JP3845718B2 - Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation - Google Patents

Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation Download PDF

Info

Publication number
JP3845718B2
JP3845718B2 JP2001128632A JP2001128632A JP3845718B2 JP 3845718 B2 JP3845718 B2 JP 3845718B2 JP 2001128632 A JP2001128632 A JP 2001128632A JP 2001128632 A JP2001128632 A JP 2001128632A JP 3845718 B2 JP3845718 B2 JP 3845718B2
Authority
JP
Japan
Prior art keywords
thin film
sbt
bismuth
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001128632A
Other languages
Japanese (ja)
Other versions
JP2002321918A (en
Inventor
かおり 西澤
一実 加藤
健 三木
一行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001128632A priority Critical patent/JP3845718B2/en
Publication of JP2002321918A publication Critical patent/JP2002321918A/en
Application granted granted Critical
Publication of JP3845718B2 publication Critical patent/JP3845718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、結晶性・配向性・表面平滑性を制御するためのビスマス系層状ペロブスカイト強誘電体薄膜の製造方法に関するものであり、更に詳しくは、光化学反応をその製造プロセスに取り入れた、新規なビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性・表面平滑性の制御方法に関するものである。
【0002】
【従来の技術】
層状ペロブスカイト化合物の一つであるSrBi2 Ta29 (SBT) は、その特異な結晶構造のため優れた強誘電性、圧電性、焦電性などの特性を有することが知られており、強誘電体メモリ材料として注目されている材料である(文献[1,2])。強誘電体メモリは、強誘電体薄膜とシリコン半導体集積回路から構成される。強誘電体薄膜作製プロセスはCMOSデバイスプロセスの後に実行されるため、その熱処理過程でシリコンデバイスが時々深刻なダメージを受けることが報告されている(文献[3−5])。そのため、強誘電体薄膜とシリコン又は電極材料との界面反応を防ぐためにも強誘電体薄膜の合成プロセスの低温化が必要である。
【0003】
ところで、強誘電体薄膜の作製には、スパッタ法、ゾル・ゲル法、化学気相析出法(CVD)、有機金属熱分解法(MOD)等、様々な方法が用いられている(文献[6,7])。このような方法のうち、本発明者らは、ゾルゲル法によりSBT薄膜の前駆体である、一分子中にSr,Bi,Taの3種の金属元素を化学量論的(Sr:Bi:Ta=1:2:2) に含むSr−Bi−Taトリプルアルコキシドの新規な低温合成法を開発し、既に報告している(文献[8,9])。この方法によって得られたSBT薄膜前駆体は、その原子配列がSBT結晶の副格子と一致しているため(文献[8−10])、SBT薄膜をより低温で結晶化することができる。
【0004】
また、この薄膜に優れた強誘電体特性を発現させるためには、その結晶性や配向性を的確に制御する技術が必要となる。また、デバイスの小型化のためには表面の微構造制御、すなわち表面の平滑性制御が重要である。特に、結晶性の良いC軸配向したSBT薄膜は、電極を分極軸方向に対して平行に用いるくし形電極のマイクロエレクトロメカニカルシステム(MEMS) に応用され、C軸方向から傾いた配向性を示すSBT薄膜は、強誘電体メモリのように分極軸に対して垂直に電極を取り付ける場合に有用である。
【0005】
【発明が解決しようとする課題】
これまでに、薄膜の結晶性・配向性を制御する方法としては、薄膜と基板との間にシード層やバッファー層といった新たな層を導入する方法が報告されている(文献[11])。しかし、いずれの場合にも、層が増えることによってプロセスが煩雑になったり、また、界面反応が増えるために電気的な特性が落ちるといった不具合が生じる恐れがある。
そこで、本発明者らは、光化学反応をその製造プロセスに導入し、より効率よく簡便に、ビスマス系層状ペロブスカイト薄膜の結晶性・配向性・表面平滑性を制御することを試みた結果、紫外線照射による、SBT薄膜の結晶性・配向性・表面平滑性の新規な制御方法の開発に成功し、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明は、以下の技術的手段から構成される。
(1)部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 ,R:C,H,Oを含む有機官能基)を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSrBi2 Ta29 (SBT)薄膜に、紫外線照射することを特徴とする、ビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性・表面平滑性制御方法。
(2)部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSrBi2 Ta29 (SBT)薄膜に、超高圧水銀灯を用いて室温下で紫外線照射することを特徴とする、前記(1)記載のビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性・表面平滑性制御方法。
(3)部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、低圧水銀灯を用いて室温下で紫外線照射することを特徴とする、前記(1)記載のビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性制御方法。
(4)部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、低圧水銀灯を用いて室温下で紫外線照射することを特徴とする、前記(1)記載のビスマス系層状ペロブスカイトSBT薄膜の表面平滑性制御方法。
(5)部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)9 2 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、超高圧水銀灯を用いて150℃の温度条件下で紫外線照射することを特徴とする、前記(1)記載のビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性制御方法。
(6)部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、超高圧水銀灯を用いて150℃の温度条件下で紫外線照射することを特徴とする、前記(1)記載のビスマス系層状ペロブスカイトSBT薄膜の表面平滑性制御方法。
(7)前記(1)から(6)のいずれかに記載の部分加水分解したSr−Bi−Taトリプルアルコキシド前駆体溶液を用いて、ディップコーティング、スピンコーティング等のコーティング法ないし印刷法により、Pt電極付きの金属、酸化物単結晶、セラミックス等の基板表面に薄膜を形成することを特徴とする、ビスマス系層状ペロブスカイト薄膜の製造方法。
(8)前記(1)から(6)のいずれかに記載の光照射によって作製されたPt電極付き基板上の結晶化前の薄膜を、仮焼、急速昇温加熱処理し、この一連の行程を膜厚が130nmになるまで繰り返すことを特徴とする、ビスマス系層状ペロブスカイト薄膜の製造方法。
【0007】
【発明の実施の形態】
次に、本発明について更に詳述する。
本発明において、先ず、用いるSr−Bi−Taトリプルアルコキシド前駆体溶液(Sr[BiTa(OR)9 2 , R:C,H,Oを含む有機官能基)としては、例えば、Sr[BiTa(OC24 OCH392 やSr[BiTa(OC259 2 が好適なものとして例示される。しかし、本発明で用いるものは、これらに限らず、一般式(OR)(R:C,H,Oを含む有機官能基)で示される適宜のアルコキシドを使用することができる。また、溶媒のアルコールとしては、上記Sr−Bi−Taトリプルアルコキシドを溶解することができるものであればよく、例えば、2−メトキシエタノールやエタノールが好適なものとして例示されるが、これに限らず適宜のアルコールを使用することができる。
【0008】
本発明では、調製されたSr−Bi−Taトリプルアルコキシドを水を用いて加水分解重縮合反応することにより前駆体溶液を調製するが、この場合、モル比1/18〜1/6の水を用いることが好ましい。次に、この前駆体溶液を用いて当該Sr−Bi−Taトリプルアルコキシドの薄膜を基板表面に形成する。この場合、コーティング方法としては、例えば、ディップコーティング、スピンコーティング、印刷法等が好適なものとして例示されるが、これに限らず、同効の方法であれば、適宜の方法を利用することができる。また、基板としては、表面電極としてPtをコーティングできるものであればよく、例えば、金属、酸化物単結晶、セラミックス等が例示されるが、材質、形状を問わず、適宜の基板を使用することができる。
【0009】
次に、製造プロセスについて説明する。すなわち、前述のように調製したSr−Bi−Taトリプルアルコキシド前駆体溶液をPt電極付き基板上にコーティングした後、乾燥処理を行うが、この温度は使用した溶媒のみが気化できる程度が好適であり、例えば、溶媒として2−メトキシエタノールを用いた場合には150℃程度が好ましい。続いて、乾燥後に紫外線照射を行う。使用する光源としては超高圧水銀灯、もしくは低圧水銀灯が好適なものとして例示されるが、波長領域が350nmから450nm付近の紫外線、もしくは250nmから300nm付近の紫外線を放出する光源であればよく、出力は限定しない。また、照射エネルギー密度によって反応時間は制御可能であり、高エネルギー密度の光源を使用すると反応時間を短縮可能である。ただし、レーザー光源に関してはこの限りではない。続いて、紫外線照射後に仮焼処理を行うが、この時の温度としては薄膜中に存在する有機物が効率よく分解・気化できる温度が必要であり、例えば、前駆体溶液としてSr[BiTa(OC24 OCH3 92 を用いた場合には、350℃程度が好適である。続いて仮焼後、酸素気流中で加熱処理を行うが、この過程においては副反応を抑えるために100℃/秒の急速昇温が必要不可欠であり、結晶化温度としては650℃が好適である。また、膜厚は、コーティングから仮焼操作までを繰り返し、最後に1回急速加熱処理を行うことによっても調整可能であるが、より結晶性の良い薄膜を作製するためには、このコーティングから結晶化までの一連の操作を繰り返すことによって調整することが必要である。
【0010】
このように、本発明は、結晶化前の薄膜に様々な条件下で紫外線照射を行うだけで、ビスマス系層状ペロブスカイト薄膜の結晶性・配向性・表面平滑性を制御できる、これまでにない簡便で画期的な方法である。
【0011】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は当該実施例によって何ら限定されるものではない。
実施例1
(1)方法
Sr−Bi−Taトリプルアルコキシドを既報(文献[8,9])に従って合成し、部分加水分解後、これをPt電極付きSi基板上にスピンコーティングした。これを150℃で乾燥後、250Wの超高圧水銀灯(multilightUIV−270,Ushio Co.Ltd.,Tokyo,Japan,主要波長:365nm,405nm,436nm,エネルギー密度70mW/cm2 以下) を用いて、室温下、所定時間紫外線照射を行った。照射距離は約15cmであった。その後、空気中350℃で仮焼、更に酸素気流中で650℃まで急速加熱処理(100℃/s)し、そのまま10分間保持した。この一連の操作を膜厚が130nmになるまで5回繰り返し、X線回折法(XRD,RINT2100V/PC,Rigaku Co.Ltd.,Tokyo,Japan)により結晶構造の解析を行った。CuKα線を用い、加速電圧、電流はそれぞれ40kV,40mAであった。また、SBTの配向性は(00l)回折ピークの強度によって比較し、結晶性については(008)回折ピークにおけるロッキングカーブを測定することによって評価した。更に、原子間力顕微鏡(AFM,Nanoscope III,Digital Instruments,Inc.CA,USA)により表面状態を観察評価した。
【0012】
(2)結果
図1に仮焼前の薄膜に室温下、超高圧水銀灯を用いて紫外線照射して作製したSBT薄膜のXRD回折図を示した。紫外線照射せずに作製した薄膜はSBT単相であり、Pt電極付きの基板上でC軸配向性を示すことがわかった。そして、このC軸配向した薄膜の結晶性は、室温下、超高圧水銀灯によって紫外線照射することにより向上することが明らかとなった。また、照射時間が長くなるに従ってこの傾向は顕著になった。更に、結晶性の程度を定量化するためにθスキャンを行ったところ、紫外線照射せずに作製したSBT薄膜の(008)回折ピークの半価幅は12.4°であり、室温下、超高圧水銀灯で1時間紫外線照射して作製した薄膜のそれは9.0°であった。この結果から、後者の場合に結晶性が向上したことが確認された。SBT薄膜がC軸配向性を示すのは、Pt電極の(111)面とSBTの(00l)面の格子マッチングが良いためと考えられるが、上記の条件下でこのSBT薄膜のC軸配向性が向上するのは、紫外線照射によってPt電極とSBT薄膜の間の相互作用が強化されるためと考えられる。更に、図2に示したように、AFM観察の結果から、この条件下で紫外線照射した場合には表面粗さの指標であるRa値が10.6nmから7.8nmに変化し、より平滑な表面になることが明らかとなった。
【0013】
実施例2
(1)方法
Sr−Bi−Taトリプルアルコキシドを既報(文献[8,9])に従って合成し、部分加水分解後、これをPt電極付きSi基板上にスピンコーティングした。これを150℃で乾燥後、15Wの低圧水銀灯(GL−15,Toshiba Co.Ltd.,Tokyo,Japan,主要波長:254nm,エネルギー密度1mW/cm2 )を用いて、室温下、所定時間紫外線照射を行った。照射距離は約15cmであった。その後、空気中350℃で仮焼、更に酸素気流中で650℃まで急速加熱処理(100℃/s)し、そのまま10分間保持した。この一連の操作を膜厚が130nmになるまで5回繰り返し、X線回折法(XRD,RINT2100V/PC,Rigaku Co.Ltd.,Tokyo,Japan) により結晶構造の解析を行った。CuKα線を用い、加速電圧、電流はそれぞれ40kV,40mAであった。また、SBTの配向性は(00l)及び(115)回折ピークの強度によって評価した。更に、原子間力顕微鏡(AFM,Nanoscope III,Digital Instruments,Inc.CA,USA)により表面状態を観察評価した。
【0014】
(2)結果
図3に、室温下で低圧水銀灯を用いて光照射を行った場合のXRD回折図を示す。この条件の場合には図1の結果とは様相が異なり、C軸配向が崩れ、(115)回折強度が増大したランダムな結晶方位の膜となることが明らかとなった。そして、照射時間とともにこの結晶性が向上していくことが明らかとなった。(115)面はSBTの劈開面であることから、室温下で低圧水銀灯にて紫外線照射することによりSBTそのものがエネルギー的に安定化するためと考えられた。更に、図4に示したように、AFM観察の結果から、この条件下で紫外線照射した場合にはRa値が10.6nmから8.4nmに変化し、わずかではあるがより平滑な表面になることが明らかとなった。
【0015】
実施例3
(1)方法
Sr−Bi−Taトリプルアルコキシドを既報(文献[8,9])に従って合成し、部分加水分解後、これをPt電極付きSi基板上にスピンコーティングした。これを150℃で乾燥後、250Wの超高圧水銀灯(multilightUIV−270,Ushio Co.Ltd.,Tokyo,Japan,主要波長:365nm,405nm,436nm,エネルギー密度70mW/cm2 以下) 、又は15Wの低圧水銀灯(GL−15,Toshiba Co.Ltd.,Tokyo,Japan,主要波長:254nm,エネルギー密度1mW/cm2 )を用いて、150℃の温度雰囲気下、所定時間紫外線照射を行った。照射距離は約15cmであった。
その後、空気中350℃で仮焼、更に酸素気流中で650℃まで急速加熱処理(100℃/s)し、そのまま10分間保持した。この一連の操作を膜厚が130nmになるまで5回繰り返し、X線回折法(XRD,RINT2100V/PC,Rigaku Co.Ltd.,Tokyo,Japan) により結晶構造の解析を行った。CuKα線を用い、加速電圧、電流はそれぞれ40kV,40mAであった。また、SBTの配向性は(00l)と(115)回折ピークの強度によって比較し、結晶性については(115)回折ピークにおけるロッキングカーブを測定することによって評価した。更に、原子間力顕微鏡(AFM,Nanoscope III,Digital Instruments,Inc.CA,USA)により表面状態を観察評価した。
【0016】
(2)結果
図5に、150℃で加熱しながら超高圧水銀灯を用いて紫外線照射を行った場合のXRD回折図を示す。この条件の場合には、室温下で低圧水銀灯を用いた場合と同様の効果がみられた。すなわち、照射時間とともにC軸配向性が崩れ、(115)回折強度が増大したランダムな結晶方位の膜となることが明らかとなった。この膜は、低圧水銀灯を用いた場合よりも高い結晶性を示していた。室温下で低圧水銀灯を用いて作製した膜と150℃で加熱しながら超高圧水銀灯にて光照射して作製した膜の結晶性の比較を行うために、両者の(115)回折ピークにおけるロッキングカーブを測定したところ、前者の場合には、その半価幅が10.2°であり、後者の場合には8.3°であった。更に、150℃で加熱しながら低圧水銀灯を用いて紫外線照射した場合にもランダム配向の膜となった。しかし、この場合の膜は室温下で低圧水銀灯を用いた場合、150℃で加熱しながら超高圧水銀灯を用いた場合と比較するとその結晶性が低く、(115)回折ピークにおける半価幅は14.5°であった。更に、図6に示したように、AFM観察の結果から、この条件下で紫外線照射した場合にはRa値が10.6nmから3.9nmに変化し、表面の平滑性がかなり向上した膜になることが明らかとなった。
以上の結果から、平滑性の向上した結晶性のよい(115)方向のSBT薄膜を作製するためは、150℃で加熱しながら超高圧水銀灯を用いた紫外線照射法がより効果的であることが明らかとなった。すなわち、このようなPt電極付きSi基板上での結晶化前のSBT薄膜の光化学反応における波長依存性の存在が明らかとなった。
【0017】
以上の結果から、Pt電極付きSi基板上での結晶化前のSBT薄膜に3種類の条件下で紫外線照射を行うことにより、その結晶性・配向性・表面平滑性を改良することができることが明らかとなった。室温下で超高圧水銀灯を用いた光化学反応は、Pt電極との相互作用を強め、膜の結晶性を向上させるために効果的であった。一方、150℃下で超高圧水銀灯を用いた場合、室温下で低圧水銀灯を用いた場合には、SBT薄膜の配向性を(115)方向に変化させることができるということが明らかとなり、前者の方がその効果が大きいことが明らかとなった。(115)面はSBTの劈開面であることから、これら条件下ではそれ自身がエネルギー的により安定化するためと考えられた。
【0018】
参考文献
[1] H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren and B. A. Tuttle, Appl. Phys. Lett., 68[5] 690 (1996).
[2] D. Dimos, H. N. Al-Shareef, W. L. Warren and B. A. Tuttle, J. Appl.Phys., 80[3] 1682 (1996).
[3] T. Noguchi, T. Hase and Y. Miyasaka, Jpn. J. Appl. Phys., 35[9B] 4900 (1996).
[4] Y. Ito, M. Ushikubo, S. Yokoyama, H. Matsunaga, T. Atsuki, T. Yonezawa and K. Ogi, Jpn. J. Appl. Phys., 35[9B] 4925 (1996).
[5] T. Hayashi, H. Takahashi and T. Hara, Jpn. J. Appl. Phys., 35[9B] 4952 (1996).
[6] H. Watanabe, T. Mihara, H. Yoshiori and C. A. Paz de Araujo, Jpn. J. Appl. Phys., 34[9B] 5240 (1995) .
[7] T. Li, Y. Zhu, S. B. Desu, C. H. Peng and M. Nagata, Appl. Phys. Lett., 68[5] 616 (1996).
[8] K. Kato, C. Zheng, J. M. Finder, S. K. Dey and Y. Torii, J. Am. Ceram. Soc., 81 1869 (1996).
[9] 加藤一実, サンディップクマールデイ, 特許 第2967189 号
[10]K. Kato, C. Zheng, S. K. Dey and Y. Torii, Integr. Ferroelectr., 18225 (1997).
[11]G. D. Hu, I. H. Wilson, J. B. Xu, C. P. Li, and S. P. Wong, Appl. Phys. Lett., 76[13] 1758 (2000) .
【0019】
【発明の効果】
以上詳述したように、本発明は、部分加水分解したSr−Bi−Taトリプルアルコキシド前駆体溶液をPt電極付きSi基板上にコーティング、乾燥後、この結晶化前の薄膜に超高圧水銀灯、もしくは低圧水銀灯を用いて紫外線照射することにより、SBT薄膜の結晶性・配向性・表面平滑性を効率よく制御する方法に係るものであり、本発明により、1)結晶性・表面平滑性の向上したC軸配向性ビスマス系層状ペロブスカイトSBT薄膜を効率よく製造できること、2)主に(115)方向に配向した結晶性・表面平滑性の良いビスマス系層状ペロブスカイトSBT薄膜を効率よく製造できること、それにより、優れた強誘電体特性のビスマス系層状ペロブスカイト薄膜の低温化、及びプロセスの効率化が図られるため、機能性集積材料の開発に大きく貢献できること、等の格別な効果が得られる。
【図面の簡単な説明】
【図1】 室温下、超高圧水銀灯から紫外線照射してPt電極付きシリコン基板上に作製したSBT薄膜のXRD回折パターンを示す。照射時間(a):0分、(b):30分、(c):60分
【図2】 室温下、超高圧水銀灯から紫外線照射してPt電極付きシリコン基板上に作製したSBT薄膜のAFM観察像を示す。照射時間(a):0分、(b):60分
【図3】 室温下、低圧水銀灯から紫外線照射してPt電極付きシリコン基板上に作製したSBT薄膜のXRD回折パターンを示す。照射時間(a):0分、(b):30分、(c):60分
【図4】 室温下、低圧水銀灯から紫外線照射してPt電極付きシリコン基板上に作製したSBT薄膜のAFM観察像を示す。照射時間(a):0分、(b):60分
【図5】 150℃の温度条件下、超高圧水銀灯から紫外線照射してPt電極付きシリコン基板上に作製したSBT薄膜のXRD回折パターンを示す。照射時間(a):0分、(b):30分、(c):60分
【図6】 150℃の温度条件下、超高圧水銀灯から紫外線照射してPt電極付きシリコン基板上に作製したSBT薄膜のAFM観察像を示す。照射時間(a):0分、(b):60分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a bismuth-based layered perovskite ferroelectric thin film for controlling crystallinity, orientation, and surface smoothness. More specifically, the present invention relates to a novel process that incorporates a photochemical reaction into the production process. The present invention relates to a method for controlling crystallinity, orientation, and surface smoothness of a bismuth-based layered perovskite SBT thin film.
[0002]
[Prior art]
SrBi 2 Ta 2 O 9 (SBT), which is one of the layered perovskite compounds, is known to have excellent ferroelectricity, piezoelectricity, pyroelectricity and the like due to its unique crystal structure. This material is attracting attention as a ferroelectric memory material (references [1, 2]). A ferroelectric memory is composed of a ferroelectric thin film and a silicon semiconductor integrated circuit. Since the ferroelectric thin film fabrication process is performed after the CMOS device process, it has been reported that silicon devices are sometimes severely damaged during the heat treatment process (reference [3-5]). Therefore, it is necessary to lower the temperature of the ferroelectric thin film synthesis process in order to prevent an interface reaction between the ferroelectric thin film and silicon or an electrode material.
[0003]
By the way, various methods such as a sputtering method, a sol-gel method, a chemical vapor deposition method (CVD), and a metal organic thermal decomposition method (MOD) are used for producing a ferroelectric thin film (reference [6]. , 7]). Among these methods, the present inventors have stoichiometrically (Sr: Bi: Ta) three kinds of metal elements, Sr, Bi and Ta, which are precursors of an SBT thin film by a sol-gel method. = 1: 2: 2), a new low-temperature synthesis method of Sr-Bi-Ta triple alkoxides has been developed and reported (References [8, 9]). Since the atomic arrangement of the SBT thin film precursor obtained by this method coincides with the sublattice of the SBT crystal (Reference [8-10]), the SBT thin film can be crystallized at a lower temperature.
[0004]
Further, in order to develop excellent ferroelectric characteristics in this thin film, a technique for accurately controlling the crystallinity and orientation is required. In order to reduce the size of the device, it is important to control the surface microstructure, that is, to control the surface smoothness. In particular, the C-axis oriented SBT thin film with good crystallinity is applied to a comb-shaped microelectromechanical system (MEMS) using an electrode parallel to the polarization axis direction, and exhibits an orientation tilted from the C-axis direction. The SBT thin film is useful when an electrode is attached perpendicular to the polarization axis as in a ferroelectric memory.
[0005]
[Problems to be solved by the invention]
So far, as a method for controlling the crystallinity and orientation of the thin film, a method of introducing a new layer such as a seed layer or a buffer layer between the thin film and the substrate has been reported (Reference [11]). However, in any case, there is a possibility that the process becomes complicated due to an increase in the number of layers, and that the electrical characteristics are deteriorated due to an increase in the interface reaction.
Therefore, the present inventors introduced a photochemical reaction into the manufacturing process, and as a result, attempted to control the crystallinity, orientation, and surface smoothness of the bismuth-based layered perovskite thin film more efficiently and simply. Succeeded in the development of a novel control method for crystallinity, orientation and surface smoothness of SBT thin films, thereby completing the present invention.
[0006]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A partially hydrolyzed Sr—Bi—Ta triple alkoxide (an organic functional group containing Sr [BiTa (OR) 9 ] 2 , R: C, H, O) is used as a precursor solution on a substrate with a Pt electrode. A method for controlling crystallinity / orientation / surface smoothness of a bismuth-based layered perovskite SBT thin film, wherein the coated SrBi 2 Ta 2 O 9 (SBT) thin film is irradiated with ultraviolet rays.
(2) SrBi 2 Ta 2 O 9 (SrBi 2 Ta 2 O 9) before crystallization coated on a substrate with a Pt electrode using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution. The method for controlling crystallinity, orientation, and surface smoothness of a bismuth-based layered perovskite SBT thin film according to (1), wherein the SBT thin film is irradiated with ultraviolet rays at room temperature using an ultrahigh pressure mercury lamp.
(3) Using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution, an SBT thin film coated on a substrate with a Pt electrode is coated with a low pressure mercury lamp. The method for controlling crystallinity / orientation of a bismuth-based layered perovskite SBT thin film according to (1), wherein the ultraviolet irradiation is performed at room temperature.
(4) Using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution, a low-pressure mercury lamp is applied to the SBT thin film before crystallization coated on a substrate with a Pt electrode. The method for controlling the surface smoothness of a bismuth-based layered perovskite SBT thin film according to (1), wherein the method is used for ultraviolet irradiation at room temperature.
(5) Using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution, an SBT thin film before crystallization coated on a substrate with a Pt electrode is applied to an ultrahigh pressure mercury lamp. The method for controlling crystallinity / orientation of a bismuth-based layered perovskite SBT thin film according to (1) above, wherein ultraviolet irradiation is performed using 150 at a temperature of 150 ° C.
(6) An ultra-high pressure mercury lamp is applied to a pre-crystallized SBT thin film coated on a Pt electrode substrate using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution. The method for controlling the surface smoothness of a bismuth-based layered perovskite SBT thin film according to (1) above, wherein UV irradiation is performed under a temperature condition of 150 ° C. using
(7) Using the partially hydrolyzed Sr—Bi—Ta triple alkoxide precursor solution according to any one of (1) to (6) above, Pt is formed by a coating method or a printing method such as dip coating or spin coating. A method for producing a bismuth-based layered perovskite thin film, comprising forming a thin film on the surface of a substrate such as a metal with electrodes, a single crystal of oxide, or a ceramic.
(8) The thin film before crystallization on the substrate with the Pt electrode produced by the light irradiation according to any one of (1) to (6) above is subjected to calcination and rapid heating treatment, and this series of steps Is repeated until the film thickness reaches 130 nm. A method for producing a bismuth-based layered perovskite thin film.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
In the present invention, first, as the Sr—Bi—Ta triple alkoxide precursor solution used (Sr [BiTa (OR) 9 ] 2 , R: an organic functional group containing C, H, O), for example, Sr [BiTa ( OC 2 H 4 OCH 3 ) 9 ] 2 and Sr [BiTa (OC 2 H 5 ) 9 ] 2 are preferable examples. However, what is used by this invention is not restricted to these, The suitable alkoxide shown by general formula (OR) (R: organic functional group containing C, H, O) can be used. Moreover, as a solvent alcohol, what is necessary is just a thing which can melt | dissolve the said Sr-Bi-Ta triple alkoxide, For example, although 2-methoxyethanol and ethanol are illustrated as a suitable thing, it is not restricted to this. Any suitable alcohol can be used.
[0008]
In the present invention, a precursor solution is prepared by subjecting the prepared Sr—Bi—Ta triple alkoxide to hydrolysis polycondensation reaction using water. In this case, water having a molar ratio of 1/18 to 1/6 is added. It is preferable to use it. Next, a thin film of the Sr—Bi—Ta triple alkoxide is formed on the substrate surface using this precursor solution. In this case, as a coating method, for example, dip coating, spin coating, printing method and the like are exemplified as suitable ones. However, the coating method is not limited thereto, and an appropriate method may be used as long as it is a method having the same effect. it can. The substrate may be any material that can be coated with Pt as a surface electrode. Examples thereof include metals, oxide single crystals, ceramics, and the like, but any suitable substrate may be used regardless of the material and shape. Can do.
[0009]
Next, the manufacturing process will be described. That is, after the Sr—Bi—Ta triple alkoxide precursor solution prepared as described above is coated on a substrate with a Pt electrode, a drying process is performed, and this temperature is preferably such that only the solvent used can be vaporized. For example, when 2-methoxyethanol is used as a solvent, about 150 ° C. is preferable. Subsequently, UV irradiation is performed after drying. As the light source to be used, an ultra-high pressure mercury lamp or a low-pressure mercury lamp is exemplified as a suitable light source, but any light source that emits ultraviolet light having a wavelength region of 350 nm to 450 nm or 250 nm to 300 nm may be used. Not limited. Further, the reaction time can be controlled by the irradiation energy density, and the reaction time can be shortened by using a light source having a high energy density. However, this does not apply to laser light sources. Subsequently, a calcination treatment is performed after the irradiation with ultraviolet rays. At this time, a temperature at which an organic substance existing in the thin film can be efficiently decomposed and vaporized is required. For example, Sr [BiTa (OC 2 When H 4 OCH 3 ) 9 ] 2 is used, about 350 ° C. is preferable. Subsequently, after calcining, heat treatment is performed in an oxygen stream. In this process, a rapid temperature increase of 100 ° C./second is indispensable in order to suppress side reactions, and a crystallization temperature of 650 ° C. is suitable. is there. The film thickness can also be adjusted by repeating the coating to the calcining operation and finally performing a rapid heat treatment once. However, in order to produce a thin film with better crystallinity, the coating can be crystallized. It is necessary to adjust by repeating a series of operations up to the conversion.
[0010]
As described above, the present invention can control the crystallinity, orientation, and surface smoothness of a bismuth-based layered perovskite thin film by simply irradiating the thin film before crystallization under various conditions. It is a revolutionary method.
[0011]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples.
Example 1
(1) Method Sr—Bi—Ta triple alkoxide was synthesized according to the previous report (references [8, 9]), and after partial hydrolysis, this was spin-coated on a Si substrate with a Pt electrode. After drying this at 150 ° C., using a 250 W ultra high pressure mercury lamp (multilightUIV-270, Ushi Co. Ltd., Tokyo, Japan, main wavelengths: 365 nm, 405 nm, 436 nm, energy density of 70 mW / cm 2 or less) Below, ultraviolet irradiation was performed for a predetermined time. The irradiation distance was about 15 cm. Then, it was calcined at 350 ° C. in air, and further subjected to rapid heat treatment (100 ° C./s) up to 650 ° C. in an oxygen stream, and held for 10 minutes. This series of operations was repeated five times until the film thickness reached 130 nm, and the crystal structure was analyzed by X-ray diffraction (XRD, RINT2100V / PC, Rigaku Co. Ltd., Tokyo, Japan). Using CuKα rays, the acceleration voltage and current were 40 kV and 40 mA, respectively. The orientation of SBT was compared by the intensity of the (001) diffraction peak, and the crystallinity was evaluated by measuring a rocking curve at the (008) diffraction peak. Furthermore, the surface state was observed and evaluated with an atomic force microscope (AFM, Nanoscope III, Digital Instruments, Inc. CA, USA).
[0012]
(2) Results FIG. 1 shows an XRD diffractogram of the SBT thin film produced by irradiating the thin film before calcination with ultraviolet rays at room temperature using an ultra-high pressure mercury lamp. It was found that the thin film prepared without being irradiated with ultraviolet rays was an SBT single phase and exhibited C-axis orientation on a substrate with a Pt electrode. And it became clear that the crystallinity of this C-axis oriented thin film is improved by irradiating with ultraviolet rays with an ultra-high pressure mercury lamp at room temperature. In addition, this tendency became more prominent as the irradiation time became longer. Furthermore, a θ scan was performed to quantify the degree of crystallinity. As a result, the half width of the (008) diffraction peak of the SBT thin film prepared without ultraviolet irradiation was 12.4 °. The thickness of the thin film prepared by irradiating with a high pressure mercury lamp for 1 hour was 9.0 °. From this result, it was confirmed that the crystallinity was improved in the latter case. The SBT thin film shows C-axis orientation because the lattice matching between the (111) plane of the Pt electrode and the (001) plane of the SBT is good, but the C-axis orientation of this SBT thin film under the above conditions. This is considered to be because the interaction between the Pt electrode and the SBT thin film is enhanced by ultraviolet irradiation. Furthermore, as shown in FIG. 2, from the results of AFM observation, when irradiated with ultraviolet light under this condition, the Ra value, which is an index of surface roughness, changes from 10.6 nm to 7.8 nm, which is smoother. It became clear that it became a surface.
[0013]
Example 2
(1) Method Sr—Bi—Ta triple alkoxide was synthesized according to the previous report (references [8, 9]), and after partial hydrolysis, this was spin-coated on a Si substrate with a Pt electrode. This was dried at 150 ° C., and then irradiated with ultraviolet rays for a predetermined time at room temperature using a 15 W low-pressure mercury lamp (GL-15, Toshiba Co. Ltd., Tokyo, Japan, main wavelength: 254 nm, energy density 1 mW / cm 2 ). Went. The irradiation distance was about 15 cm. Then, it was calcined at 350 ° C. in air, and further subjected to rapid heat treatment (100 ° C./s) up to 650 ° C. in an oxygen stream, and held for 10 minutes. This series of operations was repeated five times until the film thickness reached 130 nm, and the crystal structure was analyzed by X-ray diffraction (XRD, RINT2100V / PC, Rigaku Co. Ltd., Tokyo, Japan). Using CuKα rays, the acceleration voltage and current were 40 kV and 40 mA, respectively. Further, the orientation of SBT was evaluated by the intensity of (00l) and (115) diffraction peaks. Furthermore, the surface state was observed and evaluated with an atomic force microscope (AFM, Nanoscope III, Digital Instruments, Inc. CA, USA).
[0014]
(2) Results FIG. 3 shows an XRD diffractogram when light irradiation is performed using a low-pressure mercury lamp at room temperature. Under these conditions, the results are different from the results shown in FIG. 1, and it has been clarified that the C-axis orientation is broken and the film has a random crystal orientation with an increased (115) diffraction intensity. And it became clear that this crystallinity improved with irradiation time. Since the (115) plane is a cleaved surface of SBT, it was considered that the SBT itself was stabilized in terms of energy when irradiated with ultraviolet light from a low-pressure mercury lamp at room temperature. Furthermore, as shown in FIG. 4, from the result of AFM observation, when irradiated with ultraviolet light under this condition, the Ra value changes from 10.6 nm to 8.4 nm, and the surface becomes slightly smoother. It became clear.
[0015]
Example 3
(1) Method Sr—Bi—Ta triple alkoxide was synthesized according to the previous report (references [8, 9]), and after partial hydrolysis, this was spin-coated on a Si substrate with a Pt electrode. After drying at 150 ° C., a 250 W ultra high pressure mercury lamp (multilightUIV-270, Ushi Co. Ltd., Tokyo, Japan, main wavelengths: 365 nm, 405 nm, 436 nm, energy density of 70 mW / cm 2 or less), or a 15 W low pressure mercury lamp (GL-15, Toshiba Co. Ltd., Tokyo, Japan, main wavelength: 254 nm, energy density 1 mW / cm 2), UV irradiation was performed for a predetermined time in a temperature atmosphere of 150 ° C. The irradiation distance was about 15 cm.
Then, it was calcined at 350 ° C. in air, and further subjected to rapid heat treatment (100 ° C./s) up to 650 ° C. in an oxygen stream, and held for 10 minutes. This series of operations was repeated five times until the film thickness reached 130 nm, and the crystal structure was analyzed by X-ray diffraction (XRD, RINT2100V / PC, Rigaku Co. Ltd., Tokyo, Japan). Using CuKα rays, the acceleration voltage and current were 40 kV and 40 mA, respectively. Further, the orientation of SBT was compared by the intensity of (001) and (115) diffraction peaks, and the crystallinity was evaluated by measuring a rocking curve at (115) diffraction peaks. Furthermore, the surface state was observed and evaluated with an atomic force microscope (AFM, Nanoscope III, Digital Instruments, Inc. CA, USA).
[0016]
(2) Results FIG. 5 shows an XRD diffractogram when ultraviolet irradiation is performed using an ultrahigh pressure mercury lamp while heating at 150 ° C. Under this condition, the same effect as when using a low-pressure mercury lamp at room temperature was observed. That is, it was revealed that the C-axis orientation was lost with the irradiation time, and the film had a random crystal orientation with an increased (115) diffraction intensity. This film showed higher crystallinity than when a low-pressure mercury lamp was used. In order to compare the crystallinity of a film produced using a low-pressure mercury lamp at room temperature and a film produced by light irradiation with an ultra-high pressure mercury lamp while heating at 150 ° C., the rocking curves at the (115) diffraction peak of both When the former was measured, the half width was 10.2 ° in the former case and 8.3 ° in the latter case. Further, the film was randomly oriented when it was irradiated with ultraviolet rays using a low-pressure mercury lamp while being heated at 150 ° C. However, the film in this case has a lower crystallinity when a low-pressure mercury lamp is used at room temperature than when an ultrahigh-pressure mercury lamp is used while heating at 150 ° C., and the half width at the (115) diffraction peak is 14 It was 5 °. Furthermore, as shown in FIG. 6, from the results of AFM observation, when irradiated with ultraviolet light under these conditions, the Ra value changed from 10.6 nm to 3.9 nm, and the film had a considerably improved surface smoothness. It became clear that
From the above results, in order to produce an SBT thin film with improved smoothness and good crystallinity (115) direction, it is more effective to use an ultra-high pressure mercury lamp while heating at 150 ° C. It became clear. That is, the existence of wavelength dependence in the photochemical reaction of the SBT thin film before crystallization on such a Si substrate with a Pt electrode was clarified.
[0017]
From the above results, the crystallinity, orientation, and surface smoothness can be improved by irradiating the SBT thin film before crystallization on the Si substrate with a Pt electrode under three types of conditions. It became clear. The photochemical reaction using an ultra-high pressure mercury lamp at room temperature was effective for enhancing the interaction with the Pt electrode and improving the crystallinity of the film. On the other hand, when using an ultra-high pressure mercury lamp at 150 ° C. and using a low-pressure mercury lamp at room temperature, it becomes clear that the orientation of the SBT thin film can be changed in the (115) direction. It became clear that the effect was larger. Since the (115) plane is a cleavage plane of SBT, it was considered that the surface itself was more energetically stabilized under these conditions.
[0018]
References
[1] HN Al-Shareef, D. Dimos, TJ Boyle, WL Warren and BA Tuttle, Appl. Phys. Lett., 68 [5] 690 (1996).
[2] D. Dimos, HN Al-Shareef, WL Warren and BA Tuttle, J. Appl. Phys., 80 [3] 1682 (1996).
[3] T. Noguchi, T. Hase and Y. Miyasaka, Jpn. J. Appl. Phys., 35 [9B] 4900 (1996).
[4] Y. Ito, M. Ushikubo, S. Yokoyama, H. Matsunaga, T. Atsuki, T. Yonezawa and K. Ogi, Jpn. J. Appl. Phys., 35 [9B] 4925 (1996).
[5] T. Hayashi, H. Takahashi and T. Hara, Jpn. J. Appl. Phys., 35 [9B] 4952 (1996).
[6] H. Watanabe, T. Mihara, H. Yoshiori and CA Paz de Araujo, Jpn. J. Appl. Phys., 34 [9B] 5240 (1995).
[7] T. Li, Y. Zhu, SB Desu, CH Peng and M. Nagata, Appl. Phys. Lett., 68 [5] 616 (1996).
[8] K. Kato, C. Zheng, JM Finder, SK Dey and Y. Torii, J. Am. Ceram. Soc., 81 1869 (1996).
[9] Kato Kazumi, Sundip Kumar Day, Patent No. 2967189
[10] K. Kato, C. Zheng, SK Dey and Y. Torii, Integr. Ferroelectr., 18225 (1997).
[11] GD Hu, IH Wilson, JB Xu, CP Li, and SP Wong, Appl. Phys. Lett., 76 [13] 1758 (2000).
[0019]
【The invention's effect】
As described above in detail, the present invention is a method in which a partially hydrolyzed Sr—Bi—Ta triple alkoxide precursor solution is coated on a Si substrate with a Pt electrode, dried, and then an ultrahigh pressure mercury lamp or It relates to a method for efficiently controlling the crystallinity, orientation and surface smoothness of the SBT thin film by irradiating with ultraviolet rays using a low-pressure mercury lamp, and 1) the crystallinity and surface smoothness are improved by the present invention. A C-axis oriented bismuth-based layered perovskite SBT thin film can be efficiently produced, and 2) a bismuth-based layered perovskite SBT thin film with good crystallinity and surface smoothness mainly oriented in the (115) direction can be efficiently produced. Functional integration material for low temperature and efficient process of bismuth-based layered perovskite thin film with excellent ferroelectric properties Can contribute greatly to the development of, particular effects etc. are obtained.
[Brief description of the drawings]
FIG. 1 shows an XRD diffraction pattern of an SBT thin film formed on a silicon substrate with a Pt electrode by irradiation with ultraviolet light from an ultrahigh pressure mercury lamp at room temperature. Irradiation time (a): 0 minutes, (b): 30 minutes, (c): 60 minutes [Fig. 2] AFM of SBT thin film prepared on a silicon substrate with a Pt electrode by irradiation with ultraviolet light from an ultra-high pressure mercury lamp at room temperature An observation image is shown. Irradiation time (a): 0 minutes, (b): 60 minutes FIG. 3 shows an XRD diffraction pattern of an SBT thin film formed on a silicon substrate with a Pt electrode by irradiation with ultraviolet light from a low-pressure mercury lamp at room temperature. Irradiation time (a): 0 minutes, (b): 30 minutes, (c): 60 minutes [FIG. 4] AFM observation of an SBT thin film prepared on a silicon substrate with a Pt electrode by irradiation with ultraviolet light from a low-pressure mercury lamp at room temperature. Show the image. Irradiation time (a): 0 minutes, (b): 60 minutes [Fig. 5] XRD diffraction pattern of an SBT thin film prepared on a silicon substrate with a Pt electrode by irradiating ultraviolet rays from an ultra-high pressure mercury lamp under a temperature condition of 150 ° C. Show. Irradiation time (a): 0 minutes, (b): 30 minutes, (c): 60 minutes [Fig. 6] Fabricated on a silicon substrate with a Pt electrode by irradiation with ultraviolet light from an ultra-high pressure mercury lamp at a temperature of 150 ° C. An AFM observation image of an SBT thin film is shown. Irradiation time (a): 0 minutes, (b): 60 minutes

Claims (8)

部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 ,R:C,H,Oを含む有機官能基)を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSrBi2 Ta29 (SBT)薄膜に、紫外線照射することを特徴とする、ビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性・表面平滑性制御方法。Crystals coated on a substrate with a Pt electrode using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (an organic functional group containing Sr [BiTa (OR) 9 ] 2 , R: C, H, O) as a precursor solution. A method for controlling crystallinity / orientation / surface smoothness of a bismuth-based layered perovskite SBT thin film, wherein the SrBi 2 Ta 2 O 9 (SBT) thin film before irradiation is irradiated with ultraviolet rays. 部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSrBi2 Ta29 (SBT)薄膜に、超高圧水銀灯を用いて室温下で紫外線照射することを特徴とする、請求項1記載のビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性・表面平滑性制御方法。SrBi 2 Ta 2 O 9 (SBT) thin film before crystallization coated with a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) on a substrate with a Pt electrode The method for controlling crystallinity, orientation, and surface smoothness of a bismuth-based layered perovskite SBT thin film according to claim 1, wherein ultraviolet irradiation is performed at room temperature using an ultrahigh pressure mercury lamp. 部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、低圧水銀灯を用いて室温下で紫外線照射することを特徴とする、請求項1記載のビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性制御方法。Using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution, an SBT thin film coated on a substrate with a Pt electrode was crystallized at room temperature using a low-pressure mercury lamp. 2. The method for controlling the crystallinity and orientation of a bismuth-based layered perovskite SBT thin film according to claim 1, wherein ultraviolet irradiation is performed underneath. 部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、低圧水銀灯を用いて室温下で紫外線照射することを特徴とする、請求項1記載のビスマス系層状ペロブスカイトSBT薄膜の表面平滑性制御方法。Using a partially hydrolyzed Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ) as a precursor solution, an SBT thin film coated on a substrate with a Pt electrode was crystallized at room temperature using a low-pressure mercury lamp. 2. The method for controlling the surface smoothness of a bismuth-based layered perovskite SBT thin film according to claim 1, wherein ultraviolet irradiation is performed underneath. 部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、超高圧水銀灯を用いて150℃の温度条件下で紫外線照射することを特徴とする、請求項1記載のビスマス系層状ペロブスカイトSBT薄膜の結晶性・配向性制御方法。Using Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ), which has been partially hydrolyzed, as a precursor solution, an SBT thin film before crystallization coated on a substrate with a Pt electrode, using an ultrahigh pressure mercury lamp 2. The crystallinity / orientation control method for a bismuth-based layered perovskite SBT thin film according to claim 1, wherein ultraviolet irradiation is performed under a temperature condition of 150.degree. 部分加水分解したSr−Bi−Taトリプルアルコキシド(Sr[BiTa(OR)92 )を前駆体溶液として、Pt電極付き基板上にコーティングした結晶化前のSBT薄膜に、超高圧水銀灯を用いて150℃の温度条件下で紫外線照射することを特徴とする、請求項1記載のビスマス系層状ペロブスカイトSBT薄膜の表面平滑性制御方法。Using Sr—Bi—Ta triple alkoxide (Sr [BiTa (OR) 9 ] 2 ), which has been partially hydrolyzed, as a precursor solution, an SBT thin film before crystallization coated on a substrate with a Pt electrode, using an ultrahigh pressure mercury lamp 2. The method of controlling surface smoothness of a bismuth-based layered perovskite SBT thin film according to claim 1, wherein ultraviolet irradiation is performed under a temperature condition of 150.degree. 請求項1から6のいずれかに記載の部分加水分解したSr−Bi−Taトリプルアルコキシド前駆体溶液を用いて、ディップコーティング、スピンコーティング等のコーティング法ないし印刷法により、Pt電極付きの金属、酸化物単結晶、セラミックス等の基板表面に薄膜を形成することを特徴とする、ビスマス系層状ペロブスカイト薄膜の製造方法。Using the partially hydrolyzed Sr-Bi-Ta triple alkoxide precursor solution according to any one of claims 1 to 6, by a coating method or a printing method such as dip coating or spin coating, a metal with a Pt electrode, oxidation A method for producing a bismuth-based layered perovskite thin film, comprising forming a thin film on the surface of a substrate such as an object single crystal or ceramics. 請求項1から6のいずれかに記載の光照射によって作製されたPt電極付き基板上の結晶化前の薄膜を、仮焼、急速昇温加熱処理し、この一連の行程を膜厚が130nmになるまで繰り返すことを特徴とする、ビスマス系層状ペロブスカイト薄膜の製造方法。A thin film before crystallization on a substrate with a Pt electrode produced by light irradiation according to any one of claims 1 to 6 is calcined and subjected to a rapid heating treatment, and the film thickness is changed to 130 nm. It repeats until it becomes, The manufacturing method of the bismuth type | system | group layered perovskite thin film characterized by the above-mentioned.
JP2001128632A 2001-04-26 2001-04-26 Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation Expired - Lifetime JP3845718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128632A JP3845718B2 (en) 2001-04-26 2001-04-26 Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128632A JP3845718B2 (en) 2001-04-26 2001-04-26 Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation

Publications (2)

Publication Number Publication Date
JP2002321918A JP2002321918A (en) 2002-11-08
JP3845718B2 true JP3845718B2 (en) 2006-11-15

Family

ID=18977297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128632A Expired - Lifetime JP3845718B2 (en) 2001-04-26 2001-04-26 Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation

Country Status (1)

Country Link
JP (1) JP3845718B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507491B2 (en) * 2002-12-27 2010-07-21 セイコーエプソン株式会社 Thin film and element
JP5234532B2 (en) * 2006-12-04 2013-07-10 独立行政法人産業技術総合研究所 Method for producing metal oxide thin film whose surface microstructure is controlled by ultraviolet irradiation and the metal oxide thin film
JP5896396B2 (en) * 2011-05-06 2016-03-30 一般財団法人電力中央研究所 Method for manufacturing composite membrane structure and method for manufacturing fuel cell

Also Published As

Publication number Publication date
JP2002321918A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP3113141B2 (en) Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate
US7339219B2 (en) Capacitance device including a perovskite film having (001) orientation
JP5403497B2 (en) Crystal growth substrate and crystal growth method using the same
KR20010029897A (en) Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US9583270B2 (en) Complex oxide, thin-film capacitive element, liquid droplet discharge head, and method of producing complex oxide
JP5438638B2 (en) Manufacturing apparatus and manufacturing method
JPH08212830A (en) Orienting ferroelectric thin film element and its manufacture
JP2002170938A (en) Semiconductor device and manufacturing method thereof
CN108352443A (en) The forming method of PZT ferroelectric films
JP5126950B2 (en) Method for manufacturing metal oxide film, laminate, and electronic device
JP4963062B2 (en) Method for producing A-site layered ordered perovskite Mn oxide thin film
US5925183A (en) Method for producing layer-structured perovskite thin film of bismuth-based compounds having ferroelectric properties
JP3845718B2 (en) Novel crystallinity, orientation, and surface smoothness control method of bismuth-based layered perovskite SrBi2Ta2O9 thin film by ultraviolet irradiation
Demkov et al. Integrated films of transition metal oxides for information technology
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
Kato Evolution of ferroelectric structure in SrBi2Ta2O9 thin films prepared using triple alkoxides on Pt-passivated Si
Nishizawa et al. Novel chemical processing for crystallization of SrBi2Ta2O9 thin films via UV irradiation
Bao et al. Growth and electrical properties of Pb (Zr, Ti) O3 thin films by a chemical solution deposition method using zirconyl heptanoate as zirconium source
KR100795664B1 (en) 001-orientated perovskite film formation method and device having perovskite film
JPH10116965A (en) Nonvolatile memory thin film and its manufacturing method
Nishizawa et al. Control of crystallization and crystal orientation of alkoxy-derived SrBi2Ta2O9 thin films by ultraviolet irradiation
Wei et al. Low-temperature crystallization of metal organic decomposition BaTiO3 thin film by hydrothermal annealing
JP4238313B2 (en) Method for producing highly crystalline and smooth surface ceramic thin films prepared using light sensitive additives by UV irradiation
JP2006008503A (en) Lead zirconate titania

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Ref document number: 3845718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term