JP3844053B2 - Liquid passage device for liquid sample measurement - Google Patents

Liquid passage device for liquid sample measurement Download PDF

Info

Publication number
JP3844053B2
JP3844053B2 JP2001294438A JP2001294438A JP3844053B2 JP 3844053 B2 JP3844053 B2 JP 3844053B2 JP 2001294438 A JP2001294438 A JP 2001294438A JP 2001294438 A JP2001294438 A JP 2001294438A JP 3844053 B2 JP3844053 B2 JP 3844053B2
Authority
JP
Japan
Prior art keywords
liquid
sample
suction
liquid sample
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001294438A
Other languages
Japanese (ja)
Other versions
JP2003098049A (en
Inventor
昭夫 刈米
義雄 橋爪
陽子 南條
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2001294438A priority Critical patent/JP3844053B2/en
Publication of JP2003098049A publication Critical patent/JP2003098049A/en
Application granted granted Critical
Publication of JP3844053B2 publication Critical patent/JP3844053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体クロマトグラフィやフローインジェクション装置を始めとして、液体試料の成分検出や濃度測定等に用いられる各種測定機器における試料導入部を構成する通液装置に関する。
【0002】
【従来の技術】
一般的に、液体クロマトグラフィやフローインジェクション装置等においては、液体試料を試料供給口より導入流路を経て定量バルブに導いて定量し、この定量された液体試料を該定量バルブの流路切換えによって別の移送流路よりキャリヤ液と共に測定系へ送給し、測定系において所要の分離や反応処理等を経て特定成分を検出する方法が多用されている。そして、定量バルブによる定量で余剰となった液体試料の残部は、前記導入流路の定量バルブを介した延長上にある排出流路を通して排出するが、一般的には該排出流路に吸引ポンプが介装されており、その吸引力によって液体試料の定量バルブへの引込みと残部の吸引排出を行うようになっている。
【0003】
ところが、液体試料が汚染物質や不溶物を含んでいたり、測定条件下で経時的に不溶化してくる物質を含むものである場合、これら汚染物質や不溶物が導入経路に付着し易く、これらの再溶解あるいは再分散によって後次の測定に供する液体試料の組成が変化したり、蓄積した不溶物による流れの妨げや定量バルブの容量変化で測定に供される液体試料の量が変動したりして、測定値の信頼性が損われることになり、また付着が著しいときには導入経路が閉塞して測定不能に陥るという問題があった。そこで、これら問題に対処する手段として、従来においては、汚染物質や不溶物を含むような液体試料を測定対象とする場合、予めフィルターろ過や遠心分離等によって液体試料中の不溶物を除去する前処理を行ったり、各部位に汚染物質や不溶物がある程度付着した段階で測定を中断して付着物を取り除くと方法が一般的に行われている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記のフィルターろ過や遠心分離等による前処理を行う方法は、問題となる要因を予め除いてしまうという点で優れているが、作業工程が増えて操作的に煩雑となる上、微量の試料に対しては適用し難く、また測定中に不溶化してくる成分に対しては有効ではない。一方、汚染物質や不溶物がある程度付着した段階で除去する方法は、やはり操作的に煩雑になると共に付着の程度を常に監視する必要があり、また除去作業の都度に測定を中断するために能率が低下し、連続して迅速な測定を行うのに支障をきたす上、保守作業用の人員を確保せねばならず、測定コストの増大に繋がる。
【0005】
本発明は、上述の情況に鑑み、液体試料測定用の通液装置として、汚染物質や不溶物を含む液体試料を測定対象とする場合でも、これら汚染物質や不溶物が導入経路に付着して蓄積するのを効果的に抑制でき、もって高い信頼性及び精度の測定が可能となり、しかも格別な前処理や煩雑な作業操作を必要とせず、能率よく測定を行える上、装置構成も簡素で設備負担が少なくて済むものを提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る液体試料測定用の通液装置は、図面の参照符号を付して示せば、液体試料Sを試料供給口1より前後の空気層Aに挟まれた液柱として導入流路2を経て定量バルブ3に流入させ、この定量バルブ3の流路切換えにより、当該バルブ3内にある一定量の液体試料S1を測定系Mへ送る通液装置において、前記液体試料Sの導入経路とは逆に液体を定量バルブ3及び前記導入流路2を通して前記試料供給口1へ送り出す逆送手段P1を有し、この逆送手段P1により、試料測定系へ送給されなかった前記液柱の液頭側と末尾側の残部S2を逆送させると共に、洗浄液Wを定量バルブ3及び前記導入流路2を通して前記試料供給口1へ送り出すように構成されてなることを特徴としている。
【0007】
そして、上記請求項1の液体試料測定用の通液装置における好適な実施態様として、請求項2の発明では、前記試料供給口1の近辺に吸引排出口4が設けられると共に、前記逆送手段P1によって逆送されてきた液体を該吸引排出口4より排出する吸引排出手段P2を有する構成を採用している
【0008】
更に、請求項の発明は、上記請求項の液体試料測定用の通液装置において、前記の試料供給口1及び吸引排出口2が上方に開く凹所5の底部近傍に設けられ、逆送手段P1によって逆送されてきた洗浄液Wが前記凹所5で液溜まりを形成して吸引排出口4より排出されるように設定されてなる構成を採用している。更に、請求項の発明は、上記請求項1〜のいずれかの液体試料測定用の通液装置において、前記逆送手段P1は、試料供給口1より導入した液体試料Sを吸引して定量バルブ3へ引き込む試料吸引手段を兼用する可逆転ポンプからなるものとしている。
【0009】
【発明の実施の形態】
本発明は、既述のように、液体試料を試料供給口より導入流路を経て定量バルブに流入させ、この定量バルブの流路切換えにより、当該バルブ内にある一定量の液体試料を測定系へ送る通液装置に係るものであり、液体試料の導入経路とは逆に液体を定量バルブ及び前記導入流路を通して試料供給口へ送り出す逆送手段を有することを特徴としている。
【0010】
このような通液装置にあっては、試料供給口より導入した液体試料の液頭が定量バルブ内部を越え、導入通路の当該バルブを介した延長上にある流路内に達した段階で、該定量バルブの流路切換えによって当該バルブ内にある分だけが測定系に向かう別の移送流路へ移行するから、定量の余剰分が当初の液柱の液頭側と末尾側で残部として流路に残る。しかして、従来においては、測定系へ一定量の液体試料を送った後の定量バルブの流路切換えにより、液体試料の残部は導入通路の延長上にある前記流路より排出されるが、汚染物質や不溶物を含む液体試料の場合、導入通路及び定量バルブの内壁面に汚染物質や不溶物が付着して残り、これらは次に測定する液体試料が供給されるまでの間に乾燥して硬い固化層を形成することになる。
【0011】
しかるに、本発明の通液装置では、測定系へ一定量の液体試料を送った後、定量バルブの流路切換えと共に逆送手段を作動させることにより、液体試料の残部を定量バルブ及び前記導入流路を通して試料供給口へ送り戻し、この試料供給口側から排出させることができる。そして、この液体試料の残部の逆送により、導入通路及び定量バルブの内壁面に付着していた汚染物質や不溶物は、硬く固化する前に再び残部の液体試料に接触し、その液中に再溶解あるいは再分散して該残部と共に排出されることになり、もって導入経路への付着残留が抑制される。
【0012】
このような逆送手段としては、特に制約はないが、好適にはチュープポンプ、シリンジポンプ、プランジャーポンプ等のポンプ類を用い、導入経路の下流側からの加圧、もしくは試料供給口側からの吸引によって前記液体試料の残部を逆送するように設定すればよい。そして、導入経路の下流側からの加圧による逆送手段に用いるチュープポンプやシリンジポンプ等を可逆転仕様とすれば、当該逆送手段としての機能と共に、試料供給口より導入した液体試料を吸引して定量バルブへ引き込む試料吸引手段としての機能を兼用させることができる。
【0013】
更に、この逆送手段においては、前記の液体試料の残部の逆送に加えて、前記ポンプ等で導入経路に洗浄液を下流側から送り込む(逆送)ことが推奨される。すなわち、導入通路及び定量バルブの内壁面に付着していた汚染物質や不溶物の内、逆送される残部の液体試料中へ移行できなかった分についても、洗浄液に接触させることによって当該液中に溶解あるいは分散させて排出除去できるから、導入経路への付着残留をより確実に防止することが可能となる。しかして、この洗浄液の送液(逆送)は、液体試料の残部の逆送と同時に行ってもよいし、液体試料の残部の逆送を終えてから別途に行ってもよい。なお、同時の送液は、例えば前記ポンプの吸引配管を洗浄液タンクに接続しておき、該ポンプの稼働によって洗浄液を吸引して導入経路に送り込み、その圧力によって経路中の液体試料の残部が先行する形で試料供給口側へ送り出されるように設定すればよい。
【0014】
このような洗浄液としては、測定対象とする液体試料の液媒体と同種ないし近似した液成分が好ましいが、これらに限らず、前記汚染物質や不溶物に対する溶解性及び分散性が良好であって且つ測定に悪影響を及ぼさない液成分あれば、特に制約なく使用できる。また、この洗浄液には、必要とあらば、前記汚染物質や不溶物の溶解及び分散を助ける成分、例えば界面活性剤等を含有させることができる。
【0015】
一方、試料供給口側に逆送された液体試料の残部や前記洗浄液の排出は、ピペットやスポイト等を用いた手操作で行ってもよいが、試料供給口の近辺に吸引排出口を設け、この吸引排出口から配管を介して吸引ポンプ等の吸引排出手段によって自動的に行う構成が好適である。しかして、試料供給口の近辺にも液体試料中の汚染物質や不溶物が付着することがあるため、より好適には試料供給口及び吸引排出口を上方に開く凹所の底部近傍に設け、逆送されてきた前記洗浄液が該凹所で液溜まりを形成してから、吸引排出口より排出除去される構成が推奨される。なお、吸引排出口の位置は、特に制約はないが、試料供給口と同じ高さか、やや上位に設定すれば、試料供給口へ逆送されてきた液体の吸引排出を行い易い。
【0016】
上記のように凹所に洗浄液の液溜まりを形成させるには、逆送手段と吸引排出手段とに搬送速度差又は作動時間差を設定すればよい。すなわち、逆送手段による逆送速度に対して吸引排出手段による排出速度を小さくすれば、その搬送速度差で凹所に液溜まりを生じることになる。また、逆送手段に対して吸引排出手段の作動を遅らせ、凹所に洗浄液の液溜まりが出来たのちに吸引排出を行うようにしてもよい。なお、液体試料の残部が試料供給口に送り出される逆送の初期段階では、この液体試料による凹所の汚染を軽減するために、上記とは逆に逆送手段による逆送速度に対して吸引排出手段による排出速度を大きく設定することが望ましい。
【0017】
試料供給口への液体試料の導入は、ピペットやスポイト等の液体滴下用具を用いて前記凹所に液体試料を貯留させるか、又は液体試料を保持したキャピラリーチューブ等の管体の下端を試料供給口に嵌合させ、前記ポンプ等の試料吸引手段によって定量バルブへ引き込むようにすればよい。しかして、液体試料が定量バルブに満たされると、これを透過光強度による液識別センサ等の適当な検知手段で検知し、その検知信号に基づいて試料吸引手段が停止すると共に、該定量バルブの流路切換えによって一定量の液体試料が測定系へ送られることになる。この測定系への送液後の定量バルブの流路切換え、逆送手段及び吸引排出手段の作動制御は、予め制御装置に入力したタイマー設定で行われるようにすればよい。
【0018】
定容量バルブとしては、一般に液体クロマトグラフィやフローインジェクション装置等に用いられるものを使用でき、特にその種類を問わない。また、試料供給口、吸引排出口、導入流路等の構成部材の材質は、特に問わないが、金属では液体試料の種類によって腐食を生じる懸念があるため、例えばシリコンゴム、塩化ビニル樹脂、ポリオレフィン系樹脂、フッ素樹脂等の合成樹脂が好ましく、これらの中でも耐薬品性に優れる点からフッ素樹脂、ポリプロピレン、ポリエチレンが推奨され、特にフッ素樹脂及びポリプロピレンは加圧蒸気滅菌を行えるという利点がある。
【0019】
次に、本発明の一実施例に係る液体試料測定用の通液装置について、図面を参照して具体的に説明する。なお、本発明の通液装置は、この実施例に限定されるものではないことは言うまでもない。
【0020】
図1において、10は液体クロマトグラフィの試料注入部であり、上方へラッパ状に開いた凹所5の底部に、中心に開口した試料供給口1と、これよりも若干上位の側方に開口した吸引排出口4とを備えている。そして、試料供給口1と下方に配置した定量バルブ3との間に垂直方向に沿う導入流路2が接続され、この導入流路2の定量バルブ3を介した延長上に、試料吸引手段を兼用する逆送手段としての可逆転型のシリンジポンプP1を介して洗浄液タンクT1に繋がる洗浄液供給路6が設けられている。また、吸引排出口4には、吸引排出手段としてのシリンジポンプP2を介して廃液タンクT2に繋がる吸引排出路7が設けられている。
【0021】
定量バルブ3には、導入流路2及び洗浄液供給路6よりなる垂直流路に対して斜交する移送流路8が接続されており、当該定量バルブ3の回転駆動により、前者の垂直流路の接続状態及び後者の移送流路8の接続状態が移送流路8のみの接続状態に切り換わるように設定されている。そして、移送流路8は、下方側が図示省略した測定系に接続しており、内部には該測定系へ向けてキャリヤ液Cが常時流通している。また、洗浄液供給路6の定量バルブ3に対する接続部近傍には、透過光強度によって液体試料Sの有無を検出する液識別センサ9が取り付けられている。20は試料供給口1へ液体試料Sを供給するキャピラリーチューブを示す。
【0022】
上記構成において、液体試料Sの成分濃度等の所要の測定を行う場合、まず図2(A)に示すように、ポンプP1及びP2が停止した状態で、液体試料Sを保持させたキャピラリーチューブ20の先端を凹所5の底部の試料供給口1に挿嵌する。このとき、定量バルブ3は、導入流路2と洗浄液供給路6を結ぶ垂直流路を連通し、移送流路8を連通する位置にある。そして、ポンプP1が吸引方向に作動することにより、図2(B)の如く液体試料Sが試料供給口1から導入流路2内へ液柱をなして流入し、図2(C)の如く定量バルブ3内に引き込まれる。なお、液体試料Sの注入開始前の状態では、前回の測定の際に逆送供給された洗浄液Wが図2(A)の如く定量バルブ3を少し越える位置まで残っているが、ポンプP1の吸引方向の作動により、液体試料Sの液頭との間に空気層Aを保った状態で同時に洗浄液タンクT1方向へ戻される。
【0023】
しかして、図2(C)に示すように、導入される液体試料Sの液頭(下端)が定量バルブ3内を越えて洗浄液供給路6へ入り込んだ時点で、これを液識別センサ9が検知し、その検知信号に基づいてポンプP1が停止すると共に、定量バルブ3が作動して流路を切換え、図2(D)の如く定量バルブ3にあった一定量の液体試料S1が連通した移送流路8のキャリヤ液Cに押されて図2(E)の如く該移送流路8へ流入し、測定系へ送られる。このとき、図2(E)に示すように、導入流路2及び洗浄液供給路6の定量バルブ3に近接した部分には残部の液体試料S2が残ると共に、定量バルブ3内の遮断された流路空間にはキャリヤ液Cが残っている。
【0024】
次に、上記の液体試料S1の移送流路8への移行から所定のタイムラグを置いて、図2()の如く定量バルブ3が作動して再び流路を切換えると共に、ポンプP1が前とは逆回転して加圧方向に作動し、同時に吸引排出手段のポンプP2も作動する。これにより、導入流路2及び洗浄液供給路6に残留していた残部の液体試料S2は、図2(G)の如く定量バルブ3内にあったキャリヤ液Cと一緒に逆送され、導入流路2を通って試料供給口1へ送り出されるが、この逆送の初期段階ではポンプP2による吸引速度がポンプP1による逆送速度よりも大きく設定されるため、図2(H)の如く、凹所5に液溜まりを生じることなく吸引排出口4に流入し、吸引排出口7を通って廃液タンクT2へ排出される。
【0025】
上記の逆送の過程では、ポンプP1によって洗浄液タンクT1内の洗浄液Wが吸い上げられ、先行する残部の液体試料S2との間に空気層Aを保った状態で同時に、導入流路2と洗浄液供給路6を結ぶ垂直流路を上方へ逆送される。しかして、先行する残部の液体試料S2が全て吸引排出口4から排出された段階で、ポンプP2による吸引速度がポンプP1による逆送速度よりも小さくなり、この搬送速度差により、図2(I)に示すように、洗浄液Wは凹所5内で液溜まりを形成しながら吸引排出口4から排出される。
【0026】
そして、図2(J)の如く洗浄液Wの所定量が吸引排出口4から排出されるとポンプP1が停止し、次いでポンプP2の停止と共にポンプP1が吸引方向に作動し、試料供給口1に達していた洗浄液Wが図2(K)の如く洗浄液タンクT1側へ引き戻され、その液頭(上端)が定量バルブ3より若干上位まで下がった時点でポンプP1も停止し、次の測定のための待機状態となる。
【0027】
上記構成によれば、残部の液体試料S2の逆送により、導入通路2及び定量バルブ3の内壁面に付着していた汚染物質や不溶物は、硬く固化する前に再び残部の液体試料S2に接触し、その液中に再溶解あるいは再分散して該残部S2と共に排出される上、次いで逆送されてくる洗浄液Wにより、残部の液体試料S2中へ移行できなかった汚染物質や不溶物も該洗浄液Wの液中に溶解あるいは分散して排出除去されるから、導入経路への付着残留が確実に防止される。また、この逆送過程でポンプP1,P2の搬送速度差を変更し、残部の液体試料S2は凹所5で液溜まりを生じずに吸引排出され、次いで逆送される洗浄液Wは凹所5で液溜まりを形成しながら吸引排出されるように設定しているから、試料供給口1近傍で残部の液体試料S2による汚染が抑制されると共に、多少の汚染があっても洗浄液Wの液溜まりで再溶解あるいは再分散して確実に除去されることになる。
【0028】
従って、この通液装置によれば、従来のように、予めフィルターろ過や遠心分離等によって液体試料中の不溶物を除去する前処理を行ったり、各部位に汚染物質や不溶物がある程度付着した段階で測定を中断して付着物を取り除くといった煩雑な作業操作を行う必要がなく、高い信頼性及び精度の測定を極めて能率よく行える。一方、上記実施例の構成では、ポンプP1を可逆転仕様とし、前記残部の液体試料S2及び洗浄液Wの逆送手段としての機能と共に、試料供給口1より導入した液体試料Sを吸引して定量バルブ3へ引き込む試料吸引手段としての機能を兼用させているから、全体の装置構成が非常に簡素で機能的にまとまったものとなり、通液装置としての設備コスト負担が少なくて済む。
【0029】
なお、試料注入部10の構成については、特に制約はないが、例えば図3及び図4に示すようなユニット型のものが好適である。すなわち、図3及び図4に示す試料注入部10は、ポートユニオン11、ポート12、ポートナット13、固定用ナット14、パッキン15の各部材よりなり、液体クロマトグラフィ本体側の円形に凹陥した取付枠21に対して容易に着脱できるユニットを構成している。これら構成部材の材質は、パッキン15がシリコンゴムであるが、他の部材11〜14はいずれもフッ素系樹脂又はポリプロピレンである。
【0030】
ポートユニオン11は、図5(A)〜(C)でも示すように、それぞれ外周に雄ねじ22a,23aを設けた径大の上半部11aと径小の下半部11bとの間に段部11cを有すると共に、軸心に沿う注入孔24及び離心位置の排出孔25が上下方向に貫設されていおり、上面には円形凹部26とその底面に同心に設けられた円形小凹部27を備え、また下面には注入孔24及び排出孔25の各々に対する配管接続用ねじ孔24a,25aが開口している。なお、このポートユニオン11の下半部11bは、図5(C)に示すように、円形の一部を接線方向に沿って切除した形状になっている。
【0031】
ポート12は、図6(A)〜(C)でも示すように、前記の上方へラッパ状に開いた凹所5を構成する部材であり、外周上部にフランジ部12aを有し、外周下部にOリング16を嵌装する周溝12bを有すると共に、下面の円形膨出部12cには凹所5の底孔5aから半径方向に延びた流路溝28が形成されている。そして、このポート12は、ポートユニオン11の円形凹部26に下半部がOリング16を介して液密に嵌合され、この嵌合状態で流路溝28がポートユニオン11の排出孔25に連通するようになっている。
【0032】
また、パッキン15は、円形厚板状をなし、前記の試料供給口1を構成する中心孔15aを有すると共に、この中心孔15aの上部側が径大に形成されており、ポートユニオン11の円形小凹部27に嵌装することにより、中心孔15aがポート12の凹所5の底孔5aとポートユニオン11の注入孔24とに同心で連通する。そして、図3の仮想線で示す如くキャピラリーチューブ20の先端を中心孔15aに挿嵌した際、それ自体の弾力で該先端を締め付けて液密に保持できるように、中心孔15aの上部側がキャピラリーチューブ20よりも若干小さい径に設定されている。
【0033】
ポートナット13は、図3に示すように、ポートユニオン11の上半部11aの雄ねじ22aに対応する雌ねじ22bを備えると共に、内周上縁に押さえ用フランジ部13aを有しており、ポート12及びパッキン15を嵌装したポートユニオン11に螺合して締め付けることにより、押さえ用フランジ部13aがポート12のフランジ部12aに押接し、該ポート12を抜け止めするようになっている。また、固定用ナット14は、ポートユニオン11の下半部11bの雄ねじ23aに対応する雌ねじ23bを備えている。
【0034】
この試料注入部10のユニットを液体クロマトグラフィ本体に取り付けるには、ポート12及びパッキン15を嵌装したポートユニオン11にポートナット13を螺合締着した状態で、該ポートユニオン11の下半部11bを取付枠21の保持穴21aに上方から挿嵌し、段部11cで保持穴21aの周縁に係止させ、その下半部11bに下方から固定用ナット14を螺合して締め付け、もって段部11cと固定用ナット14との間で保持穴21aの周縁を挟着すればよい。なお、取付枠21の保持穴21aの形状は、ポートユニオン11の下半部11bにおける円形の一部が切除した形状に対応しており、これによって挿嵌されるポートユニオン11が一定の向きになると共に、固定用ナット14の螺合時にポートユニオン11の供回りが阻止される。
【0035】
このようなユニット構成では、定期的な洗浄、点検、部材交換等において、液体クロマトグラフィ等の測定装置本体から簡単に取外し、また取り付けることができ、非常に作業性がよい上、各構成部材に容易に分解可能であるから、隅々まで確実に洗浄できると共に、傷損や劣化を生じた部材のみを交換すればよく、保守点検コストを低減できるという利点がある。
【0036】
【発明の効果】
請求項1の発明によれば、液体試料の成分検出や濃度測定等に用いられる各種測定機器における試料導入部を構成する通液装置として、測定系へ一定量の液体試料を送った後、定量バルブの流路切換えと共に逆送手段を作動させ、測定系へ送給されなかった液体試料の残部の逆送と共に、洗浄液を定量バルブ及び導入流路を通して試料供給口へ送りし、この試料供給口側から排出させるから、測定対象の液体試料が汚染物質や不溶物を含むものであっても、これら汚染物質や不溶物が導入経路に付着して蓄積するのを効果的に抑制でき、もって高い信頼性及び精度の測定が可能となる。すなわち、前記逆送により、導入通路及び定量バルブの内壁面に付着していた汚染物質や不溶物は、硬く固化する前に再び残部の液体試料に接触し、その液中に再溶解あるいは再分散して該残部と共に排出される上、この液体試料の残部に溶解あるいは分散しきれなかった汚染物質や不溶物、更には該液体試料の残部に起因した汚染についても、洗浄液に溶解あるいは分散させて確実に除去できる。しかも格別な前処理や煩雑な作業操作を必要とせず、能率よく測定を行える上、装置構成も簡素で設備負担が少なくて済むものが提供される。
【0037】
請求項2の発明によれば、上記の通液装置として、逆送手段によって逆送されてきた液体を吸引排出口より能率よく排出除去できるものが提供される。
【0039】
請求項の発明によれば、上記の通液装置において、試料供給口及び吸引排出口が上方に開く凹所の底部近傍に設けられ、前記逆送手段と吸引排出手段との搬送速度差又は作動時間差により、逆送手段によって逆送されてきた洗浄液が前記凹所で液溜まりを形成してから吸引排出口より排出されるように設定されていることから、試料供給口近傍で残部の液体試料による汚染が抑制されると共に、多少の汚染があっても洗浄液の液溜まりで再溶解あるいは再分散して確実に除去される。
【0040】
請求項の発明によれば、上記の通液装置として、逆送手段が試料供給口より導入した液体試料を吸引して定量バルブへ引き込む試料吸引手段を兼用する可逆転ポンプからなるため、全体の装置構成が非常に簡素で機能的にまとまり、設備コスト負担を少なくできるものが提供される。
【図面の簡単な説明】
【図1】 本発明に一実施例に係る液体試料測定用の通液装置を概略的に示す模式図である。
【図2】 同通液装置による通液動作を(A)〜(L)と順次段階的に示す模式図である。
【図3】 同通液装置の試料注入部の構成例を示す縦断面図である。
【図4】 同試料注入部を分解して示す一部縦断正面図である。
【図5】 同試料注入部のポートユニオンを示し、(A)は平面図、(B)は縦断面図、(C)は底面図である。
【図6】 同試料注入部のポートを示し、(A)は平面図、(B)は縦断面図、(C)は底面図である。
【符号の説明】
1 試料供給口
2 導入流路
3 定量バルブ
4 吸引排出口
5 凹所
6 洗浄液供給路
7 吸引排出路
8 移送流路
9 液識別センサ
10 試料注入部
S 液体試料
S1 一定量の液体試料
S2 残部の液体試料
P1 シリンジポンプ(逆送手段と試料吸引手段を兼用する可逆転ポンプ)
P2 シリンジポンプ(吸引排出手段)
T1 洗浄液タンク
T2 廃液タンク
W 洗浄液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid passing device that constitutes a sample introduction unit in various measuring instruments used for liquid component detection, concentration measurement, and the like, including liquid chromatography and flow injection devices.
[0002]
[Prior art]
In general, in liquid chromatography, flow injection devices, etc., a liquid sample is quantified by introducing it from a sample supply port through an introduction channel to a metering valve, and the quantified liquid sample is separated by switching the channel of the metering valve. A method is often used in which a specific component is detected through a required separation or reaction process in the measurement system together with the carrier liquid from the transfer channel. The remainder of the liquid sample that has become surplus by quantification by the metering valve is discharged through a discharge channel located on the extension of the introduction channel via the metering valve. Generally, a suction pump is provided in the discharge channel. The liquid sample is drawn into the metering valve and the remaining part is sucked and discharged by the suction force.
[0003]
However, if the liquid sample contains contaminants or insoluble substances, or contains substances that become insoluble over time under the measurement conditions, these contaminants and insoluble substances are likely to adhere to the introduction path, and these redissolved substances are dissolved again. Or the composition of the liquid sample used for the next measurement changes due to re-dispersion, or the amount of the liquid sample used for the measurement fluctuates due to the obstruction of the flow due to accumulated insoluble matter or the volume change of the quantitative valve, The reliability of the measured value is impaired, and when the adhesion is significant, there is a problem that the introduction path is blocked and measurement is impossible. Therefore, as a means for coping with these problems, conventionally, when a liquid sample containing a contaminant or insoluble matter is to be measured, before the insoluble matter in the liquid sample is removed by filter filtration or centrifugation in advance. In general, a method is used in which treatment is performed and measurement is interrupted at a stage where a contaminant or insoluble matter adheres to each site to some extent and the deposit is removed.
[0004]
[Problems to be solved by the invention]
However, the pretreatment method such as filter filtration or centrifugation described above is excellent in that it removes the problematic factors in advance, but the work process is increased and the operation becomes complicated, and a small amount of It is difficult to apply to samples and is not effective for components that become insoluble during measurement. On the other hand, the method of removing contaminants and insoluble substances when they have adhered to a certain extent is also complicated in operation and requires constant monitoring of the degree of adhesion, and it is efficient to interrupt the measurement at each removal operation. As a result, there is a hindrance to continuous and quick measurement, and maintenance personnel must be secured, leading to an increase in measurement cost.
[0005]
In the present invention, in view of the above situation, even when a liquid sample containing a pollutant and an insoluble material is used as a measurement target as a liquid sample measuring device, the contaminant and the insoluble material are attached to the introduction path. Accumulation can be effectively suppressed, high reliability and accuracy can be measured, and there is no need for special preprocessing or complicated work operations. The purpose is to provide something that requires less burden.
[0006]
[Means for Solving the Problems]
  In order to achieve the above object, a liquid sample measuring device according to claim 1 of the present invention is provided with a reference numeral in the drawing, and the liquid sample S is supplied from the sample supply port 1.As a liquid column sandwiched between the front and rear air layers AIn the liquid passing device that flows into the metering valve 3 through the introduction channel 2 and sends a fixed amount of the liquid sample S1 in the valve 3 to the measuring system M by switching the channel of the metering valve 3, the liquid sample S Contrary to the introduction path, there is provided a reverse feeding means P1 for sending the liquid to the sample supply port 1 through the metering valve 3 and the introduction flow path 2.And this reverse feed meansP1As a result, the liquid head side and the remaining portion S2 of the liquid column that have not been supplied to the sample measurement system are fed back, and the cleaning liquid W is sent out to the sample supply port 1 through the quantitative valve 3 and the introduction flow path 2. Not configured asIt is characterized by that.
[0007]
  As a preferred embodiment of the liquid sample measuring device according to claim 1, in the invention of claim 2, a suction / discharge port 4 is provided in the vicinity of the sample supply port 1, and the reverse feeding means. A configuration having suction / discharge means P2 for discharging the liquid fed back by P1 from the suction / discharge port 4 is adopted..
[0008]
  Further claims3The invention of claim 12In the liquid sample measuring apparatus, the sample supply port 1 and the suction / discharge port 2 are provided in the vicinity of the bottom of the recess 5 that opens upward, and the cleaning liquid W that has been fed back by the back feeding means P1 is A configuration is adopted in which a liquid pool is formed in the recess 5 and is set to be discharged from the suction / discharge port 4. Further claims4The invention of claim 1 to claim 13In the liquid sample measuring device, the reverse feeding means P1 is a reversible pump that also serves as a sample suction means that sucks the liquid sample S introduced from the sample supply port 1 and draws it into the metering valve 3. It is supposed to be.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention allows a liquid sample to flow into the metering valve from the sample supply port via the introduction channel, and by switching the channel of the metering valve, a certain amount of liquid sample in the valve is measured. Contrary to the liquid sample introduction path, the liquid flow apparatus is provided with a reverse feeding means for feeding the liquid to the sample supply port through the metering valve and the introduction flow path.
[0010]
In such a liquid flow device, the liquid head of the liquid sample introduced from the sample supply port exceeds the inside of the quantitative valve, reaches the inside of the flow path on the extension through the valve of the introduction passage, By switching the flow path of the quantitative valve, only the amount in the valve is transferred to another transfer flow path toward the measurement system, so that the surplus of quantitative flow flows as the remainder on the liquid head side and the tail side of the original liquid column. Remain on the road. Conventionally, the remaining part of the liquid sample is discharged from the flow path on the extension of the introduction passage by switching the flow path of the quantitative valve after sending a certain amount of liquid sample to the measurement system. In the case of liquid samples containing substances and insoluble substances, contaminants and insoluble substances remain on the introduction passage and the inner wall of the metering valve, and these remain dry until the next liquid sample to be measured is supplied. A hard solidified layer will be formed.
[0011]
However, in the liquid flow device of the present invention, after a fixed amount of the liquid sample is sent to the measurement system, the reverse flow unit is operated together with the switching of the flow path of the quantitative valve, whereby the remaining portion of the liquid sample is removed from the quantitative valve and the introduction flow. It can be sent back to the sample supply port through the path and discharged from the sample supply port side. Then, by reverse feeding of the remaining portion of the liquid sample, the contaminants and insoluble matter adhering to the introduction passage and the inner wall surface of the metering valve come into contact with the remaining liquid sample again before being hardened and solidified. It is re-dissolved or re-dispersed and discharged together with the remaining portion, thereby suppressing adhesion residue on the introduction path.
[0012]
Such a reverse feeding means is not particularly limited, but preferably uses pumps such as a tube pump, a syringe pump, a plunger pump, etc., and pressurizes from the downstream side of the introduction path or from the sample supply port side. What is necessary is just to set so that the remainder of the said liquid sample may be sent back by suction. If a tube pump, syringe pump, or the like used for the reverse feeding means by pressure from the downstream side of the introduction path is made to be a reversible specification, the liquid sample introduced from the sample supply port is sucked together with the function of the reverse feeding means. Thus, it can also serve as a sample suction means for drawing into the metering valve.
[0013]
Further, in this reverse feeding means, in addition to the reverse feeding of the remaining portion of the liquid sample, it is recommended that the cleaning liquid is fed into the introduction path from the downstream side (back feeding) by the pump or the like. That is, among the contaminants and insoluble matter adhering to the inner wall surface of the introduction passage and the metering valve, the portion that could not be transferred into the remaining liquid sample to be fed back is brought into contact with the cleaning liquid. Therefore, it is possible to more reliably prevent adhesion and adhesion to the introduction path. Thus, the cleaning liquid may be sent (reversely fed) simultaneously with the reverse feeding of the remaining portion of the liquid sample, or separately after the reverse feeding of the remaining portion of the liquid sample is completed. For simultaneous liquid feeding, for example, the suction pipe of the pump is connected to a cleaning liquid tank, the cleaning liquid is sucked by the operation of the pump and sent to the introduction path, and the pressure causes the remainder of the liquid sample in the path to advance. It can be set so that the sample is fed to the sample supply port side.
[0014]
Such a cleaning liquid is preferably a liquid component that is the same or similar to the liquid medium of the liquid sample to be measured, but is not limited thereto, and has good solubility and dispersibility in the contaminants and insoluble materials, and Any liquid component that does not adversely affect the measurement can be used without any particular limitation. In addition, if necessary, the cleaning liquid may contain a component that helps dissolve and disperse the contaminants and insoluble matter, such as a surfactant.
[0015]
On the other hand, the remainder of the liquid sample fed back to the sample supply port side and the discharge of the cleaning liquid may be performed manually using a pipette, a dropper, etc., but a suction discharge port is provided near the sample supply port, A configuration in which the suction and discharge is automatically performed by suction and discharge means such as a suction pump through a pipe from the suction and discharge port is preferable. Thus, since contaminants and insoluble matter in the liquid sample may adhere to the vicinity of the sample supply port, more preferably, it is provided near the bottom of the recess that opens the sample supply port and the suction / discharge port upward, A configuration is recommended in which the cleaning liquid that has been sent back forms a liquid pool in the recess, and is then discharged and removed from the suction outlet. The position of the suction / discharge port is not particularly limited. However, if the suction / discharge port is set at the same height as the sample supply port or slightly higher, it is easy to perform suction and discharge of the liquid that has been sent back to the sample supply port.
[0016]
In order to form the cleaning liquid pool in the recess as described above, it is only necessary to set a transport speed difference or an operating time difference between the reverse feeding means and the suction / discharge means. That is, if the discharge speed by the suction discharge means is made smaller than the reverse speed by the reverse feed means, a liquid pool is generated in the recess due to the difference in the transport speed. Alternatively, the operation of the suction / discharge means may be delayed with respect to the reverse feeding means, and the suction / discharge may be performed after the cleaning liquid has accumulated in the recess. In the initial stage of reverse feeding, where the remaining portion of the liquid sample is sent to the sample supply port, in order to reduce the contamination of the recess by the liquid sample, the suction is performed against the reverse feeding speed by the reverse feeding means, contrary to the above. It is desirable to set a large discharging speed by the discharging means.
[0017]
The liquid sample is introduced into the sample supply port by storing the liquid sample in the recess using a liquid dropping tool such as a pipette or a dropper, or by supplying the sample at the lower end of a tube body such as a capillary tube holding the liquid sample. What is necessary is just to make it fit to an opening | mouth and to draw in to a fixed quantity valve | bulb by sample suction means, such as the said pump. When the liquid sample is filled in the quantitative valve, this is detected by an appropriate detection means such as a liquid identification sensor based on the transmitted light intensity, and the sample suction means is stopped based on the detection signal. A certain amount of liquid sample is sent to the measurement system by switching the flow path. The flow control of the metering valve after the liquid feeding to the measurement system and the operation control of the reverse feeding means and the suction / discharge means may be performed by the timer setting input to the control device in advance.
[0018]
As the constant volume valve, those generally used for liquid chromatography, flow injection devices, etc. can be used, and the type thereof is not particularly limited. In addition, the material of the constituent members such as the sample supply port, the suction / discharge port, and the introduction flow path is not particularly limited. However, since metal may cause corrosion depending on the type of liquid sample, for example, silicon rubber, vinyl chloride resin, polyolefin Synthetic resins such as fluororesins and fluororesins are preferred. Of these, fluororesins, polypropylene, and polyethylene are recommended because of their excellent chemical resistance. In particular, fluororesins and polypropylene have the advantage of being capable of autoclaving.
[0019]
Next, a liquid sample measuring device for measuring a liquid sample according to an embodiment of the present invention will be specifically described with reference to the drawings. Needless to say, the liquid passing device of the present invention is not limited to this embodiment.
[0020]
In FIG. 1, reference numeral 10 denotes a liquid chromatography sample injection portion, which is opened at the bottom of a recess 5 that opens upward in a trumpet shape, with a sample supply port 1 opened at the center, and at a slightly higher side. And a suction discharge port 4. An introduction flow path 2 extending in the vertical direction is connected between the sample supply port 1 and the metering valve 3 disposed below, and the sample suction means is disposed on the extension of the introduction flow path 2 via the metering valve 3. A cleaning liquid supply path 6 connected to the cleaning liquid tank T1 is provided via a reversible syringe pump P1 serving as a reverse feeding means. The suction / discharge port 4 is provided with a suction / discharge path 7 connected to the waste liquid tank T2 via a syringe pump P2 serving as a suction / discharge means.
[0021]
The metering valve 3 is connected to a transfer channel 8 that is oblique to the vertical channel composed of the introduction channel 2 and the cleaning liquid supply channel 6, and the former vertical channel is driven by the rotation of the metering valve 3. The connection state of the latter and the connection state of the latter transfer channel 8 are set to switch to the connection state of only the transfer channel 8. The lower side of the transfer channel 8 is connected to a measurement system (not shown), and the carrier liquid C is constantly flowing toward the measurement system. In addition, a liquid identification sensor 9 for detecting the presence or absence of the liquid sample S based on the transmitted light intensity is attached in the vicinity of the connection portion of the cleaning liquid supply path 6 to the quantitative valve 3. Reference numeral 20 denotes a capillary tube that supplies the liquid sample S to the sample supply port 1.
[0022]
In the above-described configuration, when necessary measurement such as the component concentration of the liquid sample S is performed, first, as shown in FIG. 2A, the capillary tube 20 holding the liquid sample S with the pumps P1 and P2 stopped. Is inserted into the sample supply port 1 at the bottom of the recess 5. At this time, the metering valve 3 is in a position where the vertical flow path connecting the introduction flow path 2 and the cleaning liquid supply path 6 communicates and the transfer flow path 8 communicates. Then, when the pump P1 operates in the suction direction, the liquid sample S flows from the sample supply port 1 into the introduction flow path 2 as shown in FIG. 2B, and flows as shown in FIG. 2C. It is drawn into the metering valve 3. In the state before the start of the injection of the liquid sample S, the cleaning liquid W fed back during the previous measurement remains to a position slightly exceeding the metering valve 3 as shown in FIG. By the operation in the suction direction, the liquid sample S is simultaneously returned to the cleaning liquid tank T1 while the air layer A is maintained between the liquid sample S and the liquid head.
[0023]
As shown in FIG. 2 (C), when the liquid head (lower end) of the introduced liquid sample S passes through the metering valve 3 and enters the cleaning liquid supply path 6, this is detected by the liquid identification sensor 9. Based on the detected signal, the pump P1 is stopped and the metering valve 3 is operated to switch the flow path, and a fixed amount of the liquid sample S1 in the metering valve 3 is communicated as shown in FIG. It is pushed by the carrier liquid C in the transfer channel 8 and flows into the transfer channel 8 as shown in FIG. 2E, and is sent to the measurement system. At this time, as shown in FIG. 2 (E), the remaining liquid sample S2 remains in the introduction channel 2 and the portion near the metering valve 3 of the cleaning liquid supply channel 6, and the blocked flow in the metering valve 3 is blocked. The carrier liquid C remains in the road space.
[0024]
  Next, with a predetermined time lag from the transfer of the liquid sample S1 to the transfer channel 8, FIG.F) And the flow path is switched again, and the pump P1 rotates in the reverse direction to operate in the pressurizing direction, and at the same time, the pump P2 of the suction / discharge means operates. As a result, the remaining liquid sample S2 remaining in the introduction flow path 2 and the cleaning liquid supply path 6 isAs shown in Fig. 2 (G)It is sent back together with the carrier liquid C in the metering valve 3 and sent out to the sample supply port 1 through the introduction flow path 2. At the initial stage of this reverse sending, the suction speed by the pump P2 is reversed by the pump P1. Since it is set to be larger than the feeding speed, as shown in FIG. 2 (H), it flows into the suction discharge port 4 without causing a liquid pool in the recess 5, and is discharged to the waste liquid tank T2 through the suction discharge port 7. .
[0025]
  In the above reverse feeding process, the cleaning liquid W in the cleaning liquid tank T1 is sucked up by the pump P1, and the introduction channel 2 and the cleaning liquid supply are simultaneously performed while the air layer A is maintained between the preceding liquid sample S2. The vertical flow path connecting the paths 6 is fed back upward. Thus, at the stage where all of the preceding remaining liquid sample S2 is discharged from the suction discharge port 4, the suction speed by the pump P2 becomes smaller than the reverse feed speed by the pump P1, and this difference in transport speed causes the difference in FIG.)As shown, the cleaning liquid W is discharged from the suction outlet 4 while forming a liquid pool in the recess 5.
[0026]
  AndAs shown in Fig. 2 (J)A predetermined amount of the cleaning liquid W is discharged from the suction discharge port 4.AndAmplifier P1 stops andInWhen the pump P2 is stopped, the pump P1 operates in the suction direction, and the cleaning liquid W that has reached the sample supply port 1 is removed.As shown in Fig. 2 (K)When the liquid head (upper end) is pulled back to a position slightly higher than the metering valve 3, the pump P1 is stopped and enters a standby state for the next measurement.
[0027]
According to the above configuration, the contaminants and insoluble matter adhering to the inner wall surface of the introduction passage 2 and the metering valve 3 are returned to the remaining liquid sample S2 again before being hardened by the reverse feeding of the remaining liquid sample S2. Contaminants and insoluble matters that have contacted, re-dissolved or re-dispersed in the liquid, discharged together with the remaining portion S2, and then could not be transferred into the remaining liquid sample S2 by the cleaning liquid W fed back. Since the cleaning liquid W is dissolved or dispersed in the liquid and discharged and removed, adhesion and adhesion to the introduction path is reliably prevented. In addition, the difference in transport speed between the pumps P1 and P2 is changed in the reverse feeding process, and the remaining liquid sample S2 is sucked and discharged without causing a liquid pool in the recess 5, and then the cleaning liquid W that is fed backward is the recess 5 Therefore, the remaining liquid sample S2 is prevented from being contaminated by the remaining liquid sample S2 in the vicinity of the sample supply port 1, and the cleaning liquid W is pooled even if there is some contamination. Thus, it is surely removed by re-dissolution or re-dispersion.
[0028]
Therefore, according to this liquid passing device, as in the prior art, pretreatment for removing insoluble matters in the liquid sample is performed in advance by filtering or centrifuging, or contaminants and insoluble matters are adhered to each part to some extent. There is no need to perform complicated work operations such as interrupting measurement and removing deposits at the stage, and highly reliable and accurate measurement can be performed very efficiently. On the other hand, in the configuration of the above embodiment, the pump P1 has a reversible specification, and the liquid sample S introduced from the sample supply port 1 is quantified by sucking the liquid sample S introduced from the sample supply port 1 along with the function as a means for reversely feeding the remaining liquid sample S2 and the cleaning liquid W. Since the function as the sample aspirating means for drawing into the valve 3 is also used, the overall apparatus configuration is very simple and functionally integrated, and the equipment cost burden as a liquid passing apparatus can be reduced.
[0029]
The configuration of the sample injection unit 10 is not particularly limited, but for example, a unit type as shown in FIGS. 3 and 4 is preferable. That is, the sample injection portion 10 shown in FIGS. 3 and 4 includes a port union 11, a port 12, a port nut 13, a fixing nut 14, and a packing 15, and a mounting frame recessed in a circular shape on the liquid chromatography main body side. A unit that can be easily attached to and detached from the unit 21 is configured. As for the material of these constituent members, the packing 15 is made of silicon rubber, but the other members 11 to 14 are all made of fluororesin or polypropylene.
[0030]
As shown in FIGS. 5A to 5C, the port union 11 has a stepped portion between a large-diameter upper half portion 11a and a small-diameter lower half portion 11b. 11c, an injection hole 24 along the axial center and a discharge hole 25 at an eccentric position are vertically penetrated. A circular recess 26 and a circular small recess 27 concentrically provided on the bottom surface are provided on the upper surface. In addition, pipe connection screw holes 24 a and 25 a for the injection hole 24 and the discharge hole 25 are opened on the lower surface. As shown in FIG. 5C, the lower half portion 11b of the port union 11 has a shape obtained by cutting a part of a circle along the tangential direction.
[0031]
As shown in FIGS. 6A to 6C, the port 12 is a member constituting the recess 5 that opens upward in a trumpet shape. In addition to having a circumferential groove 12b into which the O-ring 16 is fitted, a channel groove 28 extending in the radial direction from the bottom hole 5a of the recess 5 is formed in the circular bulging portion 12c on the lower surface. The lower end of the port 12 is liquid-tightly fitted to the circular recess 26 of the port union 11 via the O-ring 16, and the flow channel 28 is formed in the discharge hole 25 of the port union 11 in this fitted state. It comes to communicate.
[0032]
In addition, the packing 15 has a circular thick plate shape, and has a center hole 15a constituting the sample supply port 1, and the upper side of the center hole 15a is formed to have a large diameter. By fitting into the recess 27, the center hole 15 a communicates concentrically with the bottom hole 5 a of the recess 5 of the port 12 and the injection hole 24 of the port union 11. Then, as shown by the phantom line in FIG. 3, when the tip of the capillary tube 20 is inserted into the center hole 15a, the upper side of the center hole 15a is held in the capillary so that the tip can be tightened and held liquid-tight by its own elasticity. The diameter is set slightly smaller than that of the tube 20.
[0033]
As shown in FIG. 3, the port nut 13 includes a female screw 22 b corresponding to the male screw 22 a of the upper half portion 11 a of the port union 11, and has a pressing flange portion 13 a on the inner peripheral upper edge. Further, by screwing and tightening to the port union 11 in which the packing 15 is fitted, the pressing flange portion 13a is pressed against the flange portion 12a of the port 12 to prevent the port 12 from coming off. The fixing nut 14 includes a female screw 23 b corresponding to the male screw 23 a of the lower half portion 11 b of the port union 11.
[0034]
In order to attach the unit of the sample injection unit 10 to the liquid chromatography body, the lower half portion 11b of the port union 11 with the port nut 13 screwed to the port union 11 fitted with the port 12 and the packing 15 is screwed. Is inserted into the holding hole 21a of the mounting frame 21 from above, locked to the periphery of the holding hole 21a by the step portion 11c, and the fixing nut 14 is screwed into the lower half portion 11b from below and tightened. What is necessary is just to clamp the periphery of the holding hole 21a between the part 11c and the nut 14 for fixation. In addition, the shape of the holding hole 21a of the mounting frame 21 corresponds to a shape in which a circular part of the lower half portion 11b of the port union 11 is cut away, so that the port union 11 to be inserted is oriented in a certain direction. In addition, the rotation of the port union 11 is prevented when the fixing nut 14 is screwed.
[0035]
In such a unit configuration, it can be easily removed from and attached to the main body of a measuring apparatus such as liquid chromatography for periodic cleaning, inspection, member replacement, etc. Therefore, there is an advantage that it is possible to surely clean every corner, and it is only necessary to replace a member that has been damaged or deteriorated, thereby reducing maintenance and inspection costs.
[0036]
【The invention's effect】
  According to the first aspect of the present invention, after a certain amount of liquid sample is sent to the measurement system as a liquid passing device that constitutes a sample introduction part in various measuring instruments used for component detection, concentration measurement, etc. of the liquid sample, quantitative determination is performed. Operate the reverse feed means along with the switching of the valve flow path,Not sent to measurement systemThe rest of the liquid sampleWith reverse feed of cleaning liquidIs sent to the sample supply port through the metering valve and the introduction channel.OutDischarge from the sample supply port side.RukaTherefore, even if the liquid sample to be measured contains pollutants and insoluble substances, it is possible to effectively suppress the accumulation of these pollutants and insoluble substances on the introduction path, thereby achieving high reliability and accuracy. Measurement ofThe That is, the contaminants and insoluble matter adhering to the introduction passage and the inner wall surface of the metering valve are brought into contact with the remaining liquid sample again before being hardened and solidified and re-dissolved or re-dispersed in the liquid. In addition to being discharged together with the remainder, the contaminants and insoluble matter that could not be dissolved or dispersed in the remainder of the liquid sample, as well as contamination caused by the remainder of the liquid sample, are dissolved or dispersed in the cleaning liquid. Can be removed reliably.Moreover,There is provided an apparatus capable of performing measurement efficiently without requiring any special pretreatment or complicated work operation, and having a simple apparatus configuration and less equipment burden.
[0037]
According to the second aspect of the present invention, there is provided the liquid passing device capable of efficiently discharging and removing the liquid fed back by the back feeding means from the suction outlet.
[0039]
  Claim3According to the invention, in the liquid passing device described above, the sample supply port and the suction / discharge port are provided in the vicinity of the bottom of the recess that opens upward, and due to a difference in transport speed or an operation time difference between the reverse feeding unit and the suction / discharge unit. Since the cleaning liquid fed back by the back feeding means is set to be discharged from the suction discharge port after forming a liquid pool in the recess, contamination by the remaining liquid sample in the vicinity of the sample supply port Is suppressed, and even if there is some contamination, it is reliably removed by re-dissolving or re-dispersing in the cleaning liquid pool.
[0040]
  Claim4According to the invention, the liquid passing device includes the reversible pump that also serves as the sample suction unit that sucks the liquid sample introduced from the sample supply port by the reverse feeding unit and draws it into the metering valve. However, it is very simple and functionally organized, so that the equipment cost burden can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view schematically showing a liquid passing device for measuring a liquid sample according to an embodiment of the present invention.
FIG. 2 is a schematic view showing the liquid passing operation by the liquid passing device in order of steps (A) to (L).
FIG. 3 is a longitudinal sectional view showing a configuration example of a sample injection unit of the liquid passing device.
FIG. 4 is a partially longitudinal front view showing the sample injection part in an exploded manner.
FIGS. 5A and 5B show a port union of the sample injection section, where FIG. 5A is a plan view, FIG. 5B is a longitudinal sectional view, and FIG. 5C is a bottom view.
6A and 6B show a port of the sample injection section, where FIG. 6A is a plan view, FIG. 6B is a longitudinal sectional view, and FIG. 6C is a bottom view.
[Explanation of symbols]
1 Sample supply port
2 Introduction channel
3 Metering valve
4 suction outlet
5 recess
6 Cleaning liquid supply path
7 Suction discharge path
8 Transfer channel
9 Liquid identification sensor
10 Sample injection part
S liquid sample
S1 A certain amount of liquid sample
S2 The remaining liquid sample
P1 Syringe pump (reversible pump that serves both as a reverse feed means and a sample suction means)
P2 Syringe pump (suction / discharge means)
T1 cleaning liquid tank
T2 Waste liquid tank
W Cleaning solution

Claims (4)

液体試料を試料供給口より前後の空気層に挟まれた液柱として導入流路を経て定量バルブに流入させ、この定量バルブの流路切換えにより、当該バルブ内にある一定量の液体試料を測定系へ送る通液装置において、
前記液体試料の導入経路とは逆に液体を定量バルブ及び前記導入流路を通して前記試料供給口へ送り出す逆送手段を有し、
この逆送手段により、試料測定系へ送給されなかった前記液柱の液頭側と末尾側の残部を逆送させると共に、洗浄液を定量バルブ及び前記導入流路を通して前記試料供給口へ送り出すように構成されてなる液体試料測定用の通液装置。
The liquid sample is introduced into the metering valve through the introduction channel as a liquid column sandwiched between the air layers before and after the sample supply port, and a certain amount of liquid sample in the valve is measured by switching the channel of this metering valve In the liquid passing device to send to the system
Wherein the liquid as opposed to the introduction path of the liquid sample have a backhaul means feeding through metering valve and the introduction channel to the sample-supplying port,
With this reverse feeding means, the liquid head side and the remainder on the tail side of the liquid column that have not been fed to the sample measurement system are fed back, and the cleaning liquid is sent to the sample supply port through the quantitative valve and the introduction channel. liquid passage device for a liquid sample measurement ing is configured.
前記試料供給口の近辺に吸引排出口が設けられると共に、前記逆送手段によって逆送されてきた液体を該吸引排出口より排出する吸引排出手段を有する請求項1記載の液体試料測定用の通液装置。  The liquid sample measurement passage according to claim 1, further comprising a suction / discharge port provided in the vicinity of the sample supply port, and having a suction / discharge unit for discharging the liquid fed back by the back-feeding unit from the suction / discharge port. Liquid device. 前記の試料供給口及び吸引排出口が上方に開く凹所の底部近傍に設けられ、逆送手段によって逆送されてきた洗浄液が前記凹所で液溜まりを形成して吸引排出口より排出されるように設定されてなる請求項2記載の液体試料測定用の通液装置。 The sample supply port and the suction / discharge port are provided in the vicinity of the bottom of the recess that opens upward, and the cleaning liquid that has been fed back by the reverse feeding means forms a liquid reservoir in the recess and is discharged from the suction / discharge port. The liquid passing device for liquid sample measurement according to claim 2, which is set as described above. 前記逆送手段は、試料供給口より導入した液体試料を吸引して定量バルブへ引き込む試料吸引手段を兼用する可逆転ポンプからなる請求項1〜3のいずれかに記載の液体試料測定用の通液装置。4. The liquid sample measuring passage according to claim 1, wherein the reverse feeding unit includes a reversible pump that also serves as a sample suction unit that sucks a liquid sample introduced from a sample supply port and draws the liquid sample into a quantitative valve. Liquid device.
JP2001294438A 2001-09-26 2001-09-26 Liquid passage device for liquid sample measurement Expired - Fee Related JP3844053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294438A JP3844053B2 (en) 2001-09-26 2001-09-26 Liquid passage device for liquid sample measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294438A JP3844053B2 (en) 2001-09-26 2001-09-26 Liquid passage device for liquid sample measurement

Publications (2)

Publication Number Publication Date
JP2003098049A JP2003098049A (en) 2003-04-03
JP3844053B2 true JP3844053B2 (en) 2006-11-08

Family

ID=19116045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294438A Expired - Fee Related JP3844053B2 (en) 2001-09-26 2001-09-26 Liquid passage device for liquid sample measurement

Country Status (1)

Country Link
JP (1) JP3844053B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413370B2 (en) * 2008-10-16 2014-02-12 株式会社島津製作所 Sample injection port and autosampler having the same

Also Published As

Publication number Publication date
JP2003098049A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP2803859B2 (en) Fluid supply device and control method thereof
US6796339B1 (en) Apparatus for flushing, replacing fluid and bleeding hydraulic systems
CN105188939B (en) Pipette is washed
JP4622575B2 (en) Bubble removal device
US20230175947A1 (en) Automated permeability test for a filter basket
JP3844053B2 (en) Liquid passage device for liquid sample measurement
AU2003239105B2 (en) Refill station
JP3608066B2 (en) Particle analyzer
JP5015874B2 (en) Nozzle unit
US5569375A (en) Apparatus for filtering liquids in a closed system
WO2017128570A1 (en) Online monitoring system
JPH10211451A (en) Chemical liquid feed container cap unit and chemical liquid feeder
JP2006098336A (en) Dispensing machine
JP4992383B2 (en) Coating apparatus and die head cleaning method
JPH06103316B2 (en) Cleaning device for automatic dispensing nozzle
JPH1085653A (en) Liquid feeder
JP2010048738A (en) Dispensing device and method for removing clogging in the same
US11085897B2 (en) Microchip electrophoresis apparatus
JP2003254984A (en) Chemical analyzer
JP6057754B2 (en) Automatic clinical analyzer and method
JP2006138699A (en) Recycling liquid chromatograph
JP4589302B2 (en) Cleaning device for printing and / or coating mechanism of processing machine
KR101765410B1 (en) Tank filtering apparatus with cleaning function
JP2007042856A (en) Cleaner and cleaning liquid drip preventing method
JP7501435B2 (en) Extraction Device and Inspection System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140825

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees