加工および型彫り加工を行って、再び窒化処理を行うことを特徴とする再生用金型の加工方法。
A method for processing a regenerative mold for regenerating a mold having a nitrided hard layer formed on its surface ,
By immersing the mold after use in an aqueous solution of ferric chloride to remove the nitrided hard layer formed on the surface, then under carved lowering processing and die sinking machining, characterized in that again the nitriding process The processing method of the mold for reproduction.
JP34265197A 1997-12-12 1997-12-12 Recycling mold processing method Expired - Fee Related JP3845995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34265197A JP3845995B2 (en) 1997-12-12 1997-12-12 Recycling mold processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34265197A JP3845995B2 (en) 1997-12-12 1997-12-12 Recycling mold processing method

Publications (2)

Publication Number Publication Date
JPH11172411A JPH11172411A (en) 1999-06-29
JP3845995B2 true JP3845995B2 (en) 2006-11-15

Family

ID=18355430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34265197A Expired - Fee Related JP3845995B2 (en) 1997-12-12 1997-12-12 Recycling mold processing method

Country Status (1)

Country Link
JP (1) JP3845995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060845A (en) * 2000-08-09 2002-02-28 Yamanashi Prefecture Method for prolonging service life of die casting die

Also Published As

Publication number Publication date
JPH11172411A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JPH057147B2 (en)
CN101080331B (en) Gear surface treatment procedure
JP3845995B2 (en) Recycling mold processing method
JP2011137206A (en) Plating pretreatment method of aluminum alloy
CN110093608B (en) Surface polishing solution for additive manufacturing of aluminum alloy and application
CN113201738A (en) Electrochemical surface treatment method for selectively laser melting AlSi10Mg formed workpiece
JP2011511716A (en) Method for manufacturing a component for a heat engine
JP2009504905A (en) Electropolishing method
US3300349A (en) Chemical milling process and related solutions for aluminum
US20090302003A1 (en) Aqueous Solution for Chemical Polishing and Deburring and Process for Polishing and Deburring A Part made of Pure Nickel or Nickel-200 Therein
CN111961825B (en) High-precision hole site machining method for stainless steel pipe
JP4532438B2 (en) Manufacturing method of irregular cross section line
JPS63286585A (en) Chemical treating solution for titanium or alloy thereof and surface treatment of titanium or alloy thereof with said solution
KR840001086B1 (en) Method for reforming a used tubular mold for continuous casting
CN113369747A (en) Welding wire polishing method
KR100436597B1 (en) Method for plating with molten aluminum
CN100424227C (en) Aqueous solution composition for treating metal surface
KR100349809B1 (en) Heat-processing method of metal materials
JP2006193808A (en) Descaling method for stainless steel
JP3370015B2 (en) Finishing method for metal processed products
CN110977779A (en) Surface sand blasting process for titanium plate
US3873280A (en) Descaling of steel strip
JP2005126807A (en) Chemical polishing agent for alloy consisting essentially of iron, and surface treatment method for alloy essentially consisting of iron using the same
JP4226389B2 (en) Metal surface treatment method using metal surface treatment aqueous solution
JP2004291203A (en) Manufacturing method of tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees