JP3844014B2 - Ground electrode burying method - Google Patents

Ground electrode burying method Download PDF

Info

Publication number
JP3844014B2
JP3844014B2 JP09580794A JP9580794A JP3844014B2 JP 3844014 B2 JP3844014 B2 JP 3844014B2 JP 09580794 A JP09580794 A JP 09580794A JP 9580794 A JP9580794 A JP 9580794A JP 3844014 B2 JP3844014 B2 JP 3844014B2
Authority
JP
Japan
Prior art keywords
ground electrode
excavation hole
electrode material
hole
planned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09580794A
Other languages
Japanese (ja)
Other versions
JPH07282938A (en
Inventor
正視 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoden Corp
Original Assignee
Shoden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoden Corp filed Critical Shoden Corp
Priority to JP09580794A priority Critical patent/JP3844014B2/en
Publication of JPH07282938A publication Critical patent/JPH07282938A/en
Application granted granted Critical
Publication of JP3844014B2 publication Critical patent/JP3844014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、建築物の基礎下部に埋設する接地電極の埋設工法に関する。
【0002】
【従来の技術】
従来、建築物の基礎下部に接地電極を埋設する場合は、基礎工事に伴う床盤掘削工程の終了後に地盤ボーリング等により掘削孔を形成してから接地電極材を挿入・埋設したり、打ち込み接地棒を打設していた。
【0003】
【発明が解決しようとする課題】
しかしながら、建築物の基礎工事の工程の間に接地電極の埋設工事を行うことは、一連の基礎工事の工程が中断されることであり、その分、工期が長引くとともに、現場での工程管理が煩わしいという問題があった。
本発明は上記問題点を解決するためになされたもので、その目的とするところは、基礎工事の工程を中断させることなく埋設することのできる接地電極の埋設工法を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するための、第1の発明の接地電極の埋設工法は、地表面から基礎地盤等迄の根伐り予定面以深の所定深さまで掘削する工程と、掘削孔と同径またはやや小径であって下端部が非磁性体金属でその上部が合成樹脂からなる保護管を掘削孔に挿入し、下端の金属部と合成樹脂部との接続部が根伐り予定面とほぼ同位置となるように保護管を保持する工程と、挿入ガイド金具に銅線または条材からなる接地電極材を接続するとともに、挿入ガイド金具を挿入管の先端に取り付けて上記保護管を介して上記掘削孔に挿入する工程と、掘削孔への接地電極材の挿入長が、掘削孔下端から根伐り予定面下方の所定絶縁深さの位置までの長さとほぼ等しくなった長さで、接地電極材を切断しその上端に絶縁電線を接続してからさらに挿入管を掘削孔へ押し込みながら接地電極材を掘削孔の下端まで挿入する工程と、充填材の上面が掘削孔内のほぼ根伐り予定面になるまで挿入管の中空部を介して充填材を掘削孔に注入しながら挿入管を掘削孔から抜き取る工程と、を有することを特徴とする。なお、保護管を保持する工程は、接地電極材を掘削孔の下端まで挿入する工程の後とすることも可能である。
【0005】
第2の発明の接地電極の埋設工法は、地表面から基礎地盤等迄の根伐り予定面以深の所定深さまで掘削する工程と、掘削孔と同径またはやや小径であって下端部が非磁性体金属でその上部が合成樹脂からなる保護管を掘削孔に挿入し、下端の金属部と合成樹脂部との接続部が根伐り予定面とほぼ同位置となるように保護管を保持する工程と、挿入ガイド金具に銅線または条材からなる接地電極材を接続するとともに、挿入ガイド金具を挿入管の先端に取り付けて上記保護管を介して上記掘削孔に挿入する工程と、掘削孔への接地電極材の挿入長が、掘削孔下端から根伐り予定面までの長さとほぼ等しくなった長さで、接地電極材を切断しその上端に絶縁電線を接続してからさらに挿入管を掘削孔へ押し込みながら接地電極材を掘削孔の下端まで挿入する工程と、充填材の上面が掘削孔内のほぼ根伐り予定面になるまで挿入管の中空部を介して充填材を掘削孔に注入しながら挿入管を掘削孔から抜き取る工程と、を有することを特徴とする。なお、保護管を保持する工程は、接地電極材を掘削孔の下端まで挿入する工程の後とすることも可能である。
【0009】
【作用】
第1の発明においては、初めに、地表面から根伐り予定面以深の所定深さまで掘削されて掘削孔が形成される。次に、掘削孔と同径またはやや小径であって下端部が非磁性体金属でその上部が合成樹脂等からなる保護管が掘削孔に挿入され、下端の金属部と合成樹脂部との接続部が根伐り予定面とほぼ同位置となるように保護管が保持される。次いで、挿入ガイド金具に銅線または条材からなる接地電極材が接続され、さらに挿入ガイド金具が挿入管の先端に取り付けられて掘削孔に挿入される。
【0010】
ここで、掘削孔への接地電極材の挿入長が、掘削孔下端から根伐り予定面下方の所定絶縁深さの位置までの長さとほぼ等しくなったところで、接地電極材が切断されその上端に絶縁電線が接続される。さらに挿入管が掘削孔へ押し込まれて、接地電極材が掘削孔の下端まで挿入される。次に、充填材の上面が掘削孔内のほぼ根伐り予定面になるまで、挿入管の中空部を介して充填材が掘削孔に注入され、同時に挿入管が掘削孔から抜き取られる。
【0011】
第2の発明においては、第1の発明と同様、初めに、地表面から根伐り予定面以深の所定深さまで掘削されて掘削孔が形成される。次に、掘削孔と同径またはやや小径であって下端部が非磁性体金属でその上部が合成樹脂からなる保護管が掘削孔に挿入され、下端の金属部と合成樹脂部との接続部が根伐り予定面とほぼ同位置となるように保護管が保持される。次いで、挿入ガイド金具に銅線または条材からなる接地電極材が接続され、さらに挿入ガイド金具が挿入管の先端に取り付けられて掘削孔に挿入される。
【0012】
ここで、掘削孔への接地電極材の挿入長が、掘削孔下端から根伐り予定面までの長さとほぼ等しくなったところで、接地電極材が切断されその上端に絶縁電線が接続される。さらに挿入管が掘削孔へ押し込まれて、接地電極材が掘削孔の下端まで挿入される。次に、充填材の上面が掘削孔内のほぼ根伐り予定面になるまで、挿入管の中空部を介して充填材が掘削孔に注入され、同時に挿入管が掘削孔から抜き取られる。
【0013】
このようにして、第1および第2の発明では、根伐り工事前にこれらの工程を終了しておくことで、根伐り工事で掘削孔の周囲を掘削する場合、保護管により掘削孔の位置が確認できる。次に、ここで掘削孔の周囲を掘削すると、保護管が露出されるが、保護管の金属部を残して合成樹脂部を除去することにより絶縁電線が露出される。その結果、根伐りが終了してさらに建屋等の建築物が建設されてから絶縁電線を介して接地電極との配線が可能になる。
なお、根伐り工事中に保護管が掘削機等による外力を受けた場合、鋼管等のような金属管は折損せずに曲げられて工事の障害になるが、目印用としての合成樹脂管は折損して根伐り工事の障害にならない。また、掘削レベル下面に設けられた金属保護管以下の部分の電線または接地電極材は外力から確実に保護される。
【0016】
【実施例】
以下、図に沿って本発明の実施例を説明する。
図1〜図4は第1の発明の実施例を示す工程説明図である。
図1A及び図1Bは第1および第2の工程を示し、図中のGLは現在の地表レベルであり、GLの下方に根伐りレベルNLがある。このNLは、建築基礎工事で行われる床盤掘削工事により掘削されるレベルである。第1工程では、床盤掘削工事が開始される前に、NL下方の接地電極を埋設する所定深さまで、GLよりボーリングして掘削孔1を形成する。
【0017】
第2工程では、掘削孔1に掘削孔1と同径またはやや小径の保護管2を挿入する。この保護管2は非磁性金属であるステンレスにより形成された下端部2aに、VP(硬質塩化ビニル)管2bを継ぎ足したものである。この保護管2をその接続部がNLとほぼ同一の位置まで挿入して保持する。なお、保護管2の下端部2aとVP管2bはネジ込みまたは接着により接続されている。なお、この保護管2を掘削孔1へ挿入する工程は、後述する電極材を挿入する工程の後に実施することも可能である。
【0018】
図2の第3工程では、掘削孔1に挿入された保護管2内に、複数本の銅線または銅条材からなる電極材3が連結された挿入ガイド金具4を挿入し、さらに挿入ガイド金具4を挿入管5の先端に嵌合して挿入管5を下降させることにより電極材3を掘削孔1内に挿入する。このとき掘削孔1が深い場合は、挿入管5を継ぎ足して挿入する。なお、挿入管5は挿入ガイド金具4に形成されているフランジ部6に当接することにより、挿入ガイド金具4を下方へ押し込む。
【0019】
図2Bに示す第4工程は、挿入した電極材3の長さL1が電極材3の埋設長L2に略等しい値に達したところでGL上で電極材3を切断し、圧縮端子7を用いてIV線等の絶縁線8に接続する。なお、埋設長L2は、NLから掘削孔1の下端までの深さL3から絶縁深さL4を差し引いた長さである。絶縁深さL4は通常〜200mまたはそれ以上である。
【0020】
図3の第5工程では、さらに、挿入管5を下降させて、電極材3および絶縁線8を掘削孔1内に挿入し、電極材3の先端を掘削孔1の下端まで挿入する。ここで、電極材3の上端である圧縮端子7の位置がNLから下方へ距離L4の位置となり、それより上方は絶縁線8の絶縁体により絶縁されて、電極材3に対して絶縁深さL4が確保される。
【0021】
図3Bに示す第6工程は、保護管2の上端より上方に残っている絶縁線8の余長部を切断するとともに、挿入管5の先端から充填材10を圧力ポンプ等で圧入しながら、挿入管5を引き抜く。充填材10の上面が保護管2の下端部2aに達し、ほぼNLと一致したら、充填材10の注入を止めて、さらに、掘削孔1内から挿入管5を取り除く。
これまでの第1から第6までの工程は根伐り前に施工され、以後の工程は床盤掘削工事と並行して行われる。
なお、図3におけるA−A線断面が図5に、B−B線断面が図6に、C−C線断面が図7にそれぞれ示されている。
【0022】
図4の第7工程では、根伐りによりGLが掘削されると、掘削孔1に保持されていた保護管2が露出される。そこで、保護管2の上部のVP管2bを、下端部2aから外して除去する。なお、VP管2bの下端外周面に、予め、塗料またはテープ貼着により赤、白、黄色等のマーキングをしておくことで、保護管2の周囲を掘削するときのレベル確認が容易となる。
【0023】
図4Bに示す第8工程は、NLまで掘削されたことにより、掘削孔1に下端部2aの上端が露出されるので、掘削孔1内で充填材10により支持されている絶縁線8の露出部を必要な長さを残して切除し、さらに端末を養生しておく。ここで、下端部2aが過度に突出していたり、充填材10の表面レベルに過不足があればそれぞれ補修する。これらの工程で接地電極の埋設工事が終了する。以後、建築物が建立されてから接地電極との結線が行われる。
【0024】
なお、第5工程以降で、必要に応じ、保護管2内に収納される絶縁線8の外周に、VP管、EP(ポリエチレン)管、フッ素樹脂管等を被覆しておき、保護管2の周囲が掘削されてVP管2bが除去されるまでの間、絶縁線8が傷つけられるのを防止することもある。
また、保護管2の下端部2aを非磁性金属としたのは、後に接地電極が結線されて、下端部2a内を実際に電流が流れる場合、下端部2aに電磁誘導が発生するのを防止するためである。
【0025】
次に、第2の発明の実施例について説明する。第2の発明の実施例は、第3工程までが第1の発明の実施例と共通するので、第4工程から説明する。図8は第4工程を示し、挿入した電極材3の長さL1が電極材3の埋設長L3に略等しい値に達したところでGL上で電極材3を切断し、圧縮端子7を用いて絶縁線8に接続する。なお、埋設長L3は、NLから掘削孔1の下端までの深さである。
図9の第5工程では、さらに、挿入管5を下降させて、電極材3および絶縁線8を掘削孔1内に挿入し、電極材3の先端を掘削孔1の下端まで挿入する。ここで、電極材3の上端である圧縮端子7の位置がNLの位置となり、それより上方は絶縁線8の絶縁体により絶縁される。
【0026】
図9Bに示す第6工程は、保護管2の上端より上方に残っている絶縁線8の余長部を切断するとともに、挿入管5の先端から充填材10を圧力ポンプ等で圧入しながら、挿入管5を引き抜く。充填材10の上面が保護管2の下端部2aに達し、ほぼNLと一致したら、充填材10の注入を止めて、さらに、掘削孔1内から挿入管5を取り除く。
これまでの第1から第6までの工程は根伐り前に施工され、以後の工程は床盤掘削工事と並行して行われる。
【0027】
図10の第7工程では、根伐りによりGLが掘削されると、掘削孔1に保持されていた保護管2が露出される。そこで、保護管2の上部のVP管2bを、下端部2aから外して除去する。
図10Bに示す第8工程は、NLまで掘削されたことにより、掘削孔1に下端部2aの上端および絶縁線8が接続された圧縮端子7が露出されるので、絶縁線8を必要な長さを残して切除し、さらに端末を養生しておく。ここで、下端部2aが過度に突出していたり、充填材10の表面レベルに過不足があればそれぞれ補修する。これらの工程で接地電極の埋設工事が終了する。以後、建築物が建立されてから接地電極との結線が行われる。
【0028】
これら第1および第2の発明の実施例では、建築物の床盤掘削工事前に接地電極3を埋設しておくことで、従来実施していた根伐り後のボーリング工事等が不要になるとともに、接地電極が埋設された部分をVP管からなる保護管2により養生しておくことで、根伐り工事中に接地電極の位置を確認しながら作業が進めることが可能になる。
【0029】
その結果、床盤掘削工事後に接地電極の埋設のために建築工事が中断されることがなくなって工事の工程管理が容易となる。また、工期も大幅に短縮される。さらに、上述した実施例で使用された絶縁線8は、心線と絶縁体との境界部に撥水性および不透水性を有するゼリー状等の絶縁物質が充填されており、絶縁体と心線との境界部から内部へ浸水することが防止されて絶縁性および接地電極としての耐久性が向上する。
なお、実施例の絶縁線8の代わりに、電線を絶縁管に挿通して使用することも可能である。
【0030】
図11から図14はの実施例を示す掘削孔の横断面図であり、図11は銅線からなる接地電極3を3本にした場合を示し、図12は同じく接地電極3を4本にした場合を示す。また、図13は接地電極に2本の銅条を用いた場合を示し、図14は同じく3本の銅条を用いた場合を示す。
【0031】
次に、更に他の実施例について説明する。
図15A〜図15Cは上記実施例を示す工程説明図である。この実施例も前の実施例と同様に、根伐り工事の施工前に打設工法により電極を埋設しておくことにより、根伐り工事完了後の接地電極工事を確実な所要抵抗値に保持するものである。すなわち、図示されるように、現在の地表レベルGLから接地棒11,12・・・を順に打設する。接地棒11〜14は亜鉛メッキされた鉄棒であり、上下端に形成されたネジ部により連結される。
【0032】
最初に打設される接地棒11の下端部11aは、外径が接地棒11本体の外径よりも0.5〜1mm程度太く形成されるとともに下方に尖った円錐形に形成され、その表面は焼き入れされて高硬度になっている。下端部11aの外径を本体よりも太くしたことで、接地棒11〜14の外表面の亜鉛メッキが打設時に地盤との摩擦により損傷することが防がれ接地電極材としての耐久性が向上する。
【0033】
また、接地棒11等は強力な打撃力を有する高振動打設機(図示せず)により打設される。打設が進み、接地棒11の下端部11aが根伐り予定面NLまでの深さLsに到達したところで、接地抵抗Rsを測定する。さらに、打設を続け打設深さを増しながら接地抵抗を測定していく。
ここで根伐り工事完了後において接地棒11〜14に必要な接地抵抗値をRとし、根伐り工事前にその接地抵抗Rが得られる深さLtまで接地棒11〜14を打設した状態で接地棒11〜14全体より得られる接地抵抗値をRtとすると、接地抵抗R,Rs,Rtの相互の関係は次式となる。
【0034】
【数1】
R=Rs・Rt/(Rs−Rt)
【0035】
数式1から接地抵抗Rtは次式により求められる。
【0036】
【数2】
Rt=Rs・R/(Rs+R)
【0037】
そこで、打設深さを増すごとに測定される接地抵抗値を監視し、測定値が数式2で得られたRtと一致したところで、接地棒11〜14の打設を終了する。
次に、基礎工事が開始されて根伐り工事が行われ、地盤がNLまで掘削される。それにより、上部の接地棒13,14が露出されるので、NL近くで接地棒1を切断して取り除く。さらにその後、建屋等の建築物が完成されてから、接地棒13の上端に電線15を接続して接地電極の配線工事が行われる。
このようにして、第4の発明の実施例では、根伐り工事前にこれらの工程を終了しておくことで、根伐り工事の開始後は、単に露出した接地棒を除去するだけの簡単な作業となり、接地電極埋設のために建築の基礎工事を中断する必要がなくなる。その結果、工事の工程管理が容易となり、工期も大幅に短縮される。
【0038】
【発明の効果】
以上述べたように第1および第2の発明によれば、根伐り工事の施工前に地盤を掘削して所定深さまで接地電極を埋設するとともに、根伐りにより除去される掘削孔の部分に上部が合成樹脂からなる保護管を挿入しておくことにより、根伐り工事中に保護管を目印にして掘削孔の周囲を掘削して、保護管を除去することが可能になる。その結果、根伐りが終了して建築物が完成した後に、露出された絶縁電線と結線するだけで接地電極との配線が可能になる。また、工事施工前に接地電極が埋設されてしまうため、根伐り工事の完了後に基礎工事を中断して接地電極工事を行うことがなくなり、その分、工期が短縮される。
【図面の簡単な説明】
【図1A】 第1の発明に係る実施例の第1工程を示す説明図である。
【図1B】 第1の発明に係る実施例の第2工程を示す説明図である。
【図2A】 第1の発明に係る実施例の第3工程を示す説明図である。
【図2B】 第1の発明に係る実施例の第4工程を示す説明図である。
【図3A】 第1の発明に係る実施例の第5工程を示す説明図である。
【図3B】 第1の発明に係る実施例の第6工程を示す説明図である。
【図4A】 第1の発明に係る実施例の第7工程を示す説明図である。
【図4B】 第1の発明に係る実施例の第8工程を示す説明図である。
【図5】 図3AのA−A線断面図である。
【図6】 図3BのB−B線断面図である。
【図7】 図3BのC−C線断面図である。
【図8】 第2の発明に係る実施例の第4工程を示す説明図である。
【図9A】 第2の発明に係る実施例の第5工程を示す説明図である。
【図9B】 第2の発明に係る実施例の第6工程を示す説明図である。
【図10A】 第2の発明に係る実施例の第7工程を示す説明図である。
【図10B】 第2の発明に係る実施例の第8工程を示す説明図である。
【図11】 の実施例を示す横断面図である。
【図12】 他の実施例を示す横断面図である。
【図13】 他の実施例を示す横断面図である。
【図14】 他の実施例を示す横断面図である。
【図15A】 他の実施例の工程を示す説明図である。
【図15B】 他の実施例の工程を示す説明図である。
【図15C】 他の実施例の工程を示す説明図である。
【符号の説明】
1 掘削孔
2 保護管
2a 下端部
2b VP管
3 電極材
4 挿入ガイド金具
5 挿入管
6 フランジ部
7 圧縮端子
8 絶縁線
10 充填材
11〜14 接地棒
15 電線
[0001]
[Industrial application fields]
The present invention relates to a method for burying a ground electrode embedded in a lower part of a foundation of a building.
[0002]
[Prior art]
Conventionally, when burying the underlying lower to the ground electrode of the buildings, or inserted and buried ground electrode material after forming a borehole by boring or the like ground after the end of the floor panel excavation process involved in foundation work, implantation There was a grounding rod.
[0003]
[Problems to be solved by the invention]
However, performing ground electrode burying work during the building foundation work process means that the series of foundation work processes will be interrupted, and the construction period will be prolonged, and on-site process management will become necessary. There was an annoying problem.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a ground electrode embedding method that can be embedded without interrupting the foundation work process.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the ground electrode embedding method according to the first invention includes a step of drilling to a predetermined depth deeper than a planned root-cutting surface from the ground surface to the foundation ground, and the same diameter as the drilling hole or slightly smaller in diameter. A protective tube made of non-magnetic metal at the lower end and synthetic resin at the top is inserted into the excavation hole, and the connection between the metal portion at the lower end and the synthetic resin portion is almost at the same position as the planned rooting surface. And connecting the grounding electrode material made of copper wire or strip to the insertion guide fitting, attaching the insertion guide fitting to the tip of the insertion tube, and connecting it to the excavation hole through the protection tube. Cutting the ground electrode material with the length of the insertion process and the length of insertion of the ground electrode material into the drilling hole approximately equal to the length from the lower end of the drilling hole to the position of the predetermined insulation depth below the planned root cutting surface Connect the insulated wire to the upper end and insert the insertion tube. Insert the grounding electrode material into the drilling hole through the hollow part of the insertion tube until the top surface of the filling material is almost planned to be rooted in the drilling hole. And a step of extracting the insertion tube from the excavation hole while injecting. The step of holding the protective tube can be performed after the step of inserting the ground electrode material to the lower end of the excavation hole.
[0005]
The ground electrode embedding method according to the second invention includes a step of excavating to a predetermined depth deeper than a planned root cutting surface from the ground surface to the foundation ground, etc., and the same diameter as the excavation hole or a slightly smaller diameter, and the lower end is nonmagnetic Inserting a protective pipe made of synthetic resin into the excavation hole and holding the protective pipe so that the connection part between the metal part at the lower end and the synthetic resin part is almost at the same position as the planned rooting surface Connecting a ground electrode material made of a copper wire or a strip to the insertion guide fitting, attaching the insertion guide fitting to the tip of the insertion pipe, and inserting the insertion guide fitting into the drilling hole via the protective pipe; The insertion length of the ground electrode material is approximately equal to the length from the bottom of the drilling hole to the planned rooting surface. After cutting the ground electrode material and connecting an insulated wire to the top, drill the insertion tube. Push the ground electrode material to the bottom of the drilling hole while pushing it into the hole. A step of inserting, and a step of extracting the insertion tube from the drilling hole while injecting the filler into the drilling hole through the hollow portion of the insertion tube until the upper surface of the filling material becomes a surface to be almost rooted in the drilling hole. It is characterized by having. The step of holding the protective tube can be performed after the step of inserting the ground electrode material to the lower end of the excavation hole.
[0009]
[Action]
In the first invention, first, excavation holes are formed by excavating from the ground surface to a predetermined depth deeper than the planned root cutting surface. Next, a protective tube having the same diameter as the drilling hole or slightly smaller in diameter and having a non-magnetic metal at the lower end and a synthetic resin at the top is inserted into the drilling hole, and the connection between the lower end metal part and the synthetic resin part is made. The protective tube is held so that the part is almost in the same position as the planned root cut. Next, a ground electrode material made of a copper wire or a strip is connected to the insertion guide fitting, and the insertion guide fitting is attached to the distal end of the insertion tube and inserted into the excavation hole.
[0010]
Here, when the insertion length of the ground electrode material into the drilling hole is substantially equal to the length from the lower end of the drilling hole to the position of the predetermined insulation depth below the planned root cutting surface, the ground electrode material is cut and the upper end is Insulated wires are connected. Further, the insertion tube is pushed into the excavation hole, and the ground electrode material is inserted to the lower end of the excavation hole. Next, until the upper surface of the filler becomes a plane to be almost rooted in the excavation hole, the filler is injected into the excavation hole through the hollow portion of the insertion pipe, and at the same time, the insertion pipe is extracted from the excavation hole.
[0011]
In the second invention, as in the first invention, first, excavation holes are formed by excavating from the ground surface to a predetermined depth deeper than the planned root cutting surface. Next, a protective tube having the same diameter as the drilling hole or slightly smaller in diameter and having a lower end portion made of a non-magnetic metal and an upper portion made of synthetic resin is inserted into the drilling hole, and a connection portion between the lower end metal portion and the synthetic resin portion The protective tube is held so that the is almost the same position as the planned root cutting. Next, a ground electrode material made of a copper wire or a strip is connected to the insertion guide fitting, and the insertion guide fitting is attached to the distal end of the insertion tube and inserted into the excavation hole.
[0012]
Here, when the insertion length of the ground electrode material into the excavation hole becomes substantially equal to the length from the lower end of the excavation hole to the planned root cutting surface, the ground electrode material is cut and an insulated wire is connected to the upper end. Further, the insertion tube is pushed into the excavation hole, and the ground electrode material is inserted to the lower end of the excavation hole. Next, until the upper surface of the filler becomes a plane to be almost rooted in the excavation hole, the filler is injected into the excavation hole through the hollow portion of the insertion pipe, and at the same time, the insertion pipe is extracted from the excavation hole.
[0013]
In this way, in the first and second inventions, when these steps are completed before the root-cutting work, when excavating the periphery of the drilling hole by the root-cutting work, the position of the drilling hole is protected by the protective pipe. Can be confirmed. Next, when the periphery of the excavation hole is excavated, the protective tube is exposed, but the insulated wire is exposed by removing the synthetic resin portion while leaving the metal portion of the protective tube. As a result, after root cutting is completed and a building such as a building is constructed, wiring with the ground electrode becomes possible via the insulated wire.
In addition, when the protection pipe receives external force from an excavator etc. during the tree-cutting work, metal pipes such as steel pipes will be bent without breaking and will be an obstacle to the work. It will not break and will not be an obstacle to rooting work. Moreover, the electric wire or the ground electrode material in the portion below the metal protective tube provided on the lower surface of the excavation level is reliably protected from external force.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
1 to 4 are process explanatory views showing an embodiment of the first invention.
FIG. 1A and FIG. 1B show the first and second steps, where GL in the figure is the current surface level, and there is a rooting level NL below GL. This NL is a level excavated by floor excavation work performed in building foundation work. In the first step, before the floor excavation work is started, the excavation hole 1 is formed by boring from the GL to a predetermined depth for embedding the ground electrode below the NL.
[0017]
In the second step, the protective tube 2 having the same diameter as the excavation hole 1 or slightly smaller in diameter is inserted into the excavation hole 1. This protective tube 2 is obtained by adding a VP (hard vinyl chloride) tube 2b to a lower end portion 2a formed of stainless steel which is a nonmagnetic metal. The protective tube 2 is inserted and held up to a position where the connecting portion is substantially the same as the NL. The lower end 2a of the protective tube 2 and the VP tube 2b are connected by screwing or bonding. The step of inserting the protective tube 2 into the excavation hole 1 can also be performed after the step of inserting an electrode material described later.
[0018]
Figure In the third step of 2 A, the borehole inserted within the protective tube 2 to 1, and insert the insertion guide fitting 4 in which the electrode member 3 made of a plurality of copper or a copper cord member is connected, further insertion The electrode member 3 is inserted into the excavation hole 1 by fitting the guide fitting 4 to the tip of the insertion tube 5 and lowering the insertion tube 5. If the excavation hole 1 is deep at this time, the insertion pipe 5 is added and inserted. The insertion tube 5 pushes the insertion guide fitting 4 downward by abutting against a flange portion 6 formed on the insertion guide fitting 4.
[0019]
In the fourth step shown in FIG. 2B, when the length L1 of the inserted electrode material 3 reaches a value approximately equal to the embedded length L2 of the electrode material 3, the electrode material 3 is cut on the GL, and the compression terminal 7 is used. Connect to insulated wire 8 such as IV wire. The buried length L2 is a length obtained by subtracting the insulating depth L4 from the depth L3 from the NL to the lower end of the excavation hole 1. The insulation depth L4 is usually 5 to 200 m or more.
[0020]
In the fifth step of FIG. 3 A, further, lowers the insertion tube 5, inserting the electrode member 3 and the insulated wire 8 into the wellbore 1, to insert the tip of the electrode material 3 to the lower end of the borehole 1. Here, the position of the compression terminal 7 which is the upper end of the electrode material 3 becomes a position of a distance L4 from NL downward, and the upper part is insulated by the insulator of the insulating wire 8 and has an insulation depth with respect to the electrode material 3. L4 is secured.
[0021]
In the sixth step shown in FIG. 3B, while cutting off the extra length of the insulating wire 8 remaining above the upper end of the protective tube 2, while pressing the filler 10 from the tip of the insertion tube 5 with a pressure pump or the like, Pull out the insertion tube 5. When the upper surface of the filler 10 reaches the lower end 2a of the protective tube 2 and substantially coincides with NL, the injection of the filler 10 is stopped, and the insertion tube 5 is removed from the excavation hole 1.
The first to sixth processes so far are performed before root cutting, and the subsequent processes are performed in parallel with the floor excavation work.
3, the AA line cross section is shown in FIG. 5, the BB line cross section is shown in FIG. 6, and the CC line cross section is shown in FIG.
[0022]
In the seventh step of FIG. 4 A, the GL is excavated by cut roots borehole 1 protective tube 2 held in is exposed. Therefore, the VP pipe 2b above the protective pipe 2 is removed from the lower end 2a and removed. In addition, by marking the lower end outer peripheral surface of the VP pipe 2b with red, white, yellow, etc. in advance by applying paint or tape, it is easy to check the level when excavating the periphery of the protective pipe 2. .
[0023]
In the eighth step shown in FIG. 4B, since the upper end of the lower end 2a is exposed in the excavation hole 1 by excavating to NL, the insulating wire 8 supported by the filler 10 in the excavation hole 1 is exposed. The part is excised leaving the necessary length, and the terminal is further cured. Here, if the lower end portion 2a protrudes excessively or if the surface level of the filler 10 is excessive or insufficient, repair is made. With these steps, the ground electrode burying work is completed. Thereafter, after the building is erected, connection with the ground electrode is performed.
[0024]
In addition, after the fifth step, if necessary, the outer periphery of the insulated wire 8 accommodated in the protective tube 2 is covered with a VP tube, an EP (polyethylene) tube, a fluororesin tube, etc. The insulation wire 8 may be prevented from being damaged until the periphery is excavated and the VP pipe 2b is removed.
Also, the lower end 2a of the protective tube 2 is made of a non-magnetic metal to prevent electromagnetic induction from occurring at the lower end 2a when a ground electrode is connected later and current actually flows through the lower end 2a. It is to do.
[0025]
Next, an embodiment of the second invention will be described. Since the embodiment of the second invention is common to the embodiment of the first invention until the third step, the fourth step will be described. FIG. 8 shows the fourth step. When the length L1 of the inserted electrode material 3 reaches a value substantially equal to the embedded length L3 of the electrode material 3 , the electrode material 3 is cut on the GL, and the compression terminal 7 is used. Connect to insulated wire 8. The buried length L3 is a depth from NL to the lower end of the excavation hole 1.
In the fifth step of FIG. 9 A, further, lowers the insertion tube 5, inserting the electrode member 3 and the insulated wire 8 into the wellbore 1, to insert the tip of the electrode material 3 to the lower end of the borehole 1. Here, the position of the compression terminal 7, which is the upper end of the electrode material 3, is the NL position, and the portion above it is insulated by the insulator of the insulating wire 8.
[0026]
In the sixth step shown in FIG. 9B, while cutting off the extra length portion of the insulating wire 8 remaining above the upper end of the protective tube 2, while pressing the filler 10 from the tip of the insertion tube 5 with a pressure pump or the like, Pull out the insertion tube 5. When the upper surface of the filler 10 reaches the lower end 2a of the protective tube 2 and substantially coincides with NL, the injection of the filler 10 is stopped, and the insertion tube 5 is removed from the excavation hole 1.
The first to sixth processes so far are performed before root cutting, and the subsequent processes are performed in parallel with the floor excavation work.
[0027]
In the seventh step of FIG. 10 A, the GL is excavated by cut roots borehole 1 protective tube 2 held in is exposed. Therefore, the VP pipe 2b above the protective pipe 2 is removed from the lower end 2a and removed.
In the eighth step shown in FIG. 10B, since the excavation to NL exposes the compression terminal 7 to which the upper end of the lower end 2a and the insulation wire 8 are connected to the excavation hole 1, the insulation wire 8 has a necessary length. Exclude it, and then cure the terminal. Here, if the lower end portion 2a protrudes excessively or if the surface level of the filler 10 is excessive or insufficient, repair is made. With these steps, the ground electrode burying work is completed. Thereafter, after the building is erected, connection with the ground electrode is performed.
[0028]
In the embodiments of the first and second inventions, the grounding electrode 3 is buried before the floor excavation work of the building, so that the boring work after root cutting, which has been conventionally performed, becomes unnecessary. Since the portion where the ground electrode is embedded is cured by the protective tube 2 made of a VP tube, it is possible to proceed while confirming the position of the ground electrode during the tree-cutting work.
[0029]
As a result, the construction work is not interrupted because the ground electrode is buried after the floor excavation work, and the construction process management becomes easy. In addition, the construction period is greatly shortened. Further, the insulating wire 8 used in the above-described embodiment is filled with a jelly-like insulating material having water repellency and water impermeability at the boundary between the core and the insulator. Infiltration from the boundary to the inside is prevented, and the insulation and durability as a ground electrode are improved.
Instead of the insulated wire 8 of the embodiment, it is also possible to use an electric wire inserted through an insulating tube.
[0030]
FIG. 11 to FIG. 14 are cross-sectional views of excavation holes showing other embodiments. FIG. 11 shows the case where three ground electrodes 3 made of copper wire are used, and FIG. Shows the case. FIG. 13 shows a case where two copper strips are used for the ground electrode, and FIG. 14 shows a case where three copper strips are used similarly.
[0031]
Next, still another embodiment will be described.
15A to 15C are process explanatory views showing the above-described embodiment. In this example, as in the previous example, the ground electrode work after the completion of the root-cutting work is maintained at a certain required resistance value by embedding the electrodes by the placement method before the construction of the root-cutting work. Is. That is, as shown in the figure, the grounding rods 11, 12,... Are sequentially placed from the current ground level GL. The grounding rods 11 to 14 are galvanized iron rods and are connected by screw portions formed on the upper and lower ends.
[0032]
The lower end portion 11a of the grounding rod 11 to be placed first is formed in a conical shape having an outer diameter that is thicker than the outer diameter of the main body of the grounding rod 11 by about 0.5 to 1 mm and pointed downward. Is hardened and hardened. By making the outer diameter of the lower end portion 11a thicker than that of the main body, the outer surface of the grounding rods 11 to 14 is prevented from being damaged by friction with the ground at the time of placement, and the durability as a grounding electrode material is improved. improves.
[0033]
The grounding rod 11 and the like are driven by a high-vibration driving machine (not shown) having a strong hitting force. When the driving progresses and the lower end portion 11a of the grounding rod 11 reaches the depth Ls to the planned root cutting surface NL, the grounding resistance Rs is measured. Furthermore, the grounding resistance is measured while continuing the placement and increasing the placement depth.
Here, the grounding resistance value required for the grounding rods 11 to 14 is R after completion of the rooting work, and the grounding rods 11 to 14 are placed up to a depth Lt at which the grounding resistance R is obtained before the rooting construction. When the grounding resistance value obtained from the entire grounding rods 11 to 14 is Rt, the mutual relationship among the grounding resistances R, Rs, and Rt is as follows.
[0034]
[Expression 1]
R = Rs · Rt / (Rs−Rt)
[0035]
From Equation 1, the ground resistance Rt is obtained by the following equation.
[0036]
[Expression 2]
Rt = Rs · R / (Rs + R)
[0037]
Therefore, the grounding resistance value measured each time the placement depth is increased is monitored, and when the measured value matches Rt obtained by Equation 2, the placement of the grounding rods 11 to 14 is terminated.
Next, foundation work is started, root cutting work is performed, and the ground is excavated to NL. Thereby, since the upper part of the ground rod 13, 14 is exposed are removed by cutting the ground rod 1 4 near NL. Thereafter, after a building such as a building is completed, the wire 15 is connected to the upper end of the grounding rod 13 and wiring work for the ground electrode is performed.
Thus, in the embodiment of the fourth aspect of the present invention, these steps are completed before the root-cutting work, so that after the start of the root-cutting work, it is simple to simply remove the exposed grounding rod. It becomes work, and it is not necessary to interrupt the foundation work of the construction for burying the ground electrode. As a result, construction process management becomes easy and the construction period is greatly shortened.
[0038]
【The invention's effect】
As described above, according to the first and second inventions, the ground electrode is buried to a predetermined depth by excavating the ground before the root cutting work is performed, and the upper portion of the excavation hole is removed by the root cutting. By inserting a protective tube made of synthetic resin, it is possible to remove the protective tube by excavating around the excavation hole with the protective tube as a mark during the tree-cutting work. As a result, after rooting is completed and the building is completed, wiring to the ground electrode becomes possible simply by connecting the exposed insulated wire. In addition, since the ground electrode is buried before the construction work, the foundation work is not interrupted and the ground electrode work is not performed after the completion of the root-cutting work, thereby shortening the work period.
[Brief description of the drawings]
FIG. 1A is an explanatory diagram showing a first step of an embodiment according to the first invention.
FIG. 1B is an explanatory diagram showing a second step of the embodiment according to the first invention.
FIG. 2A is an explanatory diagram showing a third step of the embodiment according to the first invention.
FIG. 2B is an explanatory diagram showing a fourth step of the embodiment according to the first invention.
FIG. 3A is an explanatory diagram showing a fifth step of the embodiment according to the first invention.
FIG. 3B is an explanatory diagram showing a sixth step of the embodiment according to the first invention.
FIG. 4A is an explanatory diagram showing a seventh step of the embodiment according to the first invention.
FIG. 4B is an explanatory diagram showing an eighth step of the embodiment according to the first invention.
FIG. 5 is a cross-sectional view taken along line AA in FIG. 3A.
6 is a cross-sectional view taken along line BB in FIG. 3B.
7 is a cross-sectional view taken along line CC of FIG. 3B.
FIG. 8 is an explanatory diagram showing a fourth step of the embodiment according to the second invention.
FIG. 9A is an explanatory diagram showing a fifth step of the embodiment according to the second invention.
FIG. 9B is an explanatory diagram showing a sixth step of the embodiment according to the second invention.
FIG. 10A is an explanatory diagram showing a seventh step of the embodiment according to the second invention.
FIG. 10B is an explanatory diagram showing an eighth step of the embodiment according to the second invention.
FIG. 11 is a cross-sectional view showing another embodiment.
FIG. 12 is a cross-sectional view showing another embodiment.
FIG. 13 is a cross-sectional view showing another embodiment.
FIG. 14 is a cross-sectional view showing another embodiment.
Figure 15A is an explanatory diagram showing a step of another embodiment.
Figure 15B is an explanatory view showing a step of another embodiment.
Figure 15C is an explanatory diagram showing a step of another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Excavation hole 2 Protective pipe 2a Lower end part 2b VP pipe 3 Electrode material 4 Insertion guide metal fitting 5 Insertion pipe 6 Flange part 7 Compression terminal 8 Insulated wire 10 Filling material 11-14 Ground rod 15 Electric wire

Claims (2)

地表面から基礎地盤等迄の根伐り予定面以深の所定深さまで掘削する工程と、
掘削孔と同径またはやや小径であって下端部が非磁性体金属でその上部が合成樹脂からなる保護管を掘削孔に挿入し、下端の金属部と合成樹脂部との接続部が根伐り予定面とほぼ同位置となるように保護管を保持する工程と、
挿入ガイド金具に銅線または条材からなる接地電極材を接続するとともに、挿入ガイド金具を挿入管の先端に取り付けて上記保護管を介して上記掘削孔に挿入する工程と、
掘削孔への接地電極材の挿入長が、掘削孔下端から根伐り予定面下方の所定絶縁深さの位置までの長さとほぼ等しくなった長さで、接地電極材を切断しその上端に絶縁電線を接続してからさらに挿入管を掘削孔へ押し込みながら接地電極材を掘削孔の下端まで挿入する工程と、
充填材の上面が掘削孔内のほぼ根伐り予定面になるまで挿入管の中空部を介して充填材を掘削孔に注入しながら挿入管を掘削孔から抜き取る工程と、
を有することを特徴とする接地電極の埋設工法。
A process of excavating to a predetermined depth deeper than the planned deforestation surface from the ground surface to the foundation ground,
A protective tube made of a non-magnetic metal with the same diameter or slightly smaller diameter than the drilling hole and with the upper end made of synthetic resin is inserted into the drilling hole, and the connection between the lower end metal part and the synthetic resin part is cut down. Holding the protective tube so that it is substantially in the same position as the planned surface;
Connecting the ground electrode material made of copper wire or strip to the insertion guide fitting, attaching the insertion guide fitting to the tip of the insertion pipe and inserting it into the excavation hole via the protective pipe;
The length of the ground electrode material inserted into the drilling hole is approximately equal to the length from the lower end of the drilling hole to the position of the predetermined insulation depth below the planned root cutting, and the ground electrode material is cut and insulated at the upper end. Inserting the ground electrode material to the lower end of the excavation hole while pushing the insertion tube into the excavation hole after connecting the electric wire;
Extracting the insertion tube from the excavation hole while injecting the filler into the excavation hole through the hollow portion of the insertion tube until the upper surface of the filling material is almost planned to be rooted in the excavation hole;
A method for burying a ground electrode, characterized by comprising:
地表面から基礎地盤等迄の根伐り予定面以深の所定深さまで掘削する工程と、
掘削孔と同径またはやや小径であって下端部が非磁性体金属でその上部が合成樹脂からなる保護管を掘削孔に挿入し、下端の金属部と合成樹脂部との接続部が根伐り予定面とほぼ同位置となるように保護管を保持する工程と、
挿入ガイド金具に銅線または条材からなる接地電極材を接続するとともに、挿入ガイド金具を挿入管の先端に取り付けて上記保護管を介して上記掘削孔に挿入する工程と、
掘削孔への接地電極材の挿入長が、掘削孔下端から根伐り予定面までの長さとほぼ等しくなった長さで、接地電極材を切断しその上端に絶縁電線を接続してからさらに挿入管を掘削孔へ押し込みながら接地電極材を掘削孔の下端まで挿入する工程と、
充填材の上面が掘削孔内のほぼ根伐り予定面になるまで挿入管の中空部を介して充填材を掘削孔に注入しながら挿入管を掘削孔から抜き取る工程と、
を有することを特徴とする接地電極の埋設工法。
A process of excavating to a predetermined depth deeper than the planned deforestation surface from the ground surface to the foundation ground,
A protective tube made of a non-magnetic metal with the same diameter or slightly smaller diameter than the drilling hole and with the upper end made of synthetic resin is inserted into the drilling hole, and the connection between the lower end metal part and the synthetic resin part is cut down. Holding the protective tube so that it is substantially in the same position as the planned surface;
Connecting the ground electrode material made of copper wire or strip to the insertion guide fitting, attaching the insertion guide fitting to the tip of the insertion pipe and inserting it into the excavation hole via the protective pipe;
The length of the ground electrode material inserted into the drilling hole is approximately equal to the length from the bottom of the drilling hole to the planned root cutting. Inserting the ground electrode material to the lower end of the excavation hole while pushing the tube into the excavation hole;
Extracting the insertion tube from the excavation hole while injecting the filler into the excavation hole through the hollow portion of the insertion tube until the upper surface of the filling material is almost planned to be rooted in the excavation hole;
A method for burying a ground electrode, characterized by comprising:
JP09580794A 1994-04-08 1994-04-08 Ground electrode burying method Expired - Lifetime JP3844014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09580794A JP3844014B2 (en) 1994-04-08 1994-04-08 Ground electrode burying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09580794A JP3844014B2 (en) 1994-04-08 1994-04-08 Ground electrode burying method

Publications (2)

Publication Number Publication Date
JPH07282938A JPH07282938A (en) 1995-10-27
JP3844014B2 true JP3844014B2 (en) 2006-11-08

Family

ID=14147704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09580794A Expired - Lifetime JP3844014B2 (en) 1994-04-08 1994-04-08 Ground electrode burying method

Country Status (1)

Country Link
JP (1) JP3844014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716888B2 (en) * 2006-02-10 2011-07-06 中国電力株式会社 Grounding rod and method for making the same

Also Published As

Publication number Publication date
JPH07282938A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
KR102631023B1 (en) Grounding rod for electric pole, Device and Method for installing the same
EP0750710B1 (en) A foundation tube for use as a foundation for masts, posts, pillars, etc., together with a method for formation of the foundation
JP2011258529A (en) Grounding electrode of grounding resistance reducer injection method and grounding construction method using the same
JP3844014B2 (en) Ground electrode burying method
JP5210851B2 (en) Grounding electrode and construction method of grounding electrode
CN110820728A (en) Cast-in-situ bored pile construction method for penetrating underground deep-buried waste pipeline
CN110258567A (en) A kind of double-jacket tube passes through the grouting method of underground obstacle
JP7462225B2 (en) Tool and method for embedding ground electrodes
KR102234635B1 (en) Earth Electrode Insertion Method
JPH0959973A (en) Cast-in-place concrete pile and execution method thereof
JPH0822881A (en) Construction method for burying earth electrode
KR20090106778A (en) Earth grounding method using earthing line and earthing rod and press in pipe for use in the same
JP6104533B2 (en) Anchor member and anchor member cutting method
JP2000164312A (en) Tool and method of burying ground rod
KR100940172B1 (en) The ground rod installation method without digging
JPH0468407B2 (en)
KR102389464B1 (en) Construction Method of Ground Resistance Reduction Agent Using Ground Resistance Reducing Agent Injection Tool
JP2966287B2 (en) Construction method of steel tube column wall
JP2955120B2 (en) Drainage pipe laying method
JP3068868U (en) Ground electrode burying device
KR200210069Y1 (en) Removal nailing device in excavation work
JP2004183444A (en) Slope reinforcing method
JPS5914281A (en) Method of laying spiral earth pole by gradual increased diameter coupling pipe
JP2000077153A (en) Deep-buried independently insulated ground electrode (independent ground) and its burying construction method
JP2002246138A (en) Embedding method and device for grounded electrode for grounding resistance reducing material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term