JP3844284B2 - Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites - Google Patents

Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites Download PDF

Info

Publication number
JP3844284B2
JP3844284B2 JP2001305158A JP2001305158A JP3844284B2 JP 3844284 B2 JP3844284 B2 JP 3844284B2 JP 2001305158 A JP2001305158 A JP 2001305158A JP 2001305158 A JP2001305158 A JP 2001305158A JP 3844284 B2 JP3844284 B2 JP 3844284B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
cdi
iodine
disposal site
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001305158A
Other languages
Japanese (ja)
Other versions
JP2003112138A (en
Inventor
啓二 寺尾
進 戸田
Original Assignee
株式会社テラバイオレメディック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テラバイオレメディック filed Critical 株式会社テラバイオレメディック
Priority to JP2001305158A priority Critical patent/JP3844284B2/en
Publication of JP2003112138A publication Critical patent/JP2003112138A/en
Application granted granted Critical
Publication of JP3844284B2 publication Critical patent/JP3844284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業廃棄物安定型処分場からの硫化水素の発生防止および除去方法に関する。詳しくはシクロデキストリンに包接されたヨウ素を用いる硫化水素の発生防止および除去方法に関する。
【0002】
【従来技術】
産業廃棄物処分場には、対象とする廃棄物によって処分場の構造が規制されており、人体または環境に重大な影響を与える有害物質(例えば、水銀、カドミウム、六価クロムなどの重金属、有機リン、PCBなど)を対象とし外部から完全に遮断する必要のある遮蔽型処分場、一般的な廃棄物(例えば、汚泥、紙くず、木屑、繊維くず、動物の糞尿や死体など)を対象とし、埋立地の底部には浸出液による地下水等の汚染を防止するため遮水構造にするとともに、上部には雨水の流入を防止するための側溝、または埋立地からの廃水には汚水処理施設を設けなければならない管理型処分場、有害化することがなく付近の環境を汚染するおそれのない安定性の高い廃棄物のみを埋めることのできる安定型処分場とがある。安定型処分場では許可された安定性の高い5品目(プラスチック、ガラス、ゴム、金属、建設廃材)のみが埋め立てられて、本来硫化水素は発生しないことを前提としており、有害物質の発生に対する配慮はされていないのが現状である。
【0003】
しかし、安定性が高いといわれるこれら5品目にまったく生分解がないとは云えず、また、分別し難い製品が多く、他の物質の混入も避けられない。硫黄成分を含む生分解性物質が一旦埋められると、嫌気性微生物の活動によって硫化水素が発生する。このような事情から安定型処分場から発生する筈のない硫化水素の発生が問題となっている。例えば、滋賀県は、滋賀県栗東町の産業廃棄物処分場では最高15200ppmの硫化水素を検出したと発表している。しかし、現在、安定型処分場では硫化水素の発生に対する対策として考えられていることは、地表部分での硫化水素の観測で異常が見られたときに、硫化水素ガスを吸収する酸化鉄を含む火山灰などを敷き詰めるとか、活性炭フィルターを付けるとか、ガス抜き管を設置して時間を掛けてガス抜きをする程度のことしか提案されていない。
【0004】
【発明が解決しようとする課題】
本発明者等は、このような現状に鑑み、既存の安定型処分場における硫化水素発生の問題を解決する方策について鋭意研究した結果、幅広い抗菌スペクトルを有すると共に、硫黄化合物や窒素化合物との反応による消臭効果をも有するヨウ素をシクロデキストリン(以下、CD)に包接させ、埋立地地中または/および地表部に存在させることによって、埋立地中で硫化水素の発生に関与する微生物を死滅させ、および発生した硫化水素を無害化する本発明に到った。
【0005】
【課題を解決するための手段】
本発明は、安定型産業廃棄物処分場の硫化水素の問題を解決するためになされたものであり、ヨウ素をCDに包接させることによってヨウ素の揮発性を抑えたヨウ素−CD包接体(以下、CDI)を埋め立て地中および/又は地表面に存在させることにより、硫化水素を発生させる微生物を死滅させると同時に、発生した硫化水素と反応して無害化させる方法に関する。具体的には、安定型産業廃棄物処分場に、CDIを充填した筒状体をCDIが0.1〜1 kg/m2になるように廃棄物処分場地中に配設する。CDIを充填した筒状体を3〜10m間隔に地表から1m以上の深さまで到達するように立てることによって、CDI埋立地中に分散存在させ、さらに望ましくは、地表部にCDI粉末を散布する。
【0006】
【発明の形態】
本発明で用いるCDIは、CDと水溶化したヨウ素とを混合することにより容易に作ることができる(例えば、特開昭51−88625号公報)。CDには、α−CD、β−CD、γ−CDがあり、本発明ではいずれのCDも用いることができるが、好ましくはβ−CDを用いる。
本発明で用いるCDIは水溶性であって通常ヨウ素を蒸散させない。CDIは高湿度または水分の存在下でヨウ素を徐々に放出させる。従って、地表部に粉体として散布したときは望ましくは散水する。又、所定濃度の水溶液として散布することもできる。こうすることによってヨウ素を効果的に作用させることができる。散布されたCDIは地中に徐々に浸透しながらそこに存在する硫化水素を捕捉し無害化すると同時に、硫化水素の発生に関与する微生物を死滅させる。CDIの散布量は、硫化水素の発生の状況、筒状体による地中へのCDIの供給量などによってことなるが、0.1〜1kg/m2、好ましくは0.3〜0.6kg/m2程度散布する。
【0007】
また、硫化水素の発生に関与する嫌気性菌は埋立地の深層部で多く存在するようであり、CDIは地表部に存在させるよりも、地中のより深い部分に存在させるのが好ましい。
CDIを地中に供給する手段としては、例えば、筒状体を埋立地に一端が地表に出るように設置、例えば打ち込んだ後にCDIを充填すればよい。あるいはCDIを充填した筒状体を埋立地に打ち込み設置する。この場合、CDIを充填した筒上体の先端部は少なくとも地表から2m以上深い位置、好ましくは地表から3〜5mの深さにあるようにする。CDIは筒上体の底部より徐々に分散して広い範囲で作用させることができる。また、複数本設置する筒状体ごとにその先端部の深さを異ならすこともできる。こうすることによってCDIを深さの異なる場所で効果的に作用させることができる。
【0008】
CDIを予め充填した筒状体を用いる場合、筒状体は水溶性資材、例えば水溶性ポリビニルアルコールの膜で形成された底部を設けてCDIを充填する。設置された後、水溶性膜はやがて溶解してCDIは周囲に分散する。筒状体は直径が3〜20cm、好ましくは5〜15 cmのものを用い、設置する深さや、充填するCDIの量などから適宜選択される。設置する筒状体は地中でのCDIの分散効果から3〜10m間隔、好ましくは5〜7m間隔とし、各筒状体にはCDIを3〜10kg、好ましくは4〜7kg入れる。この量は、硫化水素の発生の状況、筒状体の間隔などによって変えられる。0.1〜1kg/m2、好ましくはCDIが0.3〜0.6kg/m2程度になる量が好ましい。この量は地表部にCDIの散布の有無によっても変えられる。また、筒状体には設置後、CDIを適宜追加充填することもできる。
CDIの入った筒状体の設置と地表面へのCDIの散布を併用する場合、地表面への散布は各筒状体からの効果の及び難い境界部分(略等間隔にある狭い部分)付近のみであってもよい。
また、地中への筒状体の設置および地表部への散布を組み合わせることで嫌気性菌の活発に働いているところ全般にわたってCDIを分散でき効果も向上する。
【0009】
以下、実施例を挙げて本発明を具体的に説明する。
(CDIの製造例)
2 Lフラスコに水1000ml及びヨウ化カリウム98.8g(0.595モル)を入れ室温で溶解した。これにヨウ素75.6g(0.298モル)を入れ60分間攪拌して溶解させた。これにβ−CD226.8gを入れ室温で30分間攪拌して溶解した後90℃まで加温し直ちに冷却して20℃とした。析出したCDIを分離、洗浄、乾燥してCDI 289.2gを得た。このものの有効ヨウ素量は22.4質量%であった。
なお、このCDI 100gを恒湿恒温槽に入れ、温度23℃、湿度50%に保持し、そのCDIの重量変化を測定したところ、恒温槽に入れた直後には水分を吸収して飽和含水率に達するまで10%程度の重量増加が見られたが、以降3500時間、重量はほぼ一定でヨウ素の蒸散は認められなかった。
【0010】
【実施例1】
安定型産業廃棄物処分場であるが、地表部(地表面から0.5mの高さ)に4000ppmの硫化水素が検出される処分場に、直径10cm、長さ6mの筒状体を地下5mに打ち込み、筒状体内に5kgのCDIを投入した。筒状体にはさらに水1Lを注入した。さらに、5kgのCDIを該筒状体を中心とする円内(10m2)に均一に散布した。該円の中心部および該円の円周から1m、2mおよび3m離れた地点で硫化水素濃度を無風状態のときを選び1ヶ月に亘り測定した。結果を表1に示す。
【0011】
【表1】

Figure 0003844284
この結果から、CDIを散布した地点では施行後1ヶ月間硫化水素の発生はまったく見られなかった。
【0012】
【実施例2】
実施例1と同じ処分場で、実施例1で立てた筒状体から20m離れた点を中心に半径3mの円を描き、中心部に実施例1で用いたのと同じ筒状体を打ち込み筒状体内にCDI5kgを投入し、円内に1kgのCDIを均一に散布した。実施例1と同様に散布直後から中心部の硫化水素の濃度を測定した。散布直後は硫化水素の濃度は200ppmまで低下したが、3日後には2800ppmまで上昇した。しかし、5日目には1200ppmに低下し、10日後、及び20日後には硫化水素は検出されなかった。
この結果から、筒状体を通して地下部にCDIを供給することが硫化水素の発生防止に有効であることが分かった。
【0013】
【発明の効果】
本発明によれば、安定型産業廃棄物埋立地に硫化水素発生のおそれのある有機物が混入した場合において、効果的に硫化水素の発生を防止し、除去することができる。従って、安定型産業廃棄物埋立地周辺の環境への悪影響を防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing and removing hydrogen sulfide from a stable industrial waste disposal site. More specifically, the present invention relates to a method for preventing and removing hydrogen sulfide using iodine included in cyclodextrin.
[0002]
[Prior art]
In the industrial waste disposal site, the structure of the disposal site is regulated by the target waste, and harmful substances that have a serious impact on the human body or the environment (for example, heavy metals such as mercury, cadmium, hexavalent chromium, organic Phosphorus, PCB, etc.), which are targeted for shielded disposal sites that need to be completely shut off from the outside, and general waste (such as sludge, waste paper, wood waste, textile waste, animal manure and carcasses) The bottom of the landfill should have a water-impervious structure to prevent contamination of groundwater by leachate, and the top must have a gutter to prevent rainwater from entering, or wastewater from the landfill should have a sewage treatment facility. There are managed-type disposal sites that must be managed, and stable-type disposal sites that can be filled only with highly stable waste that does not harm the surrounding environment. Considering the generation of toxic substances on the premise that only 5 highly stable items (plastic, glass, rubber, metal, construction waste) that are permitted at the stable disposal site are reclaimed and hydrogen sulfide is not generated. The current situation is that it has not been done.
[0003]
However, it cannot be said that these five items, which are said to have high stability, have no biodegradation at all, and there are many products that are difficult to separate, and mixing of other substances is inevitable. Once a biodegradable substance containing a sulfur component is buried, hydrogen sulfide is generated by the activity of anaerobic microorganisms. Under such circumstances, generation of hydrogen sulfide without soot generated from a stable disposal site is a problem. For example, Shiga Prefecture has announced that it detected up to 15200ppm of hydrogen sulfide at an industrial waste disposal site in Ritto Town, Shiga Prefecture. However, what is currently considered as a countermeasure for the generation of hydrogen sulfide at stable disposal sites includes iron oxide that absorbs hydrogen sulfide gas when abnormalities are observed in the observation of hydrogen sulfide on the surface. There are only proposals to spread volcanic ash, attach an activated carbon filter, install a degassing tube, and degas it over time.
[0004]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have conducted extensive research on measures for solving the problem of hydrogen sulfide generation in existing stable disposal sites. As a result, the inventors have a broad antibacterial spectrum and react with sulfur compounds and nitrogen compounds. Included in cyclodextrin (hereinafter referred to as "CD") iodine that also has a deodorizing effect due to the presence of it in the landfill or / and on the surface of the landfill to kill microorganisms involved in hydrogen sulfide generation in the landfill And the present invention for detoxifying the generated hydrogen sulfide has been reached.
[0005]
[Means for Solving the Problems]
The present invention was made in order to solve the problem of hydrogen sulfide in a stable industrial waste disposal site. An iodine-CD clathrate in which the volatility of iodine is suppressed by inclusion of iodine in CD ( Hereinafter, the present invention relates to a method of detoxifying microorganisms that generate hydrogen sulfide by making them exist in landfills and / or on the ground surface, and at the same time react with the generated hydrogen sulfide to make them harmless. Specifically, a cylindrical body filled with CDI is disposed in a stable industrial waste disposal site in the waste disposal site so that the CDI is 0.1 to 1 kg / m 2 . The cylindrical body filled with CDI is set up to reach a depth of 1 m or more from the ground surface at intervals of 3 to 10 m to be dispersed in the CDI landfill, and more preferably, the CDI powder is sprayed on the ground surface.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The CDI used in the present invention can be easily prepared by mixing CD and water-soluble iodine (for example, JP-A-51-88625). CD includes α-CD, β-CD, and γ-CD. In the present invention, any CD can be used, but β-CD is preferably used.
The CDI used in the present invention is water-soluble and usually does not evaporate iodine. CDI gradually releases iodine in the presence of high humidity or moisture. Accordingly, when sprayed as powder on the ground surface, water is desirably sprayed. Alternatively, it can be sprayed as an aqueous solution having a predetermined concentration. By doing so, iodine can be effectively acted. The dispersed CDI gradually permeates into the ground, captures and detoxifies the hydrogen sulfide present there, and at the same time kills microorganisms involved in the generation of hydrogen sulfide. The amount of CDI sprayed varies depending on the state of hydrogen sulfide generation and the amount of CDI supplied to the ground by a cylindrical body, but is 0.1 to 1 kg / m 2 , preferably about 0.3 to 0.6 kg / m 2 Scatter.
[0007]
In addition, anaerobic bacteria involved in the generation of hydrogen sulfide seem to exist in the deep part of the landfill, and CDI is preferably present in a deeper part of the ground than in the surface part.
As a means for supplying CDI into the ground, for example, a cylindrical body may be installed in a landfill so that one end thereof is exposed to the ground surface, for example, after being driven in, CDI may be filled. Alternatively, a cylindrical body filled with CDI is installed in the landfill. In this case, the tip of the cylindrical upper body filled with CDI is at least 2 m deeper than the ground surface, preferably 3 to 5 m deep from the ground surface. CDI can be gradually dispersed from the bottom of the cylinder upper body and act over a wide range. Moreover, the depth of the front-end | tip part can also differ for every cylindrical body to install two or more. In this way, CDI can be effectively operated at different depths.
[0008]
When a cylindrical body pre-filled with CDI is used, the cylindrical body is provided with a bottom formed of a water-soluble material, for example, a water-soluble polyvinyl alcohol film, and is filled with CDI. After installation, the water-soluble membrane will eventually dissolve and the CDI will disperse around. The cylindrical body has a diameter of 3 to 20 cm, preferably 5 to 15 cm, and is appropriately selected from the installation depth, the amount of CDI to be filled, and the like. The cylindrical body to be installed is set at intervals of 3 to 10 m, preferably 5 to 7 m from the effect of CDI dispersion in the ground, and 3 to 10 kg, preferably 4 to 7 kg of CDI is placed in each cylindrical body. This amount can be changed depending on the state of generation of hydrogen sulfide, the interval between cylindrical bodies, and the like. The amount is preferably 0.1 to 1 kg / m 2 , and preferably the CDI is about 0.3 to 0.6 kg / m 2 . This amount can be changed by the presence or absence of CDI spraying on the surface. Further, after installation, the cylindrical body can be additionally filled with CDI as appropriate.
When installing CDI-containing cylindrical bodies and CDI spraying on the ground surface, spraying on the ground surface is difficult to achieve the effect from each cylindrical body and near the boundary (narrow part at approximately equal intervals) It may be only.
In addition, by combining the installation of cylindrical bodies in the ground and spraying on the surface, CDI can be dispersed throughout the place where anaerobic bacteria are actively working, and the effect is also improved.
[0009]
Hereinafter, the present invention will be specifically described with reference to examples.
(Example of CDI production)
In a 2 L flask, 1000 ml of water and 98.8 g (0.595 mol) of potassium iodide were added and dissolved at room temperature. 75.6 g (0.298 mol) of iodine was added to this and dissolved by stirring for 60 minutes. Β-CD226.8g was added thereto and dissolved by stirring at room temperature for 30 minutes, and then heated to 90 ° C and immediately cooled to 20 ° C. The precipitated CDI was separated, washed and dried to obtain 289.2 g of CDI. The effective iodine amount of this product was 22.4% by mass.
In addition, 100 g of this CDI was put in a constant temperature and humidity chamber, kept at a temperature of 23 ° C. and a humidity of 50%, and the weight change of the CDI was measured. A weight increase of about 10% was observed until the value reached, but the weight was almost constant for 3500 hours thereafter, and no transpiration of iodine was observed.
[0010]
[Example 1]
Although it is a stable industrial waste disposal site, a cylinder with a diameter of 10 cm and a length of 6 m is placed 5 m underground at a disposal site where 4000 ppm of hydrogen sulfide is detected on the surface (0.5 m above the ground surface). It was driven and 5 kg of CDI was put into the cylindrical body. 1 L of water was further injected into the cylindrical body. Further, 5 kg of CDI was uniformly dispersed in a circle (10 m 2 ) centered on the cylindrical body. The hydrogen sulfide concentration was measured for one month at a point 1 m, 2 m, and 3 m away from the center of the circle and the circumference of the circle when no wind was present. The results are shown in Table 1.
[0011]
[Table 1]
Figure 0003844284
From this result, generation of hydrogen sulfide was not seen at all at the point where CDI was sprayed for one month after the operation.
[0012]
[Example 2]
At the same disposal site as Example 1, a circle with a radius of 3 m is drawn around a point 20 m away from the cylindrical body set up in Example 1, and the same cylindrical body used in Example 1 is driven into the center. 5 kg of CDI was introduced into the cylindrical body, and 1 kg of CDI was uniformly dispersed in the circle. As in Example 1, the concentration of hydrogen sulfide in the central part was measured immediately after spraying. Immediately after spraying, the concentration of hydrogen sulfide decreased to 200 ppm, but increased to 2800 ppm after 3 days. However, it decreased to 1200 ppm on the 5th day, and no hydrogen sulfide was detected after 10 and 20 days.
From this result, it was found that supplying CDI to the underground part through the cylindrical body is effective in preventing the generation of hydrogen sulfide.
[0013]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of hydrogen sulfide can be prevented and removed effectively, when the organic substance which may generate | occur | produce hydrogen sulfide mixes in the stable type industrial waste landfill. Therefore, adverse effects on the environment around the stable industrial waste landfill can be prevented.

Claims (4)

ヨウ素−シクロデキストリン包接体を廃棄物処分場地中及び/又は地表部に存在させる安定型処分場からの硫化水素の発生防止および除去方法。A method for preventing and removing hydrogen sulfide from a stable disposal site in which an iodine-cyclodextrin clathrate is present in the waste disposal site and / or on the surface. ヨウ素−シクロデキストリン包接体を廃棄物処分場地中に存在させるにあたり、ヨウ素−シクロデキストリン包接体を充填した筒状体を廃棄物処分場地中に一端が地表に出るように設置する請求項1に記載の硫化水素の発生防止および除去方法。In order for the iodine-cyclodextrin inclusion body to exist in the waste disposal site, a cylindrical body filled with the iodine-cyclodextrin inclusion body is installed in the waste disposal site so that one end comes out to the ground surface. A method for preventing and removing hydrogen sulfide described in 1. ヨウ素−シクロデキストリン包接体を廃棄物処分場地中に存在させるにあたり、ヨウ素−シクロデキストリン包接体を充填した筒状体をヨウ素−シクロデキストリン包接体が0.1〜1.0kg/m2になるように廃棄物処分場地中に配設する請求項2に記載の硫化水素の発生防止および除去方法。When the iodine-cyclodextrin inclusion body is present in the waste disposal site, the iodine-cyclodextrin inclusion body is 0.1-1.0 kg / m 2 in the cylindrical body filled with the iodine-cyclodextrin inclusion body. The method for preventing and removing hydrogen sulfide according to claim 2, wherein the method is disposed in a waste disposal site. 底部が水溶性資材からなる筒状体にヨウ素−シクロデキストリン包接体を充填してなる廃棄物処分場からの硫化水素発生防止具。A hydrogen sulfide generation preventive tool from a waste disposal site in which a cylindrical body made of a water-soluble material is filled with an iodine-cyclodextrin clathrate.
JP2001305158A 2001-10-01 2001-10-01 Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites Expired - Fee Related JP3844284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305158A JP3844284B2 (en) 2001-10-01 2001-10-01 Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305158A JP3844284B2 (en) 2001-10-01 2001-10-01 Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites

Publications (2)

Publication Number Publication Date
JP2003112138A JP2003112138A (en) 2003-04-15
JP3844284B2 true JP3844284B2 (en) 2006-11-08

Family

ID=19124989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305158A Expired - Fee Related JP3844284B2 (en) 2001-10-01 2001-10-01 Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites

Country Status (1)

Country Link
JP (1) JP3844284B2 (en)

Also Published As

Publication number Publication date
JP2003112138A (en) 2003-04-15

Similar Documents

Publication Publication Date Title
Rajendran et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils
Lu et al. Application of calcium peroxide in water and soil treatment: a review
Al-Qahtani Water purification using different waste fruit cortexes for the removal of heavy metals
Etim Phytoremediation and its mechanisms: a review
JPH0775772A (en) Method for restoring soil
US20150258589A1 (en) Treatment of contaminated soil and water
Salehi et al. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium
Sarkar et al. Management of increasing soil pollution in the ecosystem
Fenyvesi et al. Cyclodextrin-enabled green environmental biotechnologies
CN107891060B (en) Method for restoring petroleum hydrocarbon polluted soil
US20120034286A1 (en) Stabilization of biosolids using iron nanoparticles
JP2003320366A (en) Method for cleaning contaminated soil
JP2005021888A (en) Method and system for cleaning contaminated solid substance
Yang et al. Photosynthesis of alfalfa (Medicago sativa) in response to landfill leachate contamination
JP3844284B2 (en) Methods for preventing and removing hydrogen sulfide from industrial waste stable disposal sites
JP4288198B2 (en) Purification method for contaminated soil
Forja´ n et al. Remediation of soils polluted with inorganic contaminants: role of organic amendments
Angmo et al. Natural biological treatment of effluent and sludges to combat the burden of waste
Ranjan et al. Remediation Measures for Arsenic Pollution of Soil
Ezaz et al. Current trends of phytoremediation in wetlands: mechanisms and applications
Butnariu et al. Viability of in situ and ex situ bioremediation approaches for degradation of noxious substances in stressed environs
Adhikari et al. Biosorption of Malathion by dry cells of an isolated Bacillus sp. S14
JP2006075742A (en) Method of treating contaminated soil
Haiba et al. Sewage sludge composting and pharmaceuticals
Statescu et al. HEAVY METAL SOIL CONTAMINATION.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees