JP3845959B2 - Antibacterial glass powder and resin molding - Google Patents
Antibacterial glass powder and resin molding Download PDFInfo
- Publication number
- JP3845959B2 JP3845959B2 JP19779697A JP19779697A JP3845959B2 JP 3845959 B2 JP3845959 B2 JP 3845959B2 JP 19779697 A JP19779697 A JP 19779697A JP 19779697 A JP19779697 A JP 19779697A JP 3845959 B2 JP3845959 B2 JP 3845959B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- glass powder
- mol
- antibacterial
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46D—MANUFACTURE OF BRUSHES
- A46D1/00—Bristles; Selection of materials for bristles
- A46D1/006—Antimicrobial, disinfectant bristles, handle, bristle-carrier or packaging
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46D—MANUFACTURE OF BRUSHES
- A46D1/00—Bristles; Selection of materials for bristles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C12/00—Powdered glass; Bead compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
- C03C2204/02—Antibacterial glass, glaze or enamel
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Glass Compositions (AREA)
Description
【0001】
【産業上の利用分野】
本発明は樹脂充填用抗菌剤として使用される抗菌性ガラス粉末と、これを用いた樹脂成形体に関するものである。
【0002】
【従来の技術】
歯ブラシ、石鹸入れ、たらい、洗面台、浴槽等の樹脂製品は、高湿の条件下で使用されるので細菌や黴が増殖しやすい。細菌や黴の増殖をおさえるために、従来より樹脂に抗菌剤を混合することが行われている。抗菌剤には、抗菌性の強い酸化銀を利用したものが多く用いられており、例えば酸化銀を担持させたゼオライト粉末や、ガラス組成としてAgOを含む溶解性ガラス粉末等が知られている。ところが、酸化銀は価格が高く使用量が制限される場合がある。またAgO含有ガラス粉末は、長期間使用すると紫外線や熱等の作用で変色する傾向があり好ましくない。この傾向は樹脂製品が白色の場合には特に問題になりやすい。
【0003】
そこで、ZnOを主成分とするガラスが抗菌剤として提案されている。この系のガラスは安価であり、また紫外線や熱等の作用による変色がない。例えば特開平7−257938号には、ZnO−B2 O3 −Na2 O系の組成を有する抗菌性ガラス粉末が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記したような従来公知のZnO含有ガラス粉末を樹脂と混合して使用すると、時間の経過とともに樹脂の光沢が失われて濁ったようになったり、ざらつき感が発生する等、外観上の問題が発生してしまう。
【0005】
本発明の目的は、ZnO含有ガラスからなり、樹脂と混合して使用しても樹脂製品の外観に悪影響を及ぼすことのない抗菌性ガラス粉末と、これを用いた樹脂成形体を提供することである。
【0006】
【課題を解決するための手段】
本発明者等は種々の実験を行った結果、ZnO−B2O3−SiO2系ガラスにおいて、ガラス組成を所定範囲に規制することによって上記目的が達成できることを見いだし、本発明として提案するものである。
【0009】
【作用】
本発明において、抗菌性ガラス粉末の組成系をZnO−B2 O3 −SiO2 系に限定する理由は、適度な溶解性があり、ZnOがZn2+イオンとして溶出して樹脂に抗菌性を付与することができるためである。即ち、ZnOは抗菌性を与える主要因子であり必須成分である。またB2 O3 及びSiO2 はガラス形成酸化物であり、ZnO成分を含み、かつ溶解性を有するガラスを得るための必須成分である。さらに本発明において重要なことは、ガラス中にナトリウム成分をNa2 Oにして4mol%以下に制限することである。Na2 Oが4mol%を越えると樹脂が長期使用で白くなり光沢性が失われる。なお0.5mol%を越えるとこのような傾向を示すので、好ましくは0.5mol%以下にすることが望ましい。
【0010】
本発明の抗菌性ガラス粉末は、mol%表示でZnO 25〜80%、B2O3 5〜50%、SiO2 1〜70%、MgO 0〜40%、CaO 0〜40%、SrO 0〜40%、BaO 0〜40%、Na2O 0〜4%、Li2O 0〜20%、K2O 0〜20%、Al2O3 0〜40%、TiO2 0〜30%、ZrO2 0〜30%の組成を有するガラスを使用する。
【0011】
上記組成範囲に限定した理由は次の通りである。
【0012】
ZnOの含有量は25〜80mol%、好ましくは50〜80mol%である。ZnOが50mol%よりも低くなると抗菌作用が弱まる傾向が出始め、25mol%より少なくなると抗菌効果が全く期待できなくなる。一方、80mol%を越えるとガラス化が困難になる。
【0013】
B2 O3 の含有量は5〜50mol%、好ましくは5〜35mol%である。B2 O3 が5mol%よりも少なくなるとガラス化することが困難になる。一方、35mol%を越えるとガラスの耐水性が悪くなる傾向がみられ、50mol%を越えると耐水性が急激に悪くなり、ガラスが樹脂の耐用期間中にすべて溶け出してしまう。その結果、長期間に亘って抗菌性を維持することが困難になる。
【0014】
SiO2 はガラス形成成分であり、その含有量は1〜70mol%、好ましくは1〜45mol%である。SiO2 が1%より少ないとガラスの溶融中に結晶が析出して安定したガラスが得難くなる。一方、45mol%を越えるとガラスからのZn2+イオンの溶出量が低下する傾向にあり、70mol%を越えるとZn2+イオンの溶出量が著しく低下して十分な抗菌性を付与し難くなる。
【0015】
アルカリ土類金属酸化物であるMgO、CaO、SrO及びBaOは、ガラスの粘性を下げる効果があり、ガラスの溶融を助けるフラックスのような働きをする。その含有量は何れも0〜40mol%、好ましくは0〜20%である。これらの各成分が20mol%を越えると樹脂の外観に影響を及ぼし易くなり、40mol%を越えると樹脂が長期使用で白くなって光沢性が失われる。
【0016】
Na2 Oはガラスの溶融性を改善するために4mol%まで、好ましくは0.5mol%まで添加しても良いが、上記したように樹脂の外観に及ぼす影響が大きいため、できれば不含有とすることが望ましい。
【0017】
Li2 OとK2 Oの含有量は各々0〜20mol%、好ましくは各々0〜1mol%である。Li2 OとK2 Oはともにガラスの粘性を下げ、ガラスの溶融性を助ける働きがあるが、それぞれ1mol%をこえると耐水性が悪くなる傾向が現れ、20mol%を越えるとガラスが樹脂の耐用期間中にすべて溶け出してしまうおそれがある。
【0018】
Al2 O3 の含有量は0〜40mol%、好ましくは0〜30molである。Al2 O3 は耐水性を上げる効果があるが、30mol%を越えるとガラスの粘性が上昇する傾向が現れ、40mol%を越えるとガラスの粘性が高くなりすぎて商業レベルの温度域での溶融が困難になる。
【0019】
TiO2 とZrO2 の含有量は各々0〜30mol%、好ましくは各々0〜20mol%である。TiO2 やZrO2 はガラスの耐酸性や耐アルカリ性を調整するための成分であり、目的の樹脂製品が酸やアルカリによる暴露が予測される場合に適当量含有させることによって、適度な抗菌性を長期にわたって実現することが可能になる。各成分が20mol%を越えると溶融し難くなる傾向が現れ、30mol%を越えると商業レベル温度での溶融が困難になる。
【0020】
上記ガラス粉末が良好な抗菌性を示すためには、平均粒径が1〜20μm、好ましくは2〜20μmであることが好ましい。つまりガラス粉末の平均粒径が1μmより小さいと樹脂等との混合が行い難くなり、20μmより大きくなると単位重量当たりのZn2+イオンの溶出量が小さくなって好ましくないためである。
【0021】
また上記ガラス粉末は、熱硬化性樹脂や熱硬化性樹脂樹脂の充填用抗菌剤として使用可能である。例えばフェノール系樹脂、ポリエステル系樹脂、メラミン系樹脂、ユリア系樹脂、ジアリルフタレート系樹脂、エポキシ系樹脂、シリコーン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、SAN樹脂、ABS樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリフェニルサルファイド系樹脂等や、これらの複合体に使用できる。これら樹脂のなかでも、特に衛生容器等の用途に用いられるアクリル系樹脂、ポリエステル系樹脂又はメラミン系樹脂の充填用抗菌剤として使用することが好ましい。
【0022】
なお本発明の抗菌性ガラス粉末は、樹脂充填用に限られるものではなく、種々の抗菌用途に使用可能である。
【0023】
本発明の樹脂成形体は、上記した抗菌性ガラス粉末を含有するものであり、その含有量は0.1〜70容量%、特に0.1〜10容量%であることが望ましい。含有量をこのように限定した理由は、0.1容量%より少ないと樹脂に十分な抗菌性を付与し難くなる。一方、ガラス粉末の含有量が多いほど抗菌力が大きくなるが、10容量%を越えると抗菌力は殆ど変わらなくなり、70容量%より多くなると樹脂の成形が困難になる。
【0024】
また樹脂としては、例えばフェノール系樹脂、ポリエステル系樹脂、メラミン系樹脂、ユリア系樹脂、ジアリルフタレート系樹脂、エポキシ系樹脂、シリコーン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、SAN樹脂、ABS樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリフェニルサルファイド系樹脂等や、これらの複合体が使用できる。これら樹脂のなかでも、特に衛生容器等の用途に用いられるアクリル系樹脂、ポリエステル系樹脂又はメラミン系樹脂を使用することが好ましい。
【0025】
なお本発明の樹脂成形体においては、抗菌性ガラス粉末以外にも、通常樹脂に含有される各種の添加物を適宜含有させることが可能である。
【0026】
【実施例】
以下、本発明を実施例に基づいて説明する。
【0027】
表1及び表2は、本発明の実施例(試料No.1〜9)及び比較例(試料No.10)を示している。
【0028】
【表1】
【0029】
【表2】
【0030】
各試料は次のようにして作製した。
【0031】
まず酸化亜鉛、硼酸、純珪石、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、水酸化アルミニウム、酸化チタン、酸化ジルコニウムを所定に混合量になるようによく混合した後、白金−ロジウム合金坩堝に入れ、1300〜1600℃で4時間溶融した。溶融後、肉厚が約1mmのフィルム状カレットに成形した。これをボールミルによって粉砕し、目開き105ミクロンの篩を通し、ガラス粉末の平均粒径が空気透過式比表面積測定装置((株)島津製作所製)で7〜8μmになるように調整し、試料を得た。
【0032】
さらにポリエステル系樹脂粉末と上記ガラスを容積比で95:5の割合で混合し、約10cmの板状に成形し、抗菌性及び樹脂の外観について評価した。結果を各表に示す。
【0033】
表から明らかなように、本発明の実施例であるNo.1〜9の試料を使用した樹脂板は、良好な抗菌性を示し、また加速試験後も外観の劣化が認められなかった。一方、比較例であるNo.10の試料を用いた樹脂板は、良好な抗菌性を示したものの、加速試験後に樹脂の光沢が無くなり、外観上の劣化が著しいことが分かった。
【0034】
なお抗菌性については次のようにして評価した。まず大腸菌が2×103 /cm2 の割合で存在するように調整された菌入りのゼラチンをシート状に加工し、これを樹脂板上に貼り付けた。次に35℃で100時間培養した後、菌数を測定し、生菌が10個未満であったものを良、10個以上検出されたものを不良とした。樹脂の外観については、加速試験(樹脂板を水中に浸漬して500時間煮沸)を行った。その後、樹脂の表面を試験前と比較し、初期の光沢を維持しているものを良、白く濁って光沢を失っているものを不良とした。
【0035】
【発明の効果】
以上説明したように、本発明の抗菌性ガラス粉末は、樹脂と混合して使用しても樹脂製品の外観に悪影響を及ぼすことがない。また樹脂に十分な抗菌性を付与することができる。それゆえ樹脂充填用抗菌剤として好ましいものである。
【0036】
また本発明の樹脂成形体は、抗菌性を有しており、また外観が劣化することがない。それゆえ清潔さが要求される歯ブラシ、石鹸入れ、たらい、洗面台、浴槽等の樹脂製品として好適である。[0001]
[Industrial application fields]
The present invention relates to an antibacterial glass powder used as an antibacterial agent for resin filling and a resin molded body using the same.
[0002]
[Prior art]
Resin products such as toothbrushes, soap bowls, tubs, washstands, and bathtubs are used under high humidity conditions, so bacteria and sputum are prone to multiply. In order to suppress the growth of bacteria and sputum, conventionally, an antibacterial agent is mixed with a resin. Many antibacterial agents using silver oxide having strong antibacterial properties are used, and for example, zeolite powder supporting silver oxide, soluble glass powder containing AgO as a glass composition, and the like are known. However, silver oxide is expensive and its usage may be limited. Further, the AgO-containing glass powder is not preferred when used for a long period of time because it tends to discolor due to the action of ultraviolet rays or heat. This tendency is particularly problematic when the resin product is white.
[0003]
Accordingly, glass mainly composed of ZnO has been proposed as an antibacterial agent. This type of glass is inexpensive and has no discoloration due to the action of ultraviolet rays or heat. For example, JP-A-7-257938 discloses an antibacterial glass powder having a ZnO—B 2 O 3 —Na 2 O composition.
[0004]
[Problems to be solved by the invention]
However, when the above-described conventionally known ZnO-containing glass powder is mixed with a resin and used, the gloss of the resin is lost and turbid with time, or a rough feeling is generated. A problem will occur.
[0005]
An object of the present invention is to provide an antibacterial glass powder which is made of ZnO-containing glass and does not adversely affect the appearance of a resin product even when used in a mixture with a resin, and a resin molded body using the same. is there.
[0006]
[Means for Solving the Problems]
As a result of various experiments, the present inventors have found that the above object can be achieved by regulating the glass composition within a predetermined range in a ZnO—B 2 O 3 —SiO 2 glass, and propose the present invention. It is.
[0009]
[Action]
In the present invention, the reason why the composition system of the antibacterial glass powder is limited to the ZnO—B 2 O 3 —SiO 2 system is that it has moderate solubility, and ZnO is eluted as Zn 2+ ions to make the resin antibacterial. This is because it can be given. That is, ZnO is a main factor that imparts antibacterial properties and is an essential component. B 2 O 3 and SiO 2 are glass-forming oxides, and are essential components for obtaining a glass having a ZnO component and having solubility. Furthermore, what is important in the present invention is to limit the sodium component to 4 mol% or less with Na 2 O in the glass. If Na 2 O exceeds 4 mol%, the resin becomes white and loses glossiness after long-term use. In addition, since it will show such a tendency when it exceeds 0.5 mol%, it is desirable to make it 0.5 mol% or less preferably.
[0010]
Antimicrobial glass powder of the present invention, 25 to 80% ZnO by mol% display, B 2 O 3 5~50%, SiO 2 1~70%, 0~40% MgO, CaO 0~40%, SrO 0~ 40%, BaO 0~40%, Na 2 O 0~4%, Li 2 O 0~20%, K 2 O 0~20%, Al 2 O 3 0~40%, TiO 2 0~30%, ZrO 2 Glass with a composition of 0-30% is used .
[0011]
The reason for limiting to the above composition range is as follows.
[0012]
The content of ZnO is 25 to 80 mol%, preferably 50 to 80 mol%. When ZnO is less than 50 mol%, the antibacterial effect tends to be weakened, and when it is less than 25 mol%, the antibacterial effect cannot be expected at all. On the other hand, when it exceeds 80 mol%, vitrification becomes difficult.
[0013]
The content of B 2 O 3 is 5 to 50 mol%, preferably 5 to 35 mol%. When B 2 O 3 is less than 5 mol%, it becomes difficult to vitrify. On the other hand, when it exceeds 35 mol%, the water resistance of the glass tends to deteriorate, and when it exceeds 50 mol%, the water resistance deteriorates abruptly, and the glass is completely dissolved during the lifetime of the resin. As a result, it becomes difficult to maintain antibacterial properties over a long period of time.
[0014]
SiO 2 is a glass forming component, and its content is 1 to 70 mol%, preferably 1 to 45 mol%. If the SiO 2 content is less than 1%, crystals are precipitated during the melting of the glass, making it difficult to obtain a stable glass. On the other hand, when it exceeds 45 mol%, the elution amount of Zn 2+ ions from the glass tends to decrease, and when it exceeds 70 mol%, the elution amount of Zn 2+ ions decreases remarkably, making it difficult to impart sufficient antibacterial properties. .
[0015]
Alkaline earth metal oxides MgO, CaO, SrO and BaO have the effect of lowering the viscosity of the glass and act like a flux that helps the glass melt. The content thereof is 0 to 40 mol%, preferably 0 to 20%. If each of these components exceeds 20 mol%, the appearance of the resin tends to be affected. If it exceeds 40 mol%, the resin becomes white after long-term use and the glossiness is lost.
[0016]
Na 2 O may be added up to 4 mol%, preferably up to 0.5 mol% in order to improve the meltability of the glass. However, since it has a great influence on the appearance of the resin as described above, it is not included if possible. It is desirable.
[0017]
The contents of Li 2 O and K 2 O are each 0 to 20 mol%, preferably 0 to 1 mol% each. Both Li 2 O and K 2 O have a function of lowering the viscosity of the glass and assisting the meltability of the glass. However, when the amount exceeds 1 mol%, the water resistance tends to deteriorate. There is a risk of all melting during the service life.
[0018]
The content of Al 2 O 3 is 0 to 40 mol%, preferably 0 to 30 mol. Al 2 O 3 has the effect of increasing water resistance, but if it exceeds 30 mol%, the tendency of the viscosity of the glass to rise appears. If it exceeds 40 mol%, the viscosity of the glass becomes too high and melting in a commercial temperature range. Becomes difficult.
[0019]
The contents of TiO 2 and ZrO 2 are each 0-30 mol%, preferably 0-20 mol% each. TiO 2 and ZrO 2 are components for adjusting the acid resistance and alkali resistance of the glass. When the target resin product is expected to be exposed to acids and alkalis, it contains moderate amounts of antibacterial properties. It can be realized over a long period of time. When each component exceeds 20 mol%, the tendency to become difficult to melt appears, and when it exceeds 30 mol%, melting at a commercial level temperature becomes difficult.
[0020]
In order for the glass powder to exhibit good antibacterial properties, the average particle size is preferably 1 to 20 μm, preferably 2 to 20 μm. That is, if the average particle size of the glass powder is smaller than 1 μm, mixing with a resin or the like becomes difficult, and if it exceeds 20 μm, the elution amount of Zn 2+ ions per unit weight is unfavorable.
[0021]
The glass powder can be used as an antibacterial agent for filling a thermosetting resin or a thermosetting resin. For example, phenol resin, polyester resin, melamine resin, urea resin, diallyl phthalate resin, epoxy resin, silicone resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polystyrene resin, polypropylene resin It can be used for resins, acrylic resins, polyurethane resins, SAN resins, ABS resins, polystyrene resins, polycarbonate resins, fluorine resins, polyimide resins, polyphenyl sulfide resins, etc., and composites thereof. Among these resins, it is particularly preferable to use them as antibacterial agents for filling acrylic resins, polyester resins or melamine resins used for applications such as sanitary containers.
[0022]
The antibacterial glass powder of the present invention is not limited to resin filling, and can be used for various antibacterial applications.
[0023]
The resin molded body of the present invention contains the above-described antibacterial glass powder, and the content is preferably 0.1 to 70% by volume, and particularly preferably 0.1 to 10% by volume. The reason for limiting the content in this way is that if the content is less than 0.1% by volume, it is difficult to impart sufficient antibacterial properties to the resin. On the other hand, the greater the content of glass powder, the greater the antibacterial activity. However, when it exceeds 10% by volume, the antibacterial activity hardly changes, and when it exceeds 70% by volume, it becomes difficult to mold the resin.
[0024]
Examples of the resin include phenol resins, polyester resins, melamine resins, urea resins, diallyl phthalate resins, epoxy resins, silicone resins, vinyl chloride resins, vinyl acetate resins, polyethylene resins, polystyrene. Resin, polypropylene resin, acrylic resin, polyurethane resin, SAN resin, ABS resin, polystyrene resin, polycarbonate resin, fluorine resin, polyimide resin, polyphenylsulfide resin, etc. Can be used. Among these resins, it is particularly preferable to use acrylic resins, polyester resins, or melamine resins that are used for applications such as sanitary containers.
[0025]
In addition, in the resin molding of this invention, it is possible to contain suitably the various additives normally contained in resin other than antibacterial glass powder.
[0026]
【Example】
Hereinafter, the present invention will be described based on examples.
[0027]
Tables 1 and 2 show Examples (Sample Nos. 1 to 9) and Comparative Examples (Sample No. 10) of the present invention.
[0028]
[Table 1]
[0029]
[Table 2]
[0030]
Each sample was produced as follows.
[0031]
First, zinc oxide, boric acid, pure silica, magnesium oxide, calcium carbonate, strontium carbonate, barium carbonate, sodium carbonate, lithium carbonate, potassium carbonate, aluminum hydroxide, titanium oxide, and zirconium oxide are mixed well in a predetermined amount. After that, it was put in a platinum-rhodium alloy crucible and melted at 1300-1600 ° C. for 4 hours. After melting, the film was formed into a film cullet having a thickness of about 1 mm. This was pulverized with a ball mill, passed through a sieve having an opening of 105 microns, and adjusted so that the average particle size of the glass powder was 7 to 8 μm with an air permeation specific surface area measuring device (manufactured by Shimadzu Corporation). Got.
[0032]
Furthermore, the polyester-based resin powder and the glass were mixed at a volume ratio of 95: 5 and molded into a plate shape of about 10 cm, and the antibacterial properties and the appearance of the resin were evaluated. The results are shown in each table.
[0033]
As is apparent from the table, No. 1 as an example of the present invention. The resin plates using the samples 1 to 9 showed good antibacterial properties, and no deterioration in appearance was observed after the acceleration test. On the other hand, No. which is a comparative example. Although the resin plate using 10 samples showed good antibacterial properties, it was found that the gloss of the resin disappeared after the acceleration test, and the appearance deterioration was remarkable.
[0034]
The antibacterial properties were evaluated as follows. First, gelatin containing bacteria adjusted so that Escherichia coli was present at a rate of 2 × 10 3 / cm 2 was processed into a sheet shape and affixed on a resin plate. Next, after culturing at 35 ° C. for 100 hours, the number of bacteria was measured, and those in which viable bacteria were less than 10 were judged good, and those in which 10 or more were detected were judged as bad. The appearance of the resin was subjected to an acceleration test (resin plate immersed in water and boiled for 500 hours). Thereafter, the surface of the resin was compared with that before the test, and the one that maintained the initial gloss was good, and the one that was cloudy white and lost the gloss was considered bad.
[0035]
【The invention's effect】
As described above, the antibacterial glass powder of the present invention does not adversely affect the appearance of the resin product even when used in a mixture with a resin. Moreover, sufficient antibacterial properties can be imparted to the resin. Therefore, it is preferable as an antibacterial agent for resin filling.
[0036]
Moreover, the resin molding of this invention has antibacterial property, and an external appearance does not deteriorate. Therefore, it is suitable as a resin product such as a toothbrush, a soap container, a tub, a wash basin, and a bathtub that require cleanliness.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19779697A JP3845959B2 (en) | 1997-07-07 | 1997-07-07 | Antibacterial glass powder and resin molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19779697A JP3845959B2 (en) | 1997-07-07 | 1997-07-07 | Antibacterial glass powder and resin molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1129343A JPH1129343A (en) | 1999-02-02 |
JP3845959B2 true JP3845959B2 (en) | 2006-11-15 |
Family
ID=16380503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19779697A Expired - Lifetime JP3845959B2 (en) | 1997-07-07 | 1997-07-07 | Antibacterial glass powder and resin molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3845959B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10131574B2 (en) | 2013-06-17 | 2018-11-20 | Corning Incorporated | Antimicrobial glass articles and methods of making and using same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475631B1 (en) | 1999-07-15 | 2002-11-05 | Toagosei Co., Ltd. | Antimicrobial agent, antimicrobial resin composition and antimicrobial artificial marble |
US7709027B2 (en) | 2001-08-22 | 2010-05-04 | Schott Ag | Antimicrobial, anti-inflammatory, wound-healing glass powder and use thereof |
EP1597211A2 (en) | 2003-02-25 | 2005-11-23 | Schott AG | Antimicrobial phosphate glass |
JP5541356B2 (en) | 2010-04-02 | 2014-07-09 | 東亞合成株式会社 | Dissolvable glassy antibacterial agent and water treatment agent |
ES2529557B1 (en) * | 2013-07-23 | 2015-12-02 | Consejo Superior De Investigaciones Científicas (Csic) | PROCEDURE FOR THE INHIBITION OF MICROBIAL GROWTH |
-
1997
- 1997-07-07 JP JP19779697A patent/JP3845959B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10131574B2 (en) | 2013-06-17 | 2018-11-20 | Corning Incorporated | Antimicrobial glass articles and methods of making and using same |
Also Published As
Publication number | Publication date |
---|---|
JPH1129343A (en) | 1999-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3845852B2 (en) | Antibacterial glass and resin composition | |
JP3845975B2 (en) | Antibacterial glass and resin composition | |
US6939820B2 (en) | Antibacterial glass composition and antibacterial polymer composition using the same | |
US20050031703A1 (en) | Antimicrobial, water-insoluble silicate glass powder and mixture of glass powders | |
US7704903B2 (en) | Antimicrobial phosphate glass with adapted refractive index | |
US7514093B2 (en) | Vitreous antimicrobial agent and antimicrobial product | |
JP4602320B2 (en) | Antimicrobial action phosphate glass | |
ES2630159T3 (en) | Ceramic glazing with antimicrobial properties | |
JP2017214285A (en) | Alkaline earth aluminosilicate glass composition having improved chemical and mechanical durability | |
US5071795A (en) | Alkali zinc halophosphate glasses | |
US20060166806A1 (en) | Antimicrobial sulfophosphate glass | |
JP2000143430A (en) | Barium-free x-ray-opaque dental glass and dental glass/ polymer composite material and use thereof | |
JP2018048073A (en) | Aluminum-free borosilicate glass | |
JP3845959B2 (en) | Antibacterial glass powder and resin molding | |
CA2137122C (en) | Lead-free glasses exhibiting characteristics of crystal | |
JP2002037643A (en) | Antimicrobial glass and its resin components | |
US5827790A (en) | Unleaded transparent vitreous glass composition and articles | |
JPH07300339A (en) | Antifungal glass composition | |
JP6938203B2 (en) | Chemical-resistant pharmaceutical packaging material | |
JPH0848539A (en) | Antibacterial glass composition | |
JP2000191339A (en) | Dissoluble glass, antibacterial resin composition and antibacterial molded article | |
WO2016152442A1 (en) | Antibacterial glass and resin molded article using same | |
JPH0656462A (en) | Glasses and optical lightweight glass | |
JPH11100227A (en) | Anti-fungus agent and resin composition | |
JPH11100228A (en) | Anti-fungus agent and resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060814 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |