JP3845252B2 - Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety - Google Patents

Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety Download PDF

Info

Publication number
JP3845252B2
JP3845252B2 JP2000237865A JP2000237865A JP3845252B2 JP 3845252 B2 JP3845252 B2 JP 3845252B2 JP 2000237865 A JP2000237865 A JP 2000237865A JP 2000237865 A JP2000237865 A JP 2000237865A JP 3845252 B2 JP3845252 B2 JP 3845252B2
Authority
JP
Japan
Prior art keywords
sugar
compound
gelling agent
gel
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000237865A
Other languages
Japanese (ja)
Other versions
JP2002053840A (en
Inventor
正登 天池
征治 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nippon Soda Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nippon Soda Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nippon Soda Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000237865A priority Critical patent/JP3845252B2/en
Publication of JP2002053840A publication Critical patent/JP2002053840A/en
Application granted granted Critical
Publication of JP3845252B2 publication Critical patent/JP3845252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steroid Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機ゲルの分野に属し、特に広範な有機溶媒に対して強いゲルを形成することができる新規なゲル化剤に関する。
【0002】
【従来の技術】
従来より実用に供されてきたゲルは、主として、高分子ハイドロゲル、すなわち、高分子(ポリマー)から成るゲル化剤が溶媒として水を含んでゲル化したものである。これに対して、最近、比較的低分子の有機化合物をゲル化剤として非水性有機溶媒をゲル化する有機ゲルについても研究が行われるようになり、台所廃油や流出原油等をゲル化により固めて除去するのに実用化の例が見られる他、クロマト分離剤の担体、化学センサーにおける機能性物質の支持体、生体触媒固定化ゲルなどへの展開が期待されている。
【0003】
低分子化合物が、有機溶媒をゲル化する場合、分子間に働く次のような相互作用によって分子集合体(三次元網目構造)が形成されることが知られている。1つは、水素結合の作用によるものであり、他方は非水素結合の作用、すなわちファンデルワールス(van der Waals)相互作用によるものである。
【0004】
本発明者らは、先に、非水素結合作用に基くゲル化剤として、コレステロール構造を有する幾つかの化合物を提示した〔特許第2869684号、特許第2927601号、特開平11−255672号、特願平10−325920号、特願平11−108922号、特願平11−319070号、特願2000−150869号など〕。コレステロール−コレステロール相互作用を利用したこれらのゲル化剤は、多くの有機溶媒をゲル化するという幅広いゲル化能を持つ反面、物理的に強いゲルを作り難い傾向がある。
【0005】
また、本発明者らは、糖構造に含まれる水酸基に因る水素結合に注目し、糖ベンジリデン誘導体から成るゲル化剤(特開平11−323309号、特願平11−49928号、特願平11−49950号)を案出している。さらには、糖に長鎖アルキル基を結合させたゲル化剤も見られる〔Macromol. Chem. Phys. 199. 2379-2384 (1998)〕。水素結合を利用したこれらのゲル化剤から得られたゲルは、前者のコレステロールの相互作用によるゲルと比べると、物理的には強いのであるが溶媒選択性が比較的狭い。
【0006】
有機溶媒用のゲル化剤としてはその他にも各種の化合物が提案されているが、溶媒選択性の広さおよび形成されるゲルの強さの両者から優れたゲル化剤はあまり見当らない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、広範な有機溶媒に適用されて強固なゲルを形成することができる新しいタイプの有機溶媒ゲル化剤を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上述のごとき目的を達成するものとして、糖−糖分子間に働く水素結合の作用とコレステロール−コレステロール分子間に働く非水素結合の作用がゲル形成に協同的に働くような構造の化合物を見出し、本発明を導き出した。
【0009】
かくして、本発明に従えば、下記の一般式(1)で表わされコレステロール誘導体から成ることを特徴とする有機溶媒ゲル化剤が提供される。
【0010】
【化2】

Figure 0003845252
【0011】
式(1)中、R1およびR2のいずれか一方は糖の残基を表わし、他方は水素原子を表わす。なお、式(1)中のR1およびR2によって表わされる「糖の残基」とは、糖の分子構造式から、当該糖がベンゼン環〔式(1)の左端にあるベンゼン環〕に結合するに際して失われた水素原子(ヘミアセタール水酸基の水素原子)を除いた構造式を指称する。
【0012】
本発明の有機溶媒の好ましい態様に従えば、式(1)においてR1が少なくとも1個のアキシアル水酸基を有するピラノース環を含む糖の残基であり、特に好ましい態様に従えば、該糖は、α−ガラクトース、β−ガラクトース、α−マンノース、α−グルコースから選ばれる単糖類である。
【0013】
【発明の実施の形態】
糖部位とコレステロール部位とを有し式(1)で表わされる化合物から成る本発明のゲル化剤は、一般に、少なくともいずれかの有機溶媒に対してゲル化能を発揮する。これは、式(1)で表わされる化合物は、非水素結合性の相互作用であるコレステロール−コレステロール相互作用に因りコレステロール分子が互いに重なり合うとともに、糖分子がその水酸基による水素結合を介して結合することによって形成された分子集合体中に有機溶媒を取り込んでゲルを形成するためと理解される。
【0014】
本発明に従い、適用される溶媒の選択性の範囲や形成されるゲルの強さ(安定性)の点において特に優れたゲル化剤を得るためには、糖の構造や結合位置が重要である。すなわち、本発明のゲル化剤の好ましい態様に従えば、式(1)においてR1およびR2のうち、R1が糖(正確には糖の残基)を構成するようにし(したがって、R2は水素原子となる)、ここで糖は、安定なピラノース環を含み且つそれらの結合している水酸基(ヘミアセタール水酸基を含む)のうち少なくとも1個がアキシアル(axial)水酸基(ピラノース環の面に対して上下方向に結合している水酸基)であるような糖類から選ばれる。
【0015】
このようにR1が少なくとも1個のアキシアル水酸基を有するピラノース環を含む糖(糖の残基)であるような式(1)のコレステロール誘導体がゲル化剤として優れているのは、糖−糖分子間相互作用に寄与すると考えられるエクアトリアル(equatorial)水酸基(ピラノース環の面に対して平行に結合している水酸基)のみならず、糖の分子内水素結合に寄与すると考えられるアキシアル水酸基が存在することによって、「適度の」大きさの糖−糖分子間相互作用が働き、各種の溶媒に対して適度な溶解性を有する分子集合体を形成するためと考えられる。
【0016】
これに対して、糖−糖分子間の相互作用が強すぎる場合、例えば、式(1)においてR1がエクアトリアル水酸基のみから成るピラノース環の糖(糖残基)である場合(例えば、後述の実施例に示す化合物〔4〕)は、多くの有機溶媒に不溶性の凝集体が形成され効果的なゲル化剤として機能しない。また、例えば、式(1)におけるR2の方に糖(糖残基)が結合されている場合(例えば後述の実施例に示す化合物〔6〕)にもゲル化能が悪くなるが、この場合は、糖−糖分子間の相互作用が弱いために、ゲル形成に必要な分子集合体の形成能が低下するためと考えられる。
【0017】
本発明に従い、適用される有機溶媒の選択性の幅が広く強固(安定)なゲルを形成し得るのに有用な「少なくとも1個のアキシアル水酸基を有するピラノース環(ピラノシド環も含む)を含む糖」としては、α−ガラクトース、α−マンノース、α−グルコースから選ばれる単糖類を構成要素として含む二糖類、オリゴ糖、および多糖類が挙げられる。しかし、一般的には糖類の分子量が大きくなるに従って糖−糖分子間の相互作用が大きくなりゲル化能が低下するので、R1として使用される糖(糖残基)は上述のごとき単糖類が好ましい。
【0018】
式(1)で表わされるコレステロール誘導体は、有機溶媒のゲル化剤として機能し、特に、R1が少なくとも1個のアキシアル水酸基を有するピラノース環を含む単糖類である場合には、広範な有機溶媒に適用でき且つ用いた溶媒の沸点に近いか又はそれよりも高温のゾル−ゲル相転移温度(Tgel)を示す安定な(強固な)ゲルを得ることもできる。得られるゲルは、一般に、数十nmの繊維が絡み合った三次元網目構造を呈し、安定なゲル(Tgelが溶媒の沸点に近いゲル)ほど、繊維が微細となり且つ絡み合いの程度が大きくなることがSEM(走査型顕微鏡)によって観察されている(図3参照)。
【0019】
式(1)で表わされるコレステロール誘導体は、図1に示すような反応スキームに従って合成することができる。すなわち、CH3OH(メタノール)のような溶媒中でニトロフェニル糖ピラノシドをPd−C(10%活性炭含有パラジウム触媒)のような還元触媒を用いて水素化還元してアミノフェニル体に変え、その後、THF(テトラヒドロフラン)のような溶媒中でTEA(トリエチルアミン)のような塩基触媒を用いてコレステロール誘導体とのカップリングを行うことによって目的とする式(1)の化合物を得ることができる。なお、原料となるニトロフェニル糖ピラノシドは、市販品であり容易に入手できる。
【0020】
【実施例】
以下に、本発明の特徴をさらに明らかにするため実施例を示すが、本発明はこれらの実施例によって制限されるものではない。
実施例1:ゲル化剤の合成
ゲル化剤として図2に示す化合物〔1〕〜〔7〕を図1に示すスキームに従って合成した。
化合物〔11〕の合成:1−O−(4−ニトロフェニル)−α−D−グルコピラノシド(603mg、2.0mmol)をメタノール60ml中に溶解させ、10%Pd‐C触媒(60mg)を用いて水素による接触還元を行った。TLC(メタノール:クロロホルム=1:1)による確認の後、ろ過によりPd−C触媒を取り除き、溶媒を減圧留去し、白色固体物を得た。得られた固体物をメタノールを用いた再結晶を行うことにより精製した。:収率95%, mp 168.1-168.8℃ ; IR (KBr)νmax 3364, 3335, 2967, 2924, 1516, 1371, 1252, 1029, 1140, 1107, 1028, 1013, 902 cm 1 ; 1H NMR (DMSO-d6) δ3.16-3.61 (m, 6H), 4,46 (t, J=5,5 Hz, 1H), 4.70(s, 2H), 4.88-4.93 (m, 3H), 5.05 (d, J=3.6 Hz, 1H), 6.48 (d, J=6.9 Hz, 2H), 6.78 (d, J=6.9 Hz, 2H)。
【0021】
他の化合物〔12〕〜〔17〕も同様の方法に従って合成した。それらについては分析データのみを以下に示す。
化合物〔12〕:収率84%, mp 161.1-161.8℃ ; IR (KBr) νmax 3389, 2934, 1510, 1219, 1080, 1028, 972 cm 1 ; 1H NMR (DMSO-d6) δ3.15-3.77 (m, 6H), 4.45-4.69 (m, 6H), 5.06 (s, 1H), 6.47 (d, J=8.6 Hz, 2H), 6.78 (d, J=8.6 Hz, 2H)。
【0022】
化合物〔13〕:収率85% ; mp 157.9-159.6℃ ; IR (KBr) νmax 3393, 3330, 2940, 1514, 1219, 1122, 1097, 1049, 1024, 970 cm 1 ; 1H NMR (DMSO-d6)δ 3.16-3.61 (m, 6H), 3.76 (s, 1H), 4.33 (s,1H), 4.74-4.89 (m, 6H), 5.05 (s, 1H), 6.47 (d, J=8.6 Hz, 2H), 6.77 (d, J=8.6 Hz, 2H)。
【0023】
化合物〔14〕:収率98%, mp 162.3-162.9℃ ; IR (KBr) νmax 3369, 2869, 1639, 1510, 1397, 1224, 1074, 1044, 1014, 833 cm 1 ; 1H NMR (DMSO-d6) δ 3.10-3.20 (m, 4H), 3.40-3.48 (m, 1H), 3.64-3.70 (m, 1H), 4.54 (d, J=7.1 Hz, 1H), 4.57 (d, J=7.5 Hz, 1H), 4.71 (s,2H), 4.95 (d, J=5.0 Hz, 1H), 5.02 (d, J=4.5 Hz, 1H), 5.20 (d, J=4.8 Hz, 1H), 6.48 (d, J=8.8 Hz, 2H),
6.76 (d, J=8.8 Hz, 2H)。
【0024】
化合物〔15〕:収率94%, mp 168.5-169.4℃ ; IR (KBr) νmax 3445, 3356, 2957, 1641, 1509, 1396, 1225, 1084, 1064, 1037, 885 cm 1 ; 1H NMR (DMSO-d6) δ 3.15-3.66 (m, 6H), 4.43 (d,J=4.0 Hz, 1H), 4.53 (d, J=7.6 Hz, 1H), 4.58-4.62 (m, 1H), 4.66 (s, 2H), 4.78 (d, J=5.6 Hz, 1H), 5.05 (d, J=5.0 Hz, 1H), 6.47 (d, J=8.7 Hz, 2H), 6.75 (d, J=8.7 Hz, 2H)。
【0025】
化合物〔16〕:収率98%, mp 187.4-187.8℃ ; IR (KBr) νmax 3369, 2869, 1734, 1698, 1607, 1541, 1456, 1253, 1225, 1197, 1072, 1041 cm 1 ; 1H NMR (DMSO-d6) δ 3.14-3.18 (m, 4H), 3.45-3.51 (m, 1H), 3.68-3.73 (m, 1H), 4.51 (d, J=7.1 Hz, 1H), 4.58 (t, J=5.8 Hz, 1H), 4.95 (s, 2H), 5.01 (d, J=5.1 Hz, 1H), 5.08 (d, J=3.7 Hz, 1H), 5.53 (d, J=3.7 Hz, 1H), 6.47 (t, J=6.5 Hz, 1H), 6.63 (d, J=7.8 Hz, 1H), 6.75 (d, J=7.3 Hz, 1H), 6.99 (d, J=7.7 Hz, 1H)。
【0026】
化合物〔17〕:収率94%, mp 201.4-202.4℃ ; IR (KBr) νmax 3445, 3357, 2869, 1734, 1698, 1607, 1541, 1456, 1254, 1225, 1051 cm 1 ; 1H NMR (DMSO-d6) δ 3.39-3.58 (m, 5H), 3.69 (s, 1H), 4.47-4.51 (m, 2H), 4.65 (d, J=5.2 Hz, 1H), 4.86 (d, J=3.5 Hz, 1H), 4.97 (s, 2H), 5.41 (d, J=2.5 Hz, 1H), 6.45 (d, J=7.3 Hz, 1H), 6.74 (t, J=7.3 Hz, 1H), 6.76 (d, J=7.3 Hz, 1H), 6.98 (d, J=7.5 Hz, 1H)。
【0027】
化合物〔1〕の合成:窒素雰囲気下において3b−コレスト−5−エン−3−イル−クロロホルメート(435mg, 1.10mmol)とトリエチルアミン(336mg, 3.31mmol)を、化合物〔11〕のTHF90ml溶液中に加えた。60℃での4時間の攪拌の後、析出物を除去するため、ろ過を行った。そして、そのろ液から溶媒を減圧留去した後、シリカカラムクロマトグラフィーにて化合物を精製した。(THF:クロロホルム=3:1):収率84%, mp 228.3-229.7℃ ; IR (KBr) νmax 3351, 2950, 2868, 1701, 1604, 1514, 1468, 1217, 1109, 1076, 1025, 925cm 1 ; 1H NMR (DMSO-d6) δ 0.64-2.40 (m, 43H), 3.16-3.22 (m, 1H), 3.46 (d, J=8.6 Hz, 2H), 3.55-3.62 (m, 3H), 4.45-4.48 (m, 2H), 4.90 (d, J=4.9 Hz, 1H9, 4.96 (d, J=5.7 Hz, 1H), 5.01 (d, J=6.2 Hz, 1H), 5.25 (d, J=3.2 Hz, 1H), 5.38 (s, 1H), 6.99 (d, J=8.7 Hz, 2H), 7.34 (d, J=8.7 Hz, 2H), 9.45 (s, 1H) ; m/z 682 [M-H]. Found : C, 69.96 ; H, 8.95 ; N, 2.00%. Calcd for C40H61NO4 : C, 70.25 ; H, 8.99 ; N, 2.05%。
【0028】
他の化合物〔2〕〜〔7〕も上記と同様の方法に従って合成した。それらについては分析データのみを以下に示す。
化合物〔2〕:収率58%, mp 178.6-179.7℃ ; IR (KBr) νmax 3323, 2950, 2869, 1732, 1700, 1603, 1516, 1437, 1311, 1215, 1117, 1071, 1032, 957cm 1 ; 1H NMR (DMSO-d6) δ 0.65-2.50 (m, 43H), 3.35-3.77 (m, 1H), 3.47-3.62 (m, 1H), 3.69-3.77 (m, 4H), 4.40-4.45 (m, 1H), 4.50 (d, J=5.0 Hz, 1H), 4.52 (d, J=5.9 Hz, 1H), 4.69 (d, J=3.1 Hz, 1H), 4.81 (d, J=4.4 Hz, 1H), 5.26 (s, 1H), 5.37 (s, 1H), 6.98 (d, J=8.7 Hz, 2H), 7.33 (d, J=8.7 Hz, 2H), 9.44 (s, 1H) ; m/z 682 [M-H] : Found : C, 69.66; H, 8.92 ; N, 2.01%. Calcd for C40H61NO4 : C, 70.25 ; H, 8.99 ; N, 2.05%。
【0029】
化合物〔3〕:収率77%, mp 167.4-168.9℃ ; IR (KBr) νmax 3363, 2950, 2869, 1734, 1603, 1516, 1458, 1418, 1311, 1215, 1121, 1013, 980, 830 cm 1 ; 1H NMR (DMSO-d6) δ 0.66-2.43 (m, 43H), 3.42-3.48 (m, 2H), 3.57-3.62 (m, 3H),3.79 (s, 1H), 4.42-4.44 (m, 2H), 4.72 (d, J=5.9 Hz, 1H), 4.80 (d, J=5.1 Hz, 1H), 4.96 (d, J=4.3 Hz, 1H), 5.24 (s, 1H9, 5.38 (s, 1H9, 6.99 (d, J=8.7 Hz, 2H), 7.34 (d, J=8.7 Hz, 2H), 9.46 (s, 1H) ; m/z 682 [M-H] : Found : C, 70.01 ; H, 8.98 ; N, 2.01%, Calcd for C40H61NO4 : C, 70.25 ; H, 8.99 ; N, 2.05%。
【0030】
化合物〔4〕:収率92%, mp 262.4-263.2℃ ; IR (KBr) νmax 3569, 3382, 2950, 1694, 1607, 1551, 1514, 1469, 1321, 1235, 1105, 1057, 1019, 831 cm 1 ; 1H NMR (DMSO-d6) δ 0.66-2.41 (m, 43H), 3.16-3.46 (m, 5H), 3.68 (d, J=11.8 Hz, 1H), 4.42-4.47 (m, 1H), 4.55 (s, 1H), 4.74 (d, J=7.2 Hz, 1H), 5.01 (s, 1H), 5.07 (s, 1H), 5.28 (s, 1H), 5.38 (s, 1H), 6.94 (d, J=8.8 Hz, 2H), 7.37 (d, J=8.8 Hz, 2H), 9.45 (s, 1H); m/z 682 [M-H]. Found : C, 70.29 ; H, 9.02 ; N, 2.08%, Calcd for C40H61NO4 : C 70.25 ; H, 8.99 ;
N, 2.05%。
【0031】
化合物〔5〕:収率79%, mp 219.6-220.2℃ ; IR (KBr) νmax 3358, 2950, 2867, 1701, 1603, 1514, 1468, 1312, 1217, 1140, 1055, 949, 833 cm 1 ; 1H NMR (DMSO-d6) δ 0.65-2.41 (m, 43H), 3.38-3.68 (m, 6H), 4.40-4.44 (m, 1H), 4.48 (d, J=4.3 Hz, 1H), 4.63 (s, 1H), 4.71 (d, J=7.6 Hz, 1H), 4.48 (d, J=5.3 Hz, 1H), 5.13 (d, J=5.0 Hz, 1H), 5.38 (s, 1H), 6.94 (d, J=9.0 Hz, 2H), 7.33 (d, J=9.0 Hz, 2H), 9.45 (s, 1H) ; m/z 682 [M-H]. Found : C, 69.93 ; H, 9.00 ; N, 2.02%, Calcd for C40H61NO4 : C 70.25 ; H, 8.99 ; N, 2.05%。
【0032】
化合物〔6〕:収率92%, mp 152.1-153.2℃ ; IR (KBr) νmax 3391, 2950, 2869, 1734, 1698, 1607, 1541, 1456, 1334, 1253, 1225, 1198, 1072, 1042 cm 1 ; 1H NMR (DMSO-d6) δ 0.66-2.45 (m, 43H), 3.45-3.70 (m, 6H), 4.47-4.54 (m, 1H), 4.49 (d, J=5.2 Hz, 1H), 4.55 (d, J=5.2 Hz,1H), 4.65 (d, J=3.7 Hz, 1H), 4.67 (d, J=6.8 Hz, 1H), 4.91 (d, J=5.6 Hz, 1H), 5.39 (s, 1H), 5.63 (d, J=4.0 Hz, 1H), 6.96 (d, J=4.0 Hz, 1H), 6.98 (d, J=5.5 Hz, 1H), 7.09 (t, J=3.8 Hz, 1H), 7.83 (t, J=4.0 Hz, 1H), 8.68 (s, 1H) ; m/z 682 [M-H]. Found : C, 69.96 ; H, 8.93 ; N, 2.02%. Calcd for C40H61NO4 : C 70.23 ; H, 8.99 ; N, 2.05%。
【0033】
化合物〔7〕:収率74%, mp 174.7-175.8℃ ; IR (KBr) νmax 3421, 2950, 1734, 1687, 1607, 1532, 1456, 1375, 1254, 1227, 1196, 1086, 1042 cm 1 ; 1H NMR (DMSO-d6) δ 0.67-2.45 (m, 43H), 3.41-3.71 (m, 6H), 4.45-4.54 (m, 2H), 4.67 (d, J=7.6 Hz, 2H), 4.89 (s, 1H), 5.40 (s, 1H), 5.62 (d, J=3.4 Hz, 1H), 6.97 (d, J=5.2 Hz, 1H), 6.98 (d, J=4.3 Hz, 1H), 7.11 (t, 1H), 7.85 (t, 1H), 8.68 (s, 1H) ; m/z 682 [M-H]. Found : C, 70.20 ; H, 8.97 ; N, 2.01%. Calcd for C40H61NO4 : C 70.20 ; H,8.99 ; N, 2.05%。
【0034】
実施例2:ゲル化実験
実施例1で合成した化合物〔1〕〜〔7〕をゲル化剤として、各種有機溶媒に対するゲル化能を調べた。ゲル化実験は次のように行った。ゲル化剤の濃度は4.0
wt/v)%とした。すなわち、ゲル化剤(0.4mg)と溶媒(0.1ml)とをねじ口サンプル瓶中に入れ、固形分が溶解するまで加熱し溶解させた。得られた溶液を室温にまで冷却し1時間放置してゲルの形成を観察した。これらの結果を表1に示す。ゲルとして存在する場合は、「G」または「G」として分類した。前者は透明なゲルを、後者は濁ったゲルを表わす。また、部分的にゲルが形成した場合は「Gp」と表記し、さらに、溶液状態のままの場合は「S」、沈殿を形成した場合は「P」、不溶の場合は「I」と、それぞれ表記している。
【0035】
なお、表1の下方には、化合物〔1〕〜〔7〕について、それぞれに導入されている糖の構造的特徴をまとめて表記している。表中、Glcはグルコース、Galはガラクトース、Manはマンノースを表わし、その位置を表わすp−とは式(1)の左端のベンゼン環のパラ位にそれぞれの糖(の残基)が結合している(すなわち、R1が糖の残基である)ことを示し、これに対してo−とはオルト位に糖の残基が結合している(R2が糖の残基である)ことを示す。さらに、各糖の水酸基(ヘミアセタール水酸基を含む)について、エクアトリアル水酸基の数をeq−OHとして、またアキシアル水酸基の数をax−OHとして示している。
【0036】
【表1】
Figure 0003845252
【0037】
さらに、ゲル形成した系につき、ゾル−ゲル相転移温度(Tgel)を測定した。測定は、ゲルが入った試験管を温度制御されたオイルバス中に沈め、毎分2℃ずつ温度を上昇させ、ゲルが消えたときの温度をTgelとすることにより行った。
なお、得られたゲルのキセロゲルのSEM(走査電子顕微鏡)写真を図3に例示する。図3のAはゲル化剤として化合物〔2〕、Bは化合物〔3〕を用いて、いずれもp−キシレンをゲル化した場合の例である。
表2に各ゲル形成系におけるゾル−ゲル相転移温度(Tgel)を示す。
【0038】
【表2】
Figure 0003845252
【0039】
表1および表2に示すゲル化実験の結果から理解されるように、アキシアル水酸基を有するピラノース環から成る単糖類の残基がp−位に結合している(R1が糖残基である)化合物〔1〕、〔2〕、〔3〕および〔5〕は多くの有機溶媒をゲル化することができ、特に化合物〔2〕および〔5〕はきわめて多種類の有機溶媒に対してゲル化能を有する。
【0040】
また、これらのゲル化剤〔1〕、〔2〕、〔3〕および〔5〕は強さ(安定性)においても良好なゲルを形成し、ときには溶媒の沸点近傍またはそれよりも高温のゾル−ゲル相転移温度(Tgel)を示す強靭なゲルを得ることができる。例えば、表2に示されるように、〔1〕はベンゼンに対し、〔2〕はシクロヘキサンに対し、〔5〕はメチルシクロヘキサン、ベンゼンおよびクロロホルムに対して、それぞれの溶媒の沸点又は沸点以上のTgelを示している。
【0041】
式(1)においてベンゼン環のo−位に糖残基が結合した(R2が糖残基である)構造から成る化合物〔6〕および〔7〕も、幾つかの有機溶媒に対してゲル化能を有するが、適用される有機溶媒の幅および形成されるゲルの強さ(安定性)の点からゲル化剤として化合物〔1〕、〔2〕、〔3〕および〔5〕よりも劣っている。また、エクアトリアル水酸基のみを含むβ−グルコースの残基(β−グルコピラノシル)がp−位結合された化合物〔4〕は、殆どの有機溶媒に対して不溶性となりゲル化剤としては適していない。これは既述したように糖−糖分子間の相互作用が強すぎて不溶性の凝集体が形成されるためと考えられる。
【0042】
【発明の効果】
式(1)で表わされるコレステロール部位と糖部位とを有する本発明の化合物は、有機溶媒のゲル化剤として機能し、特に、コレステロール分子間の相互作用と糖分子間の相互作用とが協同的に働くように分子設計することにより多種類の有機溶媒に対して強固なゲルの形成を可能にする。
【図面の簡単な説明】
【図1】本発明のゲル化剤を合成するスキームを示す。
【図2】実施例で用いた本発明のゲル化剤の化学構造式を示す。
【図3】本発明のゲル化剤を用いて得られるキセロゲルの例の粒子構造を示す電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the field of organic gels, and particularly relates to a novel gelling agent capable of forming a strong gel against a wide range of organic solvents.
[0002]
[Prior art]
Gels that have been put to practical use from the past are mainly polymer hydrogels, that is, gelling agents composed of a polymer (polymer) containing water as a solvent. In contrast, recently, research has also been conducted on organic gels that gel non-aqueous organic solvents using relatively low molecular organic compounds as gelling agents, and solidify kitchen waste oil and spilled crude oil by gelation. In addition to the examples of practical use, the development of a carrier for a chromatographic separation agent, a support for a functional substance in a chemical sensor, a biocatalyst-immobilized gel, and the like is expected.
[0003]
When a low molecular weight compound gels an organic solvent, it is known that a molecular assembly (three-dimensional network structure) is formed by the following interaction between molecules. One is due to the action of hydrogen bonds and the other is due to the action of non-hydrogen bonds, ie van der Waals interactions.
[0004]
The present inventors previously presented several compounds having a cholesterol structure as gelling agents based on the non-hydrogen bonding action [Patent No. 2869684, Patent No. 2927601, JP-A No. 11-255672, No. 10-325920, No. 11-108922, No. 11-319070, No. 2000-150869, etc.). These gelling agents utilizing the cholesterol-cholesterol interaction have a wide gelling ability to gel many organic solvents, but tend to make a physically strong gel difficult.
[0005]
Further, the present inventors paid attention to the hydrogen bond due to the hydroxyl group contained in the sugar structure, and made a gelling agent comprising a sugar benzylidene derivative (Japanese Patent Application Laid-Open No. 11-323309, Japanese Patent Application No. 11-49928, Japanese Patent Application No. 11-49950). Furthermore, a gelling agent in which a long-chain alkyl group is bonded to a sugar is also observed [Macromol. Chem. Phys. 199. 2379-2384 (1998)]. The gel obtained from these gelling agents using hydrogen bonds is physically strong but has a relatively narrow solvent selectivity compared to the former gel due to the interaction of cholesterol.
[0006]
Various other compounds have been proposed as gelling agents for organic solvents, but there are few gelling agents that are excellent in terms of both the solvent selectivity and the strength of the gel formed.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a new type of organic solvent gelling agent that can be applied to a wide range of organic solvents to form a strong gel.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the present inventor has a structure in which the action of a hydrogen bond acting between sugar-sugar molecules and the action of a non-hydrogen bond acting between cholesterol-cholesterol molecules cooperate in gel formation. As a result, the present invention was derived.
[0009]
Thus, according to the present invention, there is provided an organic solvent gelling agent represented by the following general formula (1) and comprising a cholesterol derivative.
[0010]
[Chemical 2]
Figure 0003845252
[0011]
In formula (1), one of R 1 and R 2 represents a sugar residue, and the other represents a hydrogen atom. The “sugar residue” represented by R 1 and R 2 in formula (1) refers to the sugar in the benzene ring [the benzene ring at the left end of formula (1)] from the molecular structure of the sugar. This refers to a structural formula excluding a hydrogen atom lost in bonding (hydrogen atom of hemiacetal hydroxyl group).
[0012]
According to a preferred embodiment of the organic solvent of the present invention, in formula (1), R 1 is a residue of a sugar containing a pyranose ring having at least one axial hydroxyl group. According to a particularly preferred embodiment, the sugar is It is a monosaccharide selected from α-galactose, β-galactose, α-mannose and α-glucose.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The gelling agent of the present invention comprising a compound having a sugar moiety and a cholesterol moiety and represented by the formula (1) generally exhibits a gelling ability with respect to at least one organic solvent. This is because in the compound represented by the formula (1), cholesterol molecules overlap with each other due to cholesterol-cholesterol interaction, which is a non-hydrogen bonding interaction, and sugar molecules are bonded through hydrogen bonding by the hydroxyl group. It is understood that the gel is formed by incorporating an organic solvent into the molecular assembly formed by the above.
[0014]
In order to obtain a gelling agent that is particularly excellent in terms of the range of selectivity of the solvent to be applied and the strength (stability) of the gel to be formed according to the present invention, the structure and bonding position of the sugar are important. . That is, according to a preferred embodiment of the gelling agent of the present invention, of R 1 and R 2 in formula (1), as R 1 constitutes a sugar (exactly residues of sugars) (thus, R 2 is a hydrogen atom), where the sugar contains a stable pyranose ring and at least one of the bonded hydroxyl groups (including the hemiacetal hydroxyl group) is an axial hydroxyl group (surface of the pyranose ring). Is selected from saccharides such as a hydroxyl group bonded in the vertical direction.
[0015]
Thus, the cholesterol derivative of the formula (1) in which R 1 is a sugar (residue of sugar) containing a pyranose ring having at least one axial hydroxyl group is excellent as a gelling agent. There are not only equatorial hydroxyl groups that are thought to contribute to intermolecular interactions (hydroxyl groups bonded in parallel to the plane of the pyranose ring) but also axial hydroxyl groups that are thought to contribute to intramolecular hydrogen bonding of sugars. This is considered to be because the “moderate” size sugar-sugar molecule interaction works to form a molecular assembly having appropriate solubility in various solvents.
[0016]
On the other hand, when the interaction between sugar-sugar molecules is too strong, for example, when R 1 is a sugar (sugar residue) of a pyranose ring composed only of an equatorial hydroxyl group in the formula (1) (for example, described later) The compound [4]) shown in the examples does not function as an effective gelling agent because insoluble aggregates are formed in many organic solvents. In addition, for example, when a sugar (sugar residue) is bound to R 2 in Formula (1) (for example, compound [6] shown in the below-mentioned Examples), the gelation ability is deteriorated. In this case, it is considered that the ability to form a molecular assembly necessary for gel formation is lowered because the interaction between sugar and sugar molecules is weak.
[0017]
According to the present invention, a sugar containing a pyranose ring (including a pyranoside ring) having at least one axial hydroxyl group, which is useful for forming a firm (stable) gel with a wide range of selectivity of the applied organic solvent. "Includes disaccharides, oligosaccharides, and polysaccharides containing a monosaccharide selected from α-galactose, α-mannose, and α-glucose as a constituent element. However, in general, as the molecular weight of the saccharide increases, the interaction between the saccharide and sugar molecules increases and the gelation ability decreases. Therefore, the saccharide (sugar residue) used as R 1 is a monosaccharide as described above. Is preferred.
[0018]
The cholesterol derivative represented by the formula (1) functions as a gelling agent for an organic solvent, and particularly when R 1 is a monosaccharide containing a pyranose ring having at least one axial hydroxyl group, a wide range of organic solvents. It is also possible to obtain a stable (hard) gel exhibiting a sol-gel phase transition temperature (Tgel) close to or higher than the boiling point of the solvent used. The obtained gel generally has a three-dimensional network structure in which fibers of several tens of nanometers are entangled, and the more stable the gel (Tgel is a gel close to the boiling point of the solvent), the finer the fibers and the greater the degree of entanglement. It is observed by SEM (scanning microscope) (see FIG. 3).
[0019]
The cholesterol derivative represented by the formula (1) can be synthesized according to a reaction scheme as shown in FIG. That is, a nitrophenyl sugar pyranoside is hydroreduced using a reduction catalyst such as Pd-C (10% activated carbon-containing palladium catalyst) in a solvent such as CH 3 OH (methanol) to be converted into an aminophenyl compound, and then The desired compound of formula (1) can be obtained by coupling with a cholesterol derivative using a base catalyst such as TEA (triethylamine) in a solvent such as THF (tetrahydrofuran). In addition, the nitrophenyl sugar pyranoside used as a raw material is a commercial item and can be obtained easily.
[0020]
【Example】
Examples are given below to further clarify the features of the present invention, but the present invention is not limited to these examples.
Example 1: Synthesis of gelling agent Compounds [1] to [7] shown in Fig. 2 were synthesized as gelling agents according to the scheme shown in Fig. 1.
Synthesis of compound [11]: 1-O- (4-nitrophenyl) -α-D-glucopyranoside (603 mg, 2.0 mmol) was dissolved in 60 ml of methanol and hydrogenated using 10% Pd—C catalyst (60 mg). The catalytic reduction was performed. After confirmation by TLC (methanol: chloroform = 1: 1), the Pd—C catalyst was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a white solid. The obtained solid was purified by recrystallization using methanol. : Yield 95%, mp 168.1-168.8 ° C; IR (KBr) ν max 3364, 3335, 2967, 2924, 1516, 1371, 1252, 1029, 1140, 1107, 1028, 1013, 902 cm 1 ; 1 H NMR (DMSO-d 6 ) δ3.16-3.61 (m, 6H), 4,46 (t, J = 5,5 Hz, 1H), 4.70 (s, 2H), 4.88-4.93 (m, 3H), 5.05 (d, J = 3.6 Hz, 1H), 6.48 (d, J = 6.9 Hz, 2H), 6.78 (d, J = 6.9 Hz, 2H).
[0021]
Other compounds [12] to [17] were synthesized according to the same method. Only analytical data is shown below.
Compound [12]: 84% yield, mp 161.1-161.8 ℃; IR (KBr ) ν max 3389, 2934, 1510, 1219, 1080, 1028, 972 cm - 1; 1 H NMR (DMSO-d 6) δ3. 15-3.77 (m, 6H), 4.45-4.69 (m, 6H), 5.06 (s, 1H), 6.47 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H).
[0022]
Compound [13]: 85% yield; mp 157.9-159.6 ℃; IR (KBr ) ν max 3393, 3330, 2940, 1514, 1219, 1122, 1097, 1049, 1024, 970 cm - 1; 1 H NMR (DMSO -d 6 ) δ 3.16-3.61 (m, 6H), 3.76 (s, 1H), 4.33 (s, 1H), 4.74-4.89 (m, 6H), 5.05 (s, 1H), 6.47 (d, J = 8.6 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H).
[0023]
Compound [14]: 98% yield, mp 162.3-162.9 ℃; IR (KBr ) ν max 3369, 2869, 1639, 1510, 1397, 1224, 1074, 1044, 1014, 833 cm - 1; 1 H NMR (DMSO -d 6 ) δ 3.10-3.20 (m, 4H), 3.40-3.48 (m, 1H), 3.64-3.70 (m, 1H), 4.54 (d, J = 7.1 Hz, 1H), 4.57 (d, J = 7.5 Hz, 1H), 4.71 (s, 2H), 4.95 (d, J = 5.0 Hz, 1H), 5.02 (d, J = 4.5 Hz, 1H), 5.20 (d, J = 4.8 Hz, 1H), 6.48 (d, J = 8.8 Hz, 2H),
6.76 (d, J = 8.8 Hz, 2H).
[0024]
Compound [15]: 94% yield, mp 168.5-169.4 ℃; IR (KBr ) ν max 3445, 3356, 2957, 1641, 1509, 1396, 1225, 1084, 1064, 1037, 885 cm - 1; 1 H NMR (DMSO-d 6 ) δ 3.15-3.66 (m, 6H), 4.43 (d, J = 4.0 Hz, 1H), 4.53 (d, J = 7.6 Hz, 1H), 4.58-4.62 (m, 1H), 4.66 (s, 2H), 4.78 (d, J = 5.6 Hz, 1H), 5.05 (d, J = 5.0 Hz, 1H), 6.47 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 8.7 Hz , 2H).
[0025]
Compound [16]: 98% yield, mp 187.4-187.8 ℃; IR (KBr ) ν max 3369, 2869, 1734, 1698, 1607, 1541, 1456, 1253, 1225, 1197, 1072, 1041 cm - 1; 1 H NMR (DMSO-d 6 ) δ 3.14-3.18 (m, 4H), 3.45-3.51 (m, 1H), 3.68-3.73 (m, 1H), 4.51 (d, J = 7.1 Hz, 1H), 4.58 ( t, J = 5.8 Hz, 1H), 4.95 (s, 2H), 5.01 (d, J = 5.1 Hz, 1H), 5.08 (d, J = 3.7 Hz, 1H), 5.53 (d, J = 3.7 Hz, 1H), 6.47 (t, J = 6.5 Hz, 1H), 6.63 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 7.3 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H) .
[0026]
Compound (17): yield 94%, mp 201.4-202.4 ℃; IR (KBr ) ν max 3445, 3357, 2869, 1734, 1698, 1607, 1541, 1456, 1254, 1225, 1051 cm - 1; 1 H NMR (DMSO-d 6 ) δ 3.39-3.58 (m, 5H), 3.69 (s, 1H), 4.47-4.51 (m, 2H), 4.65 (d, J = 5.2 Hz, 1H), 4.86 (d, J = 3.5 Hz, 1H), 4.97 (s, 2H), 5.41 (d, J = 2.5 Hz, 1H), 6.45 (d, J = 7.3 Hz, 1H), 6.74 (t, J = 7.3 Hz, 1H), 6.76 (d, J = 7.3 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H).
[0027]
Synthesis of compound [1]: 3b-cholest-5-en-3-yl-chloroformate (435 mg, 1.10 mmol) and triethylamine (336 mg, 3.31 mmol) in a 90 ml THF solution of compound [11] under nitrogen atmosphere Added to. After stirring for 4 hours at 60 ° C., filtration was performed to remove the precipitate. Then, after the solvent was distilled off from the filtrate under reduced pressure, the compound was purified by silica column chromatography. (THF: chloroform = 3: 1): Yield 84%, mp 228.3-229.7 ° C .; IR (KBr) ν max 3351, 2950, 2868, 1701, 1604, 1514, 1468, 1217, 1109, 1076, 1025, 925 cm 1 ; 1 H NMR (DMSO-d 6 ) δ 0.64-2.40 (m, 43H), 3.16-3.22 (m, 1H), 3.46 (d, J = 8.6 Hz, 2H), 3.55-3.62 (m, 3H ), 4.45-4.48 (m, 2H), 4.90 (d, J = 4.9 Hz, 1H9, 4.96 (d, J = 5.7 Hz, 1H), 5.01 (d, J = 6.2 Hz, 1H), 5.25 (d, J = 3.2 Hz, 1H), 5.38 (s, 1H), 6.99 (d, J = 8.7 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 9.45 (s, 1H); m / z 682 [MH] Found:.. C , 69.96; H, 8.95; N, 2.00% Calcd for C 40 H 61 NO 4: C, 70.25; H, 8.99; N, 2.05%.
[0028]
Other compounds [2] to [7] were synthesized according to the same method as described above. Only analytical data is shown below.
Compound [2]: Yield 58%, mp 178.6-179.7 ° C .; IR (KBr) ν max 3323, 2950, 2869, 1732, 1700, 1603, 1516, 1437, 1311, 1215, 1117, 1071, 1032, 957 cm 1 ; 1 H NMR (DMSO-d 6 ) δ 0.65-2.50 (m, 43H), 3.35-3.77 (m, 1H), 3.47-3.62 (m, 1H), 3.69-3.77 (m, 4H), 4.40- 4.45 (m, 1H), 4.50 (d, J = 5.0 Hz, 1H), 4.52 (d, J = 5.9 Hz, 1H), 4.69 (d, J = 3.1 Hz, 1H), 4.81 (d, J = 4.4 Hz, 1H), 5.26 (s, 1H), 5.37 (s, 1H), 6.98 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 9.44 (s, 1H); m / z 682 [MH]: Found: C, 69.66; H, 8.92; N, 2.01%. Calcd for C 40 H 61 NO 4 : C, 70.25; H, 8.99; N, 2.05%.
[0029]
Compound [3]: Yield 77%, mp 167.4-168.9 ° C; IR (KBr) ν max 3363, 2950, 2869, 1734, 1603, 1516, 1458, 1418, 1311, 1215, 1121, 1013, 980, 830 cm 1 ; 1 H NMR (DMSO-d 6 ) δ 0.66-2.43 (m, 43H), 3.42-3.48 (m, 2H), 3.57-3.62 (m, 3H), 3.79 (s, 1H), 4.42-4.44 (m, 2H), 4.72 (d, J = 5.9 Hz, 1H), 4.80 (d, J = 5.1 Hz, 1H), 4.96 (d, J = 4.3 Hz, 1H), 5.24 (s, 1H9, 5.38 ( s, 1H9, 6.99 (d, J = 8.7 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 9.46 (s, 1H); m / z 682 [MH]: Found: C, 70.01; H , 8.98; N, 2.01%, Calcd for C 40 H 61 NO 4: C, 70.25; H, 8.99; N, 2.05%.
[0030]
Compound [4]: Yield 92%, mp 262.4-263.2 ° C .; IR (KBr) ν max 3569, 3382, 2950, 1694, 1607, 1551, 1514, 1469, 1321, 1235, 1105, 1057, 1019, 831 cm 1 ; 1 H NMR (DMSO-d 6 ) δ 0.66-2.41 (m, 43H), 3.16-3.46 (m, 5H), 3.68 (d, J = 11.8 Hz, 1H), 4.42-4.47 (m, 1H ), 4.55 (s, 1H), 4.74 (d, J = 7.2 Hz, 1H), 5.01 (s, 1H), 5.07 (s, 1H), 5.28 (s, 1H), 5.38 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 9.45 (s, 1H); m / z 682 [MH]. Found: C, 70.29; H, 9.02; N, 2.08%, Calcd for C 40 H 61 NO 4 : C 70.25; H, 8.99;
N, 2.05%.
[0031]
Compound [5]: 79% yield, mp 219.6-220.2 ℃; IR (KBr ) ν max 3358, 2950, 2867, 1701, 1603, 1514, 1468, 1312, 1217, 1140, 1055, 949, 833 cm - 1 ; 1 H NMR (DMSO-d 6 ) δ 0.65-2.41 (m, 43H), 3.38-3.68 (m, 6H), 4.40-4.44 (m, 1H), 4.48 (d, J = 4.3 Hz, 1H), 4.63 (s, 1H), 4.71 (d, J = 7.6 Hz, 1H), 4.48 (d, J = 5.3 Hz, 1H), 5.13 (d, J = 5.0 Hz, 1H), 5.38 (s, 1H), 6.94 (d, J = 9.0 Hz, 2H), 7.33 (d, J = 9.0 Hz, 2H), 9.45 (s, 1H); m / z 682 [MH]. Found: C, 69.93; H, 9.00; N , 2.02%, Calcd for C 40 H 61 NO 4: C 70.25; H, 8.99; N, 2.05%.
[0032]
Compound [6]: Yield 92%, mp 152.1-153.2 ° C; IR (KBr) ν max 3391, 2950, 2869, 1734, 1698, 1607, 1541, 1456, 1334, 1253, 1225, 1198, 1072, 1042 cm 1 ; 1 H NMR (DMSO-d 6 ) δ 0.66-2.45 (m, 43H), 3.45-3.70 (m, 6H), 4.47-4.54 (m, 1H), 4.49 (d, J = 5.2 Hz, 1H ), 4.55 (d, J = 5.2 Hz, 1H), 4.65 (d, J = 3.7 Hz, 1H), 4.67 (d, J = 6.8 Hz, 1H), 4.91 (d, J = 5.6 Hz, 1H), 5.39 (s, 1H), 5.63 (d, J = 4.0 Hz, 1H), 6.96 (d, J = 4.0 Hz, 1H), 6.98 (d, J = 5.5 Hz, 1H), 7.09 (t, J = 3.8 Hz, 1H), 7.83 (t, J = 4.0 Hz, 1H), 8.68 (s, 1H); m / z 682 [MH]. Found: C, 69.96; H, 8.93; N, 2.02%. Calcd for C 40 H 61 NO 4 : C 70.23; H, 8.99; N, 2.05%.
[0033]
Compound (7): yield 74%, mp 174.7-175.8 ℃; IR (KBr ) ν max 3421, 2950, 1734, 1687, 1607, 1532, 1456, 1375, 1254, 1227, 1196, 1086, 1042 cm - 1 ; 1 H NMR (DMSO-d 6 ) δ 0.67-2.45 (m, 43H), 3.41-3.71 (m, 6H), 4.45-4.54 (m, 2H), 4.67 (d, J = 7.6 Hz, 2H), 4.89 (s, 1H), 5.40 (s, 1H), 5.62 (d, J = 3.4 Hz, 1H), 6.97 (d, J = 5.2 Hz, 1H), 6.98 (d, J = 4.3 Hz, 1H), 7.11 (t, 1H), 7.85 (t, 1H), 8.68 (s, 1H); m / z 682 [MH]. Found: C, 70.20; H, 8.97; N, 2.01%. Calcd for C 40 H 61 NO 4 : C 70.20; H, 8.99; N, 2.05%.
[0034]
Example 2: Gelation experiment The compounds [1] to [7] synthesized in Example 1 were used as gelling agents to examine their gelling ability in various organic solvents. The gelation experiment was performed as follows. The concentration of gelling agent is 4.0
wt / v)%. That is, the gelling agent (0.4 mg) and the solvent (0.1 ml) were placed in a screw mouth sample bottle and heated to dissolve until the solid content was dissolved. The resulting solution was cooled to room temperature and allowed to stand for 1 hour to observe gel formation. These results are shown in Table 1. When present as a gel, it was classified as “G” or “ * G”. The former represents a transparent gel and the latter represents a cloudy gel. In addition, when a gel is partially formed, it is expressed as “Gp”, and when it remains in a solution state, “S”, when a precipitate is formed, “P”, when insoluble, “I”, Each is shown.
[0035]
Below Table 1, the structural features of the sugars introduced into the compounds [1] to [7] are collectively shown. In the table, Glc represents glucose, Gal represents galactose, Man represents mannose, and p- represents the position of each sugar (residue) bound to the para position of the benzene ring at the left end of formula (1). (That is, R 1 is a sugar residue), whereas o- is a sugar residue bonded to the ortho position (R 2 is a sugar residue). Indicates. Furthermore, regarding the hydroxyl groups (including hemiacetal hydroxyl groups) of each sugar, the number of equatorial hydroxyl groups is indicated as eq-OH, and the number of axial hydroxyl groups is indicated as ax-OH.
[0036]
[Table 1]
Figure 0003845252
[0037]
Furthermore, the sol-gel phase transition temperature (Tgel) was measured for the gel-formed system. The measurement was performed by immersing the test tube containing the gel in a temperature-controlled oil bath, increasing the temperature by 2 ° C. per minute, and setting the temperature when the gel disappeared to Tgel.
In addition, the SEM (scanning electron microscope) photograph of the xerogel of the obtained gel is illustrated in FIG. FIG. 3A shows an example in which p-xylene is gelled using Compound [2] as a gelling agent and Compound [3] as B.
Table 2 shows the sol-gel phase transition temperature (Tgel) in each gel forming system.
[0038]
[Table 2]
Figure 0003845252
[0039]
As understood from the results of the gelation experiments shown in Table 1 and Table 2, the residue of a monosaccharide composed of a pyranose ring having an axial hydroxyl group is bonded to the p-position (R 1 is a sugar residue). ) Compounds [1], [2], [3] and [5] can gel many organic solvents, especially compounds [2] and [5] are gels against a great variety of organic solvents. Has abilities.
[0040]
Further, these gelling agents [1], [2], [3] and [5] form a gel which is good in strength (stability), and sometimes sols near the boiling point of the solvent or at higher temperatures. -A tough gel exhibiting a gel phase transition temperature (Tgel) can be obtained. For example, as shown in Table 2, [1] is for benzene, [2] is for cyclohexane, and [5] is for methylcyclohexane, benzene, and chloroform. Is shown.
[0041]
Compounds [6] and [7] having a structure in which a sugar residue is bonded to the o-position of the benzene ring in formula (1) (R 2 is a sugar residue) are also gelated against some organic solvents. Than the compounds [1], [2], [3] and [5] as gelling agents in terms of the width of the applied organic solvent and the strength (stability) of the gel formed. Inferior. Further, the compound [4] in which a β-glucose residue containing only an equatorial hydroxyl group (β-glucopyranosyl) is bonded to the p-position is insoluble in most organic solvents and is not suitable as a gelling agent. This is presumably because the interaction between sugar-sugar molecules is too strong and insoluble aggregates are formed as described above.
[0042]
【The invention's effect】
The compound of the present invention having a cholesterol moiety and a sugar moiety represented by the formula (1) functions as a gelling agent for organic solvents, and in particular, the interaction between cholesterol molecules and the interaction between sugar molecules are cooperative. It is possible to form a strong gel with respect to many kinds of organic solvents by designing the molecules so as to work.
[Brief description of the drawings]
FIG. 1 shows a scheme for synthesizing the gelling agent of the present invention.
FIG. 2 shows a chemical structural formula of the gelling agent of the present invention used in Examples.
FIG. 3 is an electron micrograph showing the particle structure of an example of a xerogel obtained using the gelling agent of the present invention.

Claims (3)

下記の一般式(1)で表わされコレステロール誘導体から成ることを特徴とする有機溶媒ゲル化剤。
Figure 0003845252
〔式(1)中、R1およびR2のいずれか一方は糖の残基を表わし、他方は水素原子を表わす。〕
An organic solvent gelling agent represented by the following general formula (1) and comprising a cholesterol derivative.
Figure 0003845252
[In formula (1), one of R 1 and R 2 represents a sugar residue, and the other represents a hydrogen atom. ]
1が、少なくとも1個のアキシアル水酸基を有するピラノース環を含む糖の残基を表わすことを特徴とする請求項1の有機溶媒ゲル化剤。The organic solvent gelling agent according to claim 1, wherein R 1 represents a sugar residue containing a pyranose ring having at least one axial hydroxyl group. 糖がα−ガラクトース、β−ガラクトース、α−マンノース、α−グルコースから選ばれる単糖類であることを特徴とする請求項2の有機溶媒ゲル化剤。The organic solvent gelling agent according to claim 2, wherein the sugar is a monosaccharide selected from α-galactose, β-galactose, α-mannose, and α-glucose.
JP2000237865A 2000-08-07 2000-08-07 Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety Expired - Fee Related JP3845252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237865A JP3845252B2 (en) 2000-08-07 2000-08-07 Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237865A JP3845252B2 (en) 2000-08-07 2000-08-07 Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety

Publications (2)

Publication Number Publication Date
JP2002053840A JP2002053840A (en) 2002-02-19
JP3845252B2 true JP3845252B2 (en) 2006-11-15

Family

ID=18729651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237865A Expired - Fee Related JP3845252B2 (en) 2000-08-07 2000-08-07 Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety

Country Status (1)

Country Link
JP (1) JP3845252B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376290B2 (en) 2008-09-24 2013-12-25 国立大学法人静岡大学 Urea compound, self-assembly of urea compound, organogel containing self-assembly, and method for producing organogel
CN109790439A (en) * 2016-10-14 2019-05-21 国立大学法人静冈大学 New hydrogel agent

Also Published As

Publication number Publication date
JP2002053840A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
Braunmuehl et al. Enzymic grafting of amylose from poly (dimethylsiloxanes)
US7354982B2 (en) Saccaride residue-functional organopolysiloxanes and method for the preparation thereof
Köhler et al. Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids
Jonas et al. Carbohydrate modified polysiloxanes II. Synthesis via hydrosilation of mono‐, di‐and oligosaccharide allylglycosides
JPH03505337A (en) Chromatographic separation method for substituted cyclodextrins and chiral organic compounds
JP3845252B2 (en) Organic solvent gelling agent comprising a compound having a cholesterol moiety and a sugar moiety
Sashiwa et al. Chemical modification of chitosan 8: preparation of chitosan–dendrimer hybrids via short spacer
JPS6345293A (en) Sialosylceramide compound and production thereof
GB1558572A (en) Process producing cellulose derivatives
JP2004224717A (en) N-glycoside-type glycolipid and hollow fiber-like organic nanotube comprising the same
JP3882067B2 (en) Isoprenoid chain polyglycoside and its endoplasmic reticulum
JP3916330B2 (en) Gelling agent comprising sugar benzylidene derivative
EP1311521B1 (en) Methods of preparing disaccharide and trisaccharide c6-c12 fatty acid esters with high alpha content and materials therefrom
US7196178B2 (en) Sugar-derived gellant for hydrogel formation
JP4870400B2 (en) Double-chain sugar-branched cyclodextrin derivative
JP3898897B2 (en) Novel gelling agent comprising a sugar derivative
JP3110474B2 (en) Oligosialyl-1,2-dialkyl-Sn-glycerol and synthetic intermediates thereof
WO2011000721A1 (en) Inhibitors of microbial infections
JPH05301886A (en) Preparation of glycosiduronic acid
US6589903B2 (en) Method of synthesizing complexes of platinum and alkenylpolysiloxane, especially of platinum and divinyltetramethyldisiloxane
Ma et al. Synthesis of a new kind of carbohydrate-modified polysiloxanes and its morphological transition of molecular aggregates in water
JP3388382B2 (en) Method for producing alkylglucopyranoside
JP4678967B2 (en) Gelling organic compound and gel using the same
JP2004231845A (en) Gelling agent and method for carrying out gelling agent of organic substance having fluidity
JP2692737B2 (en) Double-headed lipid having sugar residues at both ends and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees