JP3844162B2 - Coil with magnetic core - Google Patents

Coil with magnetic core Download PDF

Info

Publication number
JP3844162B2
JP3844162B2 JP35197897A JP35197897A JP3844162B2 JP 3844162 B2 JP3844162 B2 JP 3844162B2 JP 35197897 A JP35197897 A JP 35197897A JP 35197897 A JP35197897 A JP 35197897A JP 3844162 B2 JP3844162 B2 JP 3844162B2
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
coil
plate
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35197897A
Other languages
Japanese (ja)
Other versions
JPH11176655A (en
Inventor
恵 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP35197897A priority Critical patent/JP3844162B2/en
Publication of JPH11176655A publication Critical patent/JPH11176655A/en
Application granted granted Critical
Publication of JP3844162B2 publication Critical patent/JP3844162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はEL駆動回路の昇圧回路等のチョーク・コイルや、変圧器等の磁心入りコイルに関する。
【0002】
【従来の技術】
従来の磁心入りコイルの例を二、三示すと、図5のものは、フェライト系の粉末磁性体を成形して磁心1の両端にフランジ3を設けた巻き枠を製作し、これに巻き線2を巻いたものである。
図6は、パーマロイ、珪素鋼板等の金属磁性材料板をプレス抜きしたI字形の磁心1に、巻き線2を巻いたものである。
図7はスピンドルモータ用のコイルで、うず電流損を低減するために、磁心1は厚さ0.3〜0.5mm程度の珪素鋼板の磁性板4を複数枚積層して作ったもので、これに巻き線2を施してあり、5は各層の磁性板4を半抜きして設けたピンで、半抜きピン5を上か下に重なっている磁性板4の半抜き穴にはめることで全部の磁性板4を揃えている。
図8は、同様にパーマロイや珪素鋼板の磁性板4を積層した磁心1に巻き線2を巻いた磁心入りコイルであるが、磁心の形状がC字形のものである。
【0003】
【発明が解決しようとする課題】
上記のような従来の磁心入りコイルは、それぞれ次に述べる問題を持っている。すなわちフェライト系の粉末磁性体で磁心1を作る図5のものでは、粉末磁性材料の磁束密度が金属磁性材料より低いため、金属磁性材料の磁心と同程度の磁束を得るには体積を大きくせねばならず、小型化が妨げられる。また、粉末成形の製造コストも金属板をプレス抜きするのに比べて割高である。
【0004】
図6の、金属磁性材料板をプレス抜きして磁心1を作るものは、磁気特性や加工の容易さでは図5の粉末成形品に勝るが、下記のようにうず電流損の面で不利になる。単位時間、単位体積当たりの磁性体のうず電流損Weは次式で表される。
We=σt222
ここに、σは比例定数、tは板厚、fは磁界の周波数、Bは最大磁束密度である。
この式によればうず電流損は板厚が増えると急速に大きくなるから、これを押さえるには板厚を小さくするのが有効である。そこで図7のモータ用コイルでは、表面を絶縁した、1枚の厚さが薄い珪素鋼板の磁性板4を重ねたものを磁心1にしているのであるが、各磁性板4に半抜きピン5を設けて磁性板同士を結合するため板厚を減らすのに限度があって、前記のように0.3〜0.5mm以下にできず、更なる薄型化、小型化、高性能化が困難であった。本発明は磁心入りコイルに関するこれらの問題を解決することを目的とする。
【0005】
【課題を解決するための手段】
本発明では、磁心入りコイルにおいて、表面に絶縁処理を施したパーマロイ、珪素鋼板等の金属磁性材料板を折り曲げて重ね合わせ、必要な磁束の得られる厚さにしたものを磁心にする。これは各磁性板が折り曲げ部でつながった一体構造であるから、前記のように別々の板を揃えるために各板に半抜きピンを設けたりする必要がなく、板厚を従来より大幅に薄くして磁心のうず電流損を低減することができる。加工上も順送プレス型により能率よく製作できる。
【0006】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。なお、前記の説明を含め、同種の部品や部分については同じ符号を用いることにする。
図1は本発明の磁心入りコイルの実施形態の一つで、巻き線を一部切り取って示してある。磁心1は先の図6のものと同様に形状が棒状のI字形であるが、図6のような単一片ではなく、表面を絶縁したパーマロイ、珪素鋼板等の磁性体薄板を折り曲げて3層に積層したものであり、これに巻き線2を施してある。磁性材料板の厚さは0.05〜015mm程度で、場合によってはそれ以下にもできる。これは従来の0.3〜0.5mmよりもずっと薄い。
【0007】
磁心1を展開した形状は図2のごとくで、両側に各層の連結部6、7があり、折り曲げ線8と折り曲げ線9では互いに逆方向に折り曲げる。これはI字形を横に並べてつないだ形状であるが、容易に分かるように、I字形磁心の展開形状はこの他にも例えばI字形を縦に積み重ねた形とし、積み重ねの境界を折り曲げ部とすることも可能であり、要は磁心の輪郭の一部に層間の連結部を設けるということである。
【0008】
このような構造の磁心1は、全体の厚さがある程度大きくとも、個々の磁性板4は厚さが薄く互いに絶縁されているから、前掲の式で計算されるうず電流損が小さくなる。通常、磁性材料板は素材の製造工程で表面が酸化されて絶縁層を生じるが、確実を期するためには表面処理して絶縁膜を形成する。
【0009】
図3は本発明の第2の実施形態で、同じく巻き線を一部切り取って示してあり、磁心1は先の図8のものに似て形状がC字形であるが、ここでも磁心1は磁性体の薄板材を折り曲げることにより磁性板4を3層に積層したもので、両端をC字形に湾曲させて巻き線2を施してある。磁心1の展開形状は図4のごとくで、中央部に各層の連結部6、7があり、折り曲げ線8と折り曲げ線9では互いに逆方向に折り曲げる。
【0010】
このようなC字形の磁心の場合、本発明に従って薄板材を曲げ加工して磁心1にしたものでは、前記のうず電流損の低減に加えて次の利点がある。磁心材料が方向性珪素鋼板の場合、磁気特性は方向性があって一様でなく、圧延方向に平行に磁界を加えた場合に比透磁率が最も高くてヒステリシス損が小さくなる。従って、例えば図8の従来のものでは、珪素鋼板を打ち抜いた磁心1のC字形と圧延方向10との関係が図示のようであると、巻き線部および反対側の空隙を含む磁心の部分では磁路が圧延方向10に平行であって具合がよいが、これらと直交して両側をつないでいる部分では、磁路が圧延方向に直角になって好ましくない。改良を図るとしても、C字形の配置を圧延方向に対し45゜傾けて特性を平均化する程度である。
【0011】
しかし本発明の場合は、図4の磁心1の展開形状の長手を珪素鋼板の圧延方向10に向ければ、図3の完成形状においてC型の磁路が全長に亘って圧延方向に沿ったものとなり、最も磁気特性の優れた磁心になる。そして板厚を薄くできることによるうず電流損の減少と上記ヒステリシス損の減少を合わせて鉄損を最小にする磁心が得られるのである。
【0012】
図7のモータ用コイルの場合も、図示は省くが、各磁性板4の外周の一部に隣接層との連結部を設けて連鎖状に展開した形を考えるなら、これを折り畳んで重ねることにより、半抜きピン5を用いることなく全体がつながった積層磁心を得られることが理解されよう。
上記の各実施形態の磁心を製作するのに、磁性材料板から図2、図4のような展開した形状のブランクを打ち抜き、これを曲げ加工して完成形状にすることはもちろん可能であるが、順送プレス型加工を用いれば帯材から直接に完成形状の磁心が得られ、非常に生産性よく製造できる。
【0013】
【発明の効果】
以上述べたように、本発明の磁心入りコイルは金属磁性材料の板材を折り曲げて積層した磁心を備えたものであって、粉末成形のものに比し小型化、薄型化が可能であり、積層構造であるから金属磁性材料の単一片の磁心よりもうず電流損が小さい。プレス抜きした磁性板を積層したものと比べても、磁心に半抜きピン等を設ける必要がないから板厚を従来よりも薄くできて、うず電流損がより小さくなり、さらに、磁路が湾曲しているものの場合、磁路の全長を素材の圧延方向に合わせることが可能で鉄損が減少する。本発明の磁心入りコイルは順送プレス型によって製造するのに適し、これによって小型、高性能の磁心入りコイルを廉価に提供できるのである。
【図面の簡単な説明】
【図1】本発明による磁心入りコイルの一部を切りとった斜視図である。
【図2】図1の磁心入りコイルの磁心の展開図である。
【図3】本発明による別の磁心入りコイルの一部を切りとった斜視図である。
【図4】図3の磁心入りコイルの磁心の展開図である。
【図5】従来の磁心入りコイルの斜視図である。
【図6】従来の別の磁心入りコイルの斜視図である。
【図7】従来のモータ用コイルの斜視図である。
【図8】従来の別の磁心入りコイルの斜視図である。
【符号の説明】
1 磁心
2 巻き線
4 磁性板
5 半抜きピン
6、7 連結部
8、9 折り曲げ線
10 圧延方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a choke coil such as a booster circuit of an EL drive circuit and a magnetic core containing coil such as a transformer.
[0002]
[Prior art]
A few examples of conventional magnetic core-containing coils are shown in FIG. 5. In FIG. 5, a winding frame having a flange 3 formed on both ends of a magnetic core 1 is manufactured by winding a ferrite powder magnetic body. 2 is rolled up.
In FIG. 6, a winding 2 is wound around an I-shaped magnetic core 1 obtained by pressing a metal magnetic material plate such as permalloy or a silicon steel plate.
FIG. 7 shows a coil for a spindle motor. In order to reduce the eddy current loss, the magnetic core 1 is formed by laminating a plurality of silicon magnetic plates 4 having a thickness of about 0.3 to 0.5 mm. This is provided with a winding 2, and 5 is a pin provided by half-cutting the magnetic plate 4 of each layer, and by inserting the half-cut pin 5 into a half-cut hole of the magnetic plate 4 overlapping above or below. All the magnetic plates 4 are arranged.
FIG. 8 shows a coil containing a magnetic core in which a winding 2 is wound around a magnetic core 1 in which a magnetic plate 4 made of permalloy or a silicon steel plate is similarly laminated. The magnetic core has a C-shape.
[0003]
[Problems to be solved by the invention]
The conventional magnetic core-containing coils as described above have the following problems. That is, in the case of FIG. 5 in which the magnetic core 1 is made of a ferrite-based powder magnetic material, the magnetic flux density of the powder magnetic material is lower than that of the metal magnetic material. It is necessary to prevent downsizing. In addition, the manufacturing cost of powder molding is also higher than that of pressing a metal plate.
[0004]
6 that presses the metal magnetic material plate to make the magnetic core 1 is superior to the powder molded product of FIG. 5 in terms of magnetic characteristics and ease of processing, but is disadvantageous in terms of eddy current loss as described below. Become. The eddy current loss We of the magnetic material per unit time and unit volume is expressed by the following equation.
We = σt 2 f 2 B 2
Here, σ is a proportional constant, t is the plate thickness, f is the frequency of the magnetic field, and B is the maximum magnetic flux density.
According to this equation, the eddy current loss rapidly increases as the plate thickness increases. Therefore, it is effective to reduce the plate thickness in order to suppress this. Therefore, in the motor coil shown in FIG. 7, the magnetic core 4 is formed by superposing one thin magnetic steel plate 4 of a silicon steel plate whose surface is insulated. Since there is a limit to reducing the plate thickness because the magnetic plates are connected to each other, it cannot be reduced to 0.3 to 0.5 mm or less as described above, and it is difficult to further reduce the thickness, size, and performance. Met. The present invention is directed to overcoming these problems associated with magnetic cored coils.
[0005]
[Means for Solving the Problems]
In the present invention, in the magnetic core-containing coil, a metal magnetic material plate such as permalloy, silicon steel plate or the like whose surface is insulated is folded and overlapped to obtain a necessary magnetic flux. Since this is an integral structure in which each magnetic plate is connected at the bent portion, it is not necessary to provide a half punch pin on each plate in order to align separate plates as described above, and the plate thickness is significantly thinner than before. Thus, the eddy current loss of the magnetic core can be reduced. In terms of processing, it can be efficiently manufactured with a progressive press die.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is used about the same kind components and parts including the said description.
FIG. 1 shows one embodiment of a coil with a magnetic core according to the present invention, in which windings are partially cut off. The magnetic core 1 has a rod-like I-shape similar to that shown in FIG. 6. However, the magnetic core 1 is not a single piece as shown in FIG. 6, but a three-layer structure by bending a magnetic thin plate such as permalloy or silicon steel plate whose surface is insulated. The winding 2 is given to this. The thickness of the magnetic material plate is about 0.05 to 015 mm, and in some cases, it can be made smaller. This is much thinner than the conventional 0.3-0.5 mm.
[0007]
The developed shape of the magnetic core 1 is as shown in FIG. 2, and there are connecting portions 6 and 7 of each layer on both sides, and the fold line 8 and the fold line 9 are bent in opposite directions. This is a shape in which the I-shapes are connected side by side, but as can be easily understood, the expanded shape of the I-shaped magnetic core is, for example, a shape in which the I-shapes are vertically stacked, and the boundary of the stack is a bent portion. In other words, the point is to provide a connecting portion between layers in a part of the contour of the magnetic core.
[0008]
In the magnetic core 1 having such a structure, even if the entire thickness is somewhat large, the individual magnetic plates 4 are thin and insulated from each other, so that the eddy current loss calculated by the above formula is small. Normally, the surface of a magnetic material plate is oxidized in the raw material manufacturing process to produce an insulating layer. However, in order to ensure, the surface is treated to form an insulating film.
[0009]
FIG. 3 shows a second embodiment of the present invention in which a part of the winding wire is cut out. The magnetic core 1 has a C-shape similar to that shown in FIG. The magnetic plate 4 is laminated in three layers by bending a thin magnetic plate material, and the winding 2 is applied with both ends curved in a C shape. The developed shape of the magnetic core 1 is as shown in FIG. 4, and there are connecting portions 6 and 7 of each layer at the center, and the fold line 8 and the fold line 9 are bent in opposite directions.
[0010]
In the case of such a C-shaped magnetic core, bending the thin plate material into the magnetic core 1 according to the present invention has the following advantages in addition to the reduction of the eddy current loss. When the magnetic core material is a grain-oriented silicon steel sheet, the magnetic characteristics are directional and not uniform, and when a magnetic field is applied parallel to the rolling direction, the relative permeability is the highest and the hysteresis loss is reduced. Therefore, for example, in the conventional example of FIG. 8, when the relationship between the C-shape of the magnetic core 1 punched out of the silicon steel plate and the rolling direction 10 is as shown in the figure, in the portion of the magnetic core including the winding portion and the air gap on the opposite side, Although the magnetic path is parallel to the rolling direction 10 and is in good condition, the magnetic path is perpendicular to the rolling direction and is not preferred in a portion that is orthogonal to these and connects both sides. Even if improvement is intended, the C-shaped arrangement is inclined by 45 ° with respect to the rolling direction to average the characteristics.
[0011]
However, in the case of the present invention, if the length of the developed shape of the magnetic core 1 in FIG. 4 is oriented in the rolling direction 10 of the silicon steel sheet, the C-shaped magnetic path in the completed shape in FIG. Thus, the magnetic core having the most excellent magnetic characteristics is obtained. A magnetic core that minimizes iron loss can be obtained by combining the reduction in eddy current loss and the reduction in hysteresis loss due to the reduction in plate thickness.
[0012]
In the case of the motor coil shown in FIG. 7 as well, although not shown in the drawing, when considering a shape in which a connecting portion with an adjacent layer is provided on a part of the outer periphery of each magnetic plate 4 and developed in a chain shape, this is folded and overlapped. Thus, it will be understood that a laminated magnetic core can be obtained without connecting the half-cut pins 5.
In order to manufacture the magnetic core of each of the above embodiments, it is possible to punch a blank having a developed shape as shown in FIGS. 2 and 4 from a magnetic material plate, and to bend it into a finished shape. If progressive press die processing is used, a magnetic core having a finished shape can be obtained directly from the strip, and can be manufactured with very high productivity.
[0013]
【The invention's effect】
As described above, the magnetic core-containing coil of the present invention has a magnetic core obtained by bending and laminating metal magnetic material plates, and can be reduced in size and thickness as compared with a powder molded one. Because of the structure, the current loss is smaller than that of a single piece magnetic core of metal magnetic material. Compared to the laminated press-cut magnetic plates, it is not necessary to provide a half punch pin in the magnetic core, so the plate thickness can be made thinner than before, the eddy current loss is smaller, and the magnetic path is curved. In the case of what is done, the total length of the magnetic path can be matched to the rolling direction of the material, and iron loss is reduced. The magnetic core-containing coil of the present invention is suitable for manufacturing by a progressive press die, whereby a small and high-performance magnetic core-containing coil can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view of a part of a coil with magnetic core according to the present invention.
FIG. 2 is a development view of the magnetic core of the coil with a magnetic core in FIG.
FIG. 3 is a perspective view of a part of another coil with magnetic core according to the present invention.
4 is a development view of the magnetic core of the coil with a magnetic core shown in FIG. 3;
FIG. 5 is a perspective view of a conventional coil with a magnetic core.
FIG. 6 is a perspective view of another conventional coil with a magnetic core.
FIG. 7 is a perspective view of a conventional motor coil.
FIG. 8 is a perspective view of another conventional coil with a magnetic core.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetic core 2 Winding 4 Magnetic board 5 Half punching pins 6, 7 Connection part 8, 9 Bending line 10 Rolling direction

Claims (1)

磁心に巻き線を施した磁心入りコイルにおいて、
磁心は表面が絶縁された金属磁性材料板を折り曲げて積層したもので、輪郭の一部に層間の連結部を設けてあり、両端が湾曲した形状であって、形状のほぼ中央部に前記層間の連結部を設けてあることを特徴とする磁心入りコイル。
In a coil with a magnetic core in which a magnetic core is wound,
The magnetic core in which the surface are laminated by bending a magnetic metal material plates that are insulated, is provided with a connecting portion of the interlayer in a part of the contour, have a shape both ends of which are curved, the interlayer in a substantially central portion of the shape The magnetic core-containing coil is provided with a connecting portion.
JP35197897A 1997-12-08 1997-12-08 Coil with magnetic core Expired - Fee Related JP3844162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35197897A JP3844162B2 (en) 1997-12-08 1997-12-08 Coil with magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35197897A JP3844162B2 (en) 1997-12-08 1997-12-08 Coil with magnetic core

Publications (2)

Publication Number Publication Date
JPH11176655A JPH11176655A (en) 1999-07-02
JP3844162B2 true JP3844162B2 (en) 2006-11-08

Family

ID=18420938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35197897A Expired - Fee Related JP3844162B2 (en) 1997-12-08 1997-12-08 Coil with magnetic core

Country Status (1)

Country Link
JP (1) JP3844162B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171701A (en) * 2000-11-30 2002-06-14 Seiko Instruments Inc Spindle motor
JP4176037B2 (en) 2004-03-30 2008-11-05 株式会社島精機製作所 Knitting member selection actuator

Also Published As

Publication number Publication date
JPH11176655A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
EP2859564B1 (en) Three-step core for a non-linear transformer
WO2019168158A1 (en) Magnetic core and method for manufacturing same, and coil component
JPS62222614A (en) Composite core of silicon steel-amorphous steel for transformer
JP3844162B2 (en) Coil with magnetic core
JPH0154843B2 (en)
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JPH07298570A (en) Manufacture of spiral core
JP2003045724A (en) Reactor
JP2001068364A (en) Toroidal coil and its manufacturing method
GB2105522A (en) Laminated core structure
JP5900741B2 (en) Composite magnetic core, reactor and power supply
JP4183206B2 (en) Coil with shield and case
JP3004420B2 (en) Stator core
JP3842146B2 (en) Manufacturing method of laminated iron core
JP2005072160A (en) Amorphous iron-core transformer and three-phase five-leg wound iron-core transformer
JPH10322980A (en) Method of molding laminate for stator
JP2003244872A (en) Laminated core of heterogeneous material
US3205561A (en) Method of making a magnetic core
EP3467851A1 (en) Transformer core with reduced building factor
JP3499956B2 (en) Spiral-wound steel sheet laminated parts
US3316621A (en) Method of manufacturing a shell type transformer core for ballast structure
JPH0145204B2 (en)
JP2005026249A (en) Core body for toroidal coil
JPH11186061A (en) Compact transformer
JPS5911609A (en) Manufacture of laminated core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees