JP3843450B2 - Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator - Google Patents

Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator Download PDF

Info

Publication number
JP3843450B2
JP3843450B2 JP2002044056A JP2002044056A JP3843450B2 JP 3843450 B2 JP3843450 B2 JP 3843450B2 JP 2002044056 A JP2002044056 A JP 2002044056A JP 2002044056 A JP2002044056 A JP 2002044056A JP 3843450 B2 JP3843450 B2 JP 3843450B2
Authority
JP
Japan
Prior art keywords
electrode
electrode life
life indicator
electrolyzed water
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002044056A
Other languages
Japanese (ja)
Other versions
JP2003247092A (en
Inventor
文雄 西山
英明 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Tokyo Manufacturing Corp
Original Assignee
Morita Tokyo Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Tokyo Manufacturing Corp filed Critical Morita Tokyo Manufacturing Corp
Priority to JP2002044056A priority Critical patent/JP3843450B2/en
Publication of JP2003247092A publication Critical patent/JP2003247092A/en
Application granted granted Critical
Publication of JP3843450B2 publication Critical patent/JP3843450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電極の寿命表示器を備えた連続式無隔膜電解装置に係り、特に電極の電流値の減衰に基づく電極の寿命表示器を備えた連続式無隔膜電解装置に関する。
【0002】
【従来の技術】
従来、電解装置の電極の寿命の判定は、生成された電解水のサンプルテストを、pH試験紙、試薬、残留塩素濃度計、電気伝導度計等で測定して行い、その結果から推定するもの、あるいは電極に印加した電力のON、OFFのサイクル数をカウントし、一定回数を超過すると表示、警報を発する等の手段により行われていた。
【0003】
【発明が解決しようとする課題】
しかしながら、前記サンプルを抽出し試験紙、試薬によるテストは面倒であって適時に行われず、また残留塩素濃度計や、電気伝導度計は高価であり、そして、ON、OFFのサイクルの回数は、使用時のサイクル比、原水の水質等が異なるため、電極の寿命との相関性にばらつきがあり、それぞれ実用面に問題があった。
本発明は、上記の課題を解決する簡明な電極の寿命表示器を備えた連続式無隔膜電解装置を提供する。
【0004】
【課題を解決しようとするための手段】
上記に鑑み本発明者等は鋭意実験研究の結果、電極の摩耗が、定電圧の電力がON−OFF操作により、かつOFF時間が20秒以上であるサイクルで供給される電解槽内の白金メッキされたチタン板製の電極において、同電極に係る電流値の減衰率と相関関係にあることを知見して、前記課題を下記構成の本発明により解決した。
(1)食塩水、希塩酸あるいは、食塩水と希塩酸の混合液を電解液として、弱酸性電解水を製造するための連続式無隔膜電解装置において、定電圧の電力がON−OFF操作により、かつOFF時間が20秒以上であるサイクルで供給される電解槽内の白金メッキされたチタン板製の電極を備え、そして電解槽内における電流値の減衰率を電極の寿命に換算して表示する電極の寿命表示器を備えてなることを特徴とする電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。
(2)電極の寿命表示器が、電流値の減衰率に相関性を有する電極の寿命を、(a)使用領域、(b)要注意領域、(c)使用不可領域に区分して表示されるものであることを特徴とする前項(1)に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。
(3)電極の寿命表示器が記憶回路を備え、経時的に(a)使用領域、(b)要注意領域、(c)使用不可領域のいずれかにあることが表示されるものであることを特徴とする前項(1)又は(2)に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。
(4)電極の寿命表示が(b)要注意領域に至ると、電解装置の電解水の生成モードが高濃度モードに切り替わるものであることを特徴とする前項(1)〜(3)のいずれか1項に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。
(5)電極の寿命表示が(c)使用不可領域に至ると、警報を発するものであることを特徴とする前項(1)〜(4)のいずれか1項に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。
【0005】
【発明の実施の形態】
以下に発明の実施の形態を記述する。
一般に電解装置の電解槽の電極は、白金被膜、フェライト、炭素、ステンレス、チタン等が使用されるが、本件ではチタン板に白金をメッキ(メッキ厚0.45μm)して被膜を形成したものを事例とする。
電極の寿命は、白金膜の厚さと有効単位面積当たりの電流量、使用時のON、OFFの頻度、逆電圧洗浄時の頻度、原水の地域差による水質等、多くの要因が影響するが、実験によれば、中でも、使用時のON、OFFのサイクルにおいて、ON(通電)の時間が短く、OFF(停止)時間が長い組み合わせが、大きく残存メッキ厚(電極の寿命)に関係し、電流量の減衰率と相関性が高いことが判明した。
なお、電極の寿命は、メッキ面光沢の喪失、摩耗・剥落によるメッキの不均一(地金が露出しあばた状)等は、膜厚計による計測の他、目視的にも所見でき、この状態になると、前記電解水の残留塩素濃度は低下する。
【0006】
【実施例】
図により実験結果を以下に説明する。
図1は、本実験に使用した電解装置(除菌洗浄水生成器)の外観斜視図、図2は電解装置の基本構成と使用測定器のブロック図であり、図において、1は電解装置、2は操作スイッチ類、3は給水管、4は吐出管、5は塩素濃度設定器、6は電流計(表示器)、7は電源コード、8は警報器、9は定電圧電源、10は電源ライン、11は直流電源切り替え器、12は制御部、13は電圧計、14は電解水、14’は電解槽、15、15’は電極、16は原水混合注入口、17は添加液注入口、18は添加液、18’は添加液槽、19は注入ポンプ、20は流量調整用電磁弁、21は添加液用電磁弁、22は吐水用電磁弁、23は電解液送出口、24は希釈混合液、24’は希釈混合液槽、26はメッキ厚計測器(膜厚計)、27は残留塩素濃度計測器、28は洗浄水、43は原水混合口を示す。
【0007】
図1に示した電解装置1は、前記食塩水と希塩酸を混合して電解液として使用する連続式1槽型の無隔膜電解装置であり、
電解装置1の表面には、操作スイッチ類2、給水管3、洗浄水吐出管4、塩素濃度設定器5、電流計(表示器)6、電源コード7及び警報器8が配設されており、吐出管4からは洗浄用の弱酸性水(有効塩素濃度約30〜50ppm、pH値5〜7)が約2〜3L/min吐出される。
【0008】
次に、図2に示した電解装置の基本構成と使用測定器のブロック図により、
当該実験機の諸要素と、それに基づく電解槽14’の電極15、15’の寿命試験とそのデータについて説明する。
構成は図示したように、電解水14には、添加液(電解液:食塩水+希塩酸)18が、注入ポンプ19により送出されかつ、原水混合口43にて約30分の1の濃度に希釈されて添加液注入口17から供給される。
また、電解槽には前記電極15、15’(横65×縦130×厚さ1mm)2枚が、平行間隔5mmで配設されており、各電極には定電圧電源9(80VA:定電圧4、5V)から電力が供給され電解水14が生成される。
そして、前記電解水14は、給水管3より注入され流量調整電磁弁20を経由した原水(水道水)と、原水混合注入口16で混合され、希釈混合槽24’において約300分の1の希釈混合液24となる。
その後、吐水用電磁弁22を経由し吐出管4から洗浄水28として、外部に吐出される。
【0009】
上記構成による実験機における電極15、15’の寿命試験のための計測方法を以下に記載する。
電極15、15’への、印加電圧を電圧計13、電流量を電流計6、洗浄水28の残留塩素量を沃素滴定法(JIS k−0102)によって、また残存メッキ厚は膜厚計によりそれぞれ計測し、また、電極15、15’への印加電圧のON、OFFのサイクル時間を設定し、その回数をカウントした。
【0010】
次図に、上記計測方法における、電極に印加する電圧のON、0FFのサイクル(ONとOFFの時間比率)並びにサイクルの回数を横軸とし、電流値と残存メッキ厚及び残留塩素濃度とを縦軸としたグラフを示す。
図3はON、OFFサイクルをON7秒、OFF5秒とし、サイクル回数を0〜125,000回とした電圧、電流、残存メッキ厚及び残留塩素濃度の相関を示すグラフ図である。
図3から分かるように、本サイクルの設定値とサイクル回数においては、電流値Aと、残留塩素濃度P及び残存メッキ厚tとの間には相関関係はみられず、従って、電流値によって電極の寿命は推定できない。
【0011】
次に図4は、ON、OFFサイクルをON7秒、OFF20秒とし、サイクル回数を0〜20,000回とした電圧、電流、残存メッキ厚及び残留塩素濃度の相関を示すグラフ図である。
本グラフにおいては、電流値Aと、残留塩素濃度P及び残存メッキ厚tとの間には、明らかに相関関係があり、電流値の減衰率を電極の寿命に置き換えることが可能である。(ただしVは定電圧)
即ち、サイクル数の増加につれて電流値Aは減衰してゆき、残留塩素濃度P(標準:30ppm)も減衰して20ppm(要注意)に至る時点では、電極のメッキ厚t(標準0.45μm)は2分の1の、0.2μmまで減少している。
さらに、残留塩素濃度Pが13ppm以下(使用不可領域)では、電流は当初(8.5A)より6.7Aまで1.8Aも直線的に減衰し、そして、この時の電極のメッキ厚tは0.08μm(使用不可、寿命領域)まで減少している。
また、上記により、サイクル回数は12,000で(要注意)17,500で(使用不可)に至る。
【0012】
また、前記図3と図4との差異について考察するために下記の試験を行いグラフとした。
図5は電解停止後の電圧の推移を示すグラフ図で、横軸を経過時間、縦軸を電圧とした。
図示したように、電極に印加するONの時間を、電圧4.2Vで5秒間持続し、その後OFFとすると、OFF後5秒間は電圧は2V以下にはならない。
これは、前記5mm間隔で平行している電極板15、15’間は電解水が満されており、1種のコンデンサとして作用するため、電源0FF後電圧は半減値強辺りまでは急激に低下するが、その後の放電時定数は長く、5秒後ではまだ半減値が保たれている。
その後の放電時間は、特に13秒以降は長く緩やかであり、50秒後でもまだ約0.3V残っている。
【0013】
上記の現象を、前記3図及び4図に示したグラフと対比して、実験記録したものが図6及び図7である。
図6は、ON、OFFのサイクルを、7秒ON、5秒OFFとした時の電圧観測波形図で、サイクルは前記図3と同じである。
電圧は2Vと4.2V間(差2.2V)の繰り返しである。
図7は、ON、OFFのサイクルを、7秒ON、20秒OFFとした時の電圧観測波形図で、サイクルは前記図4と同じである。
電圧は0.6Vと4.2V間(差3.6V)の繰り返しである。
【0014】
上記より、図6と図7の電圧観測波形の差異は、電解停止後の波形と、放電電位の大小にあることが分かる。
即ち、ON、OFF時の電位差が少ないとONに至る立ち上がりは緩やかで、電位差が大きいと急峻となる。図6の立ち上がり2.2V対図7の立ち上がり3.6Vとの比は1:1.6である。
OFFからONに移行時には、前記電極間をコンデンサとみなすと、立ち上がり時間に最大電圧まで充電され、短時間に大きな尖頭電流が流れる。
しかし、図6と図3とを対比すると、図6の電位差2.2V程度のサイクルでは、前記尖頭電流の影響は少なく、図3のサイクル数125,000回でも、残存メッキ厚tの減少は僅少であり、従って電流Aとの相関性もみられない。
【0015】
一方、図7は前記図6の場合に比べると、電位差は1.6倍と大きいために、前記尖頭電流もかなり大きく、電極のメッキに対する損傷即ち、前記メッキ面光沢の喪失、摩耗・剥落によるメッキの不均一(地金が露出しあばた状)等に至る経時的な影響が大となり、
図7と図4とを対比してみると、図4のサイクル数は17,500回で残存メッキ厚tは、0.07μmまで減衰する。またそれに伴って電流は6.7Aまで相関性をもって減衰する。そして残留塩素濃度Pも同じく相関性を持って減衰する。
上記から、実用上は、前記サイクルのOFF時間は20秒よりさらに長くなっている場合が多いが、実際に近くかつ、相関性を示すグラフとして、図4を採用した。
【0016】
以上述べた計測データに基づき、電極寿命の表示器について事例により説明する。
図8は各種表示器の表示部分の正面図である。表示器は電解装置1の表面パネル上に配設される(図1)。
なお、図8の(イ)図は、角形電極寿命表示器の正面図、(ロ)図は、横スライド形電極寿命表示器の正面図、(ハ)図は、ランプ点灯形電極寿命表示器の正面図、(ニ)図は、記憶回路を備えた電極寿命表示器の正面図を示す。
図において、6は表示器(角形寿命表示器)、29は指針、30は使用領域、31は要注意領域、32は使用不可領域、33は横スライド形電極寿命表示器、34はランプ点灯形電極寿命表示器、35は表示ランプ、36は記憶回路を備えた電極寿命表示器の正面図、37は可逆カウンタメカ表示部を示す。
【0017】
(イ)図は、角形直流電流計の指示値を電極の寿命に置き換えて、指針29が指示する領域を、使用領域30、要注意領域31、使用不可領域32に区分して表示し、
(ロ)図は、横スライド形直流電流計の指示値を電極の寿命に置き換えて、指針29が指示する領域を、使用領域30、要注意領域31、使用不可領域32に区分して表示し、
(ハ)図は、直流電流計の指示値を順次表示ランプ35の点灯に置き換えて、電極の寿命を同上区域に区分表示し、
(ニ)図は、直流電流値により可逆カウンタの表示がメカ機構による記憶回路を備え経時的に常時同上区分表示するものである。
なお、上記区分領域を色分け表示、例えば使用領域30を白、要注意領域31を黄色、使用不可領域32を赤等に区分すると見やすい。
【0018】
図9は記憶回路を備えた電極寿命表示器の構成を示すブロック図である。
図において、38は電流ライン、39は電流検知器、40a〜40cは可逆カウンタ、41a〜41cは検知回路、42a〜42cは信号ライン切り替え器を示す。
電流検知器39からの信号は、信号ライン切り替え器42aを経由して可逆カウンタ40aを駆動し、表示部37aで使用領域30を表示する。
前記電流検知器39からの信号が経時的に減少してゆき、使用領域30の下限に至ると、その値を検知回路41aが検知し、該信号により前記信号ライン切り替え器42aをOFFとし、前記表示部37aをリセットして0とすると共に、信号ライン切り替え器42bをONとし、次段の可逆カウンタ40bを駆動し、表示部37bで要注意領域31を表示する。
【0019】
前記電流検知器39からの信号がさらに経時的に減少してゆき、要注意領域31の下限に至ると、その値を電流検知器41bが検知し、該信号により前記信号ライン切り替え器42bをOFFとし、前記表示部37bをリセットして0とすると共に、信号ライン切り替え器42cをONとし、次段の可逆カウンタ40cを駆動し、表示部37cで使用不可領域32を表示する。
そして、電極交換のため電源をOFFにすると検知器41cが検知し、前記信号ライン切り替え器42cをOFFにし、寿命表示器は再起動準備状態となる。
上記、表示部37a〜37cを例えば、メカの表示保持型を採用すれば、主電源のOFF時でも、領域表示を行うことができる。
【0020】
次に自動残留塩素濃度の切り替えについて記述する。
実験機における有効濃度の設定は、一定濃度の電解水14に希釈する原水(水道水)の混合量を調整することにより行っている。
例えば、標準モード時 約30ppm(給水量3.2L/min)、高濃度モード時 約50ppm(給水量2.3L/min)としており、塩素濃度設定器5(図1、図2)により、流量調節用電磁弁20の調節を制御部12を介して手動で行っている。
従って、常時は標準モードで使用し、前記電極15、15’の寿命が要注意領域31(図8)になった時点で、その信号を検出し制御部12を介して自動的に高濃度モードに流量調節用電磁弁20を切り替えると、残留塩素濃度Pは一旦上昇するので、その分洗浄水を長期間使用することができる。
ただし、電極の摩耗は切り替えた時点でもすでに発生しており残存メッキ厚tの数値は変わらず、例えば限界値を、残留塩素濃度Pを20ppmとすれば、その時の残存メッキ厚tは0.25μmまで減少している(図4)。
このため以降は塩素濃度を上げても、残存メッキ厚tの厚さが寿命の限界値となる。
図4のグラフからその点の残存メッキ厚tは0.08μm程度と推察される。
なお、前述したように、メッキの損傷は、メッキ面光沢の喪失、摩耗・剥落によるメッキの不均一(地金が露出しあばた状)等によるため、特に極薄まで均一的に厚さが減少してゆくことはない。
【0021】
さらに、前記電極寿命表示器6の表示が使用不可領域32に至ると表示部による報知と連動して、制御器12を介して警報ランプの点灯、音声による告知等、警報器8(図2)により警報を発し、交換時期を明確に使用者に伝達することができる。
【0022】
【発明の効果】
本願発明によれば次のような優れた効果を発揮することができる。
1.本発明の請求項1の発明によれば、
食塩水、希塩酸あるいは、食塩水と希塩酸の混合液を電解液として、弱酸性電解水を製造するための連続式無隔膜電解装置において、電解槽の電極へ供給される電力中の電流値の減衰率を電極の寿命に換算して表示する電極の寿命表示器を備えてなるため、従来行われている洗浄水のサンプルを抽出し試験紙、試薬によるテストは面倒であり、また適時に行われず、さらに残留塩素濃度計や、電気伝導度計は高価であり、そしてON、OFFサイクルの回数による推定は電極の寿命との相関性にばらつきがあったが、簡明な手段により使用電極の寿命を測定表示することができる。
2.請求項2の発明によれば、
電極の寿命表示器が、電流の減衰率を相関性を有する電極の寿命に置き換えて、使用領域、要注意領域、使用不可領域に区分して表示するため、一見して現在どの領域にあるか知ることができる。
【0023】
3.請求項3の発明によれば、
電極の寿命表示器が記憶回路を備え、経時的に使用領域、要注意領域、使用不可領域のいずれかにあることを表示するため、主電源がOFFになっても現在の領域を知ることができる。
4.請求項4の発明によれば、
電極の寿命表示が要注意領域に至ると、電解装置の電解水の生成が高濃度モードに切り替わるため、洗浄水の使用期間を延長することができる。
5、電極の寿命表示が使用不可領域に至ると、表示と連動してランプ点灯、音声告知等の警報を発するため、交換時期を明確に使用者に伝達することができる。
【図面の簡単な説明】
【図1】本実験に使用した電解装置の外観斜視図、
【図2】電解装置の基本構成と使用測定器のブロック図、
【図3】ON、OFFサイクルをON7秒、OFF5秒とし、サイクル回数を0〜125,000回とした電圧、電流、残存メッキ厚及び残留塩素濃度の相関を示すグラフ図、
【図4】ON、OFFサイクルをON7秒、OFF20秒とし、サイクル回数を0〜20,000回とした電圧、電流、残存メッキ厚及び残留塩素濃度の相関を示すグラフ図、
【図5】電解停止後の電圧の推移を示すグラフ図、
【図6】ON、OFFのサイクルを、7秒ON、5秒OFFとした時の電圧観測波形図、
【図7】ON、OFFのサイクルを、7秒ON、20秒OFFとした時の電圧観測波形図、
【図8】各種表示器の表示部分の正面図、
【図9】記憶回路を備えた電極寿命表示器の構成を示すブロック図、
【符号の説明】
1:電解装置 2:操作スイッチ類
3:給水管 4:吐出管
5:塩素濃度設定器 6:電流計(表示器)
7:電源コード 8:警報器
9:定電圧電源 10:電源ライン
11:直流電源切り替え器 12:制御部
13:電圧計 14:電解水
14’:電解槽 15、15’:電極
16:原水混合注入口 17:添加液注入口
18:添加液 18’:添加液槽
19:注入ポンプ 20:流量調整用電磁弁
21:添加液用電磁弁 22:吐水用電磁弁
23:電解液送出口 24:希釈混合液
24’:希釈混合液槽 26:メッキ厚計測器
27:残留塩素濃度計測器 28:洗浄水
29:指針 30:使用領域
31:要注意領域 32:使用不可領域
33:横スライド形電極寿命表示器 34:ランプ点灯形電極寿命表示器
35:表示ランプ
36:記憶回路を備えた電極寿命表示器の正面図
37:可逆カウンタメカ表示部 38:電流ライン
39:電流検知器 40a〜40c:可逆カウンタ
41a〜41c:検知回路 42a〜42c:信号ライン切り替え器
43:原水混合口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous diaphragm electrolyzer equipped with an electrode life indicator, and more particularly, to a continuous diaphragm electrolyzer equipped with an electrode life indicator based on attenuation of an electrode current value.
[0002]
[Prior art]
Conventionally, the life of an electrode of an electrolysis device is determined by measuring a sample test of the generated electrolyzed water using a pH test paper, a reagent, a residual chlorine concentration meter, an electric conductivity meter, etc. Alternatively, the number of cycles of ON / OFF of the electric power applied to the electrode is counted, and when a certain number of times is exceeded, a display or an alarm is issued.
[0003]
[Problems to be solved by the invention]
However, the sample is extracted and the test paper and the test with the reagent are troublesome and not performed in a timely manner, and the residual chlorine concentration meter and the conductivity meter are expensive, and the number of ON and OFF cycles is as follows. Since the cycle ratio at the time of use, the quality of the raw water, and the like are different, there is a variation in the correlation with the life of the electrode, and each has a problem in practical use.
The present invention provides a continuous diaphragm electrolyzer equipped with a simple electrode life indicator that solves the above problems.
[0004]
[Means for solving problems]
In view of the above, as a result of intensive experimental research, the present inventors have made platinum plating in an electrolytic cell in which electrode wear is supplied in a cycle in which a constant voltage power is supplied by an ON-OFF operation and the OFF time is 20 seconds or more. The titanium plate electrode was found to have a correlation with the decay rate of the current value related to the electrode, and the problems were solved by the present invention having the following constitution.
(1) In a continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water using saline, dilute hydrochloric acid or a mixed solution of saline and dilute hydrochloric acid as an electrolyte, constant-voltage power is turned on and off, and Electrode made of a platinum-plated titanium plate in an electrolytic cell supplied in a cycle with an OFF time of 20 seconds or more, and an electrode that displays the decay rate of the current value in the electrolytic cell in terms of the electrode life A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water having an electrode life indicator.
(2) The electrode life indicator displays the electrode life that has a correlation with the decay rate of the current value divided into (a) use area, (b) caution area, and (c) unusable area. A continuous diaphragmless electrolyzer for producing weakly acidic electrolyzed water comprising the electrode lifetime indicator as set forth in (1) above.
(3) The electrode life indicator is equipped with a memory circuit, and it is displayed over time that it is in one of the (a) use area, (b) caution area, or (c) unusable area. A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water comprising the electrode life indicator according to (1) or (2) above.
(4) When the electrode life display reaches (b) a sensitive area, the electrolyzed water generation mode of the electrolyzer is switched to the high concentration mode. Any one of (1) to (3) above A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water comprising the electrode life indicator according to claim 1.
(5) The electrode life indicator according to any one of (1) to (4) above, wherein an alarm is issued when the electrode life display reaches (c) the unusable region. A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the invention will be described below.
In general, platinum electrodes, ferrite, carbon, stainless steel, titanium, etc. are used as the electrodes of the electrolytic cell of the electrolysis device. In this case, a titanium plate is plated with platinum (plating thickness 0.45 μm) to form a coating. Take a case.
The life of the electrode is influenced by many factors, such as the thickness of the platinum film and the amount of current per effective unit area, the frequency of ON and OFF during use, the frequency during reverse voltage cleaning, and the water quality due to regional differences in raw water, According to experiments, the combination of a short ON (energization) time and a long OFF (stop) time in the ON / OFF cycle during use is largely related to the remaining plating thickness (electrode life), and the current It was found to be highly correlated with the quantity decay rate.
The life of the electrode can be observed visually, in addition to the measurement with a film thickness meter, such as the loss of gloss on the plated surface and uneven plating due to wear and peeling (exposed and bare metal). As a result, the residual chlorine concentration of the electrolyzed water decreases.
[0006]
【Example】
The experimental results will be described below with reference to the drawings.
FIG. 1 is an external perspective view of an electrolysis apparatus (sterilization washing water generator) used in this experiment, FIG. 2 is a basic configuration of the electrolysis apparatus, and a block diagram of a measuring instrument used. In the figure, 1 is an electrolysis apparatus, 2 is an operation switch, 3 is a water supply pipe, 4 is a discharge pipe, 5 is a chlorine concentration setting device, 6 is an ammeter (display), 7 is a power cord, 8 is an alarm, 9 is a constant voltage power supply, 10 is Power line 11, DC power source switch 12, control unit 12, voltmeter, 14 electrolyzed water, 14 ′ electrolyzer, 15, 15 ′ electrode, 16 raw water mixing inlet, 17 additive injection Inlet, 18 is additive liquid, 18 'is an additive liquid tank, 19 is an infusion pump, 20 is a solenoid valve for flow rate adjustment, 21 is an electromagnetic valve for additive liquid, 22 is an electromagnetic valve for water discharge, 23 is an outlet for electrolyte, 24 Is a diluted mixed solution, 24 'is a diluted mixed solution tank, 26 is a plating thickness measuring device (film thickness meter), and 27 is a residual chlorine concentration measurement. , 28 is washing water, and 43 is a raw water mixing port.
[0007]
The electrolysis apparatus 1 shown in FIG. 1 is a continuous 1 tank type diaphragmless electrolysis apparatus that mixes the saline and dilute hydrochloric acid and uses it as an electrolyte.
On the surface of the electrolysis apparatus 1, operation switches 2, a water supply pipe 3, a washing water discharge pipe 4, a chlorine concentration setting device 5, an ammeter (display) 6, a power cord 7 and an alarm device 8 are arranged. The discharge pipe 4 discharges weakly acidic water for cleaning (effective chlorine concentration of about 30 to 50 ppm, pH value of 5 to 7) at about 2 to 3 L / min.
[0008]
Next, based on the basic configuration of the electrolysis apparatus shown in FIG.
The elements of the experimental machine, the life test of the electrodes 15 and 15 'of the electrolytic cell 14' based on the elements, and data thereof will be described.
As shown in the figure, in the electrolyzed water 14, an additive solution (electrolyte: saline + dilute hydrochloric acid) 18 is sent out by the infusion pump 19 and diluted to a concentration of about 1/30 at the raw water mixing port 43. Then, it is supplied from the additive liquid inlet 17.
In addition, two electrodes 15, 15 ′ (width 65 × length 130 × thickness 1 mm) are arranged in the electrolytic cell at a parallel interval of 5 mm, and each electrode has a constant voltage power source 9 (80VA: constant voltage). (4, 5V) to supply electric power to generate electrolyzed water 14.
And the said electrolyzed water 14 is mixed with the raw | natural water (tap water) which was inject | poured from the feed water pipe 3 and passed through the flow volume adjustment solenoid valve 20, and is mixed by the raw | natural water mixing inlet 16, and is about 1/300 in dilution mixing tank 24 '. The diluted mixed solution 24 is obtained.
Thereafter, the water is discharged to the outside as the wash water 28 from the discharge pipe 4 via the water discharge electromagnetic valve 22.
[0009]
A measurement method for the life test of the electrodes 15 and 15 ′ in the experimental machine having the above configuration will be described below.
The applied voltage to the electrodes 15, 15 'is a voltmeter 13, the amount of current is an ammeter 6, the amount of residual chlorine in the cleaning water 28 is determined by an iodine titration method (JIS k-0102), and the remaining plating thickness is determined by a film thickness meter. Each was measured, the cycle time of ON and OFF of the voltage applied to the electrodes 15 and 15 ′ was set, and the number of times was counted.
[0010]
The following figure shows the current value, the remaining plating thickness, and the residual chlorine concentration in the vertical direction, with the horizontal axis representing the ON / OFF cycle (ON / OFF time ratio) of the voltage applied to the electrode and the number of cycles. A graph with axes is shown.
FIG. 3 is a graph showing the correlation of voltage, current, remaining plating thickness, and residual chlorine concentration with ON and OFF cycles set to ON 7 seconds and OFF 5 seconds, and the number of cycles set to 0 to 125,000.
As can be seen from FIG. 3, there is no correlation between the current value A, the residual chlorine concentration P and the residual plating thickness t in the set value and the number of cycles of this cycle, and therefore the electrode depends on the current value. The lifetime of can not be estimated.
[0011]
Next, FIG. 4 is a graph showing the correlation among voltage, current, remaining plating thickness, and residual chlorine concentration when the ON / OFF cycle is ON 7 seconds and OFF 20 seconds and the number of cycles is 0 to 20,000.
In this graph, there is a clear correlation between the current value A, the residual chlorine concentration P and the residual plating thickness t, and it is possible to replace the decay rate of the current value with the life of the electrode. (Where V is a constant voltage)
That is, as the number of cycles increases, the current value A attenuates, and when the residual chlorine concentration P (standard: 30 ppm) also attenuates to 20 ppm (caution), the electrode plating thickness t (standard 0.45 μm) Is reduced by half to 0.2 μm.
Furthermore, when the residual chlorine concentration P is 13 ppm or less (unusable region), the current is linearly attenuated by 1.8 A from the initial (8.5 A) to 6.7 A, and the plating thickness t of the electrode at this time is It has decreased to 0.08 μm (unusable, life span).
Further, according to the above, the number of cycles reaches 12,000 (caution) and reaches 17,500 (unusable).
[0012]
In order to consider the difference between FIG. 3 and FIG.
FIG. 5 is a graph showing the transition of voltage after the electrolysis is stopped, with the horizontal axis representing elapsed time and the vertical axis representing voltage.
As shown in the figure, when the ON time applied to the electrode is maintained at a voltage of 4.2 V for 5 seconds and then turned OFF, the voltage does not become 2 V or less for 5 seconds after the OFF.
This is because the electrolyzed water is filled between the electrode plates 15 and 15 'which are parallel to each other at the interval of 5 mm, and acts as a kind of capacitor, so that the voltage after the power supply 0FF rapidly decreases to around the half-value strength. However, the subsequent discharge time constant is long, and the half value is still maintained after 5 seconds.
The subsequent discharge time is long and gentle especially after 13 seconds, and about 0.3 V still remains after 50 seconds.
[0013]
FIG. 6 and FIG. 7 show the above-mentioned phenomenon recorded in an experiment in comparison with the graphs shown in FIG. 3 and FIG.
FIG. 6 is a voltage observation waveform diagram when the ON / OFF cycle is 7 seconds ON and 5 seconds OFF, and the cycle is the same as FIG.
The voltage is repeated between 2V and 4.2V (difference 2.2V).
FIG. 7 is a voltage observation waveform diagram when the ON / OFF cycle is 7 seconds ON and 20 seconds OFF, and the cycle is the same as FIG.
The voltage is repeated between 0.6V and 4.2V (difference 3.6V).
[0014]
From the above, it can be seen that the difference between the voltage observation waveforms in FIG. 6 and FIG. 7 is the waveform after the electrolysis stop and the magnitude of the discharge potential.
That is, when the potential difference between ON and OFF is small, the rise leading to ON is gentle, and when the potential difference is large, it becomes steep. The ratio of the rise of 2.2V in FIG. 6 to the rise of 3.6V in FIG. 7 is 1: 1.6.
At the time of transition from OFF to ON, if the electrode is regarded as a capacitor, it is charged to the maximum voltage at the rise time, and a large peak current flows in a short time.
However, when FIG. 6 is compared with FIG. 3, the influence of the peak current is small in the cycle of the potential difference of about 2.2 V in FIG. 6, and the remaining plating thickness t is decreased even with the number of cycles of 125,000 in FIG. 3. Therefore, there is no correlation with the current A.
[0015]
On the other hand, since FIG. 7 has a potential difference 1.6 times larger than that in FIG. 6, the peak current is also considerably large, and damage to the plating of the electrode, that is, loss of gloss on the plated surface, wear / peeling. The effect of the plating over time due to uneven plating (exposed to bare metal) is great,
When comparing FIG. 7 with FIG. 4, the number of cycles in FIG. 4 is 17,500, and the remaining plating thickness t is attenuated to 0.07 μm. Along with this, the current decays with a correlation up to 6.7A. The residual chlorine concentration P is also attenuated with a correlation.
From the above, practically, the OFF time of the cycle is often longer than 20 seconds, but FIG. 4 is adopted as a graph that is close to the actual and shows the correlation.
[0016]
Based on the measurement data described above, an example of the electrode life indicator will be described.
FIG. 8 is a front view of the display part of various displays. The indicator is disposed on the surface panel of the electrolysis apparatus 1 (FIG. 1).
8A is a front view of a rectangular electrode life indicator, FIG. 8B is a front view of a horizontal slide electrode life indicator, and FIG. 8C is a lamp-lit electrode life indicator. FIG. 4D is a front view of an electrode life indicator equipped with a memory circuit.
In the figure, 6 is a display (square life indicator), 29 is a pointer, 30 is a use area, 31 is a caution area, 32 is an unusable area, 33 is a lateral slide electrode life indicator, and 34 is a lamp lighting type. An electrode life indicator, 35 is a display lamp, 36 is a front view of an electrode life indicator provided with a memory circuit, and 37 is a reversible counter mechanism display.
[0017]
(B) The figure replaces the indication value of the square DC ammeter with the life of the electrode, and the area indicated by the pointer 29 is divided into a use area 30, a caution area 31, and an unusable area 32.
(B) The figure replaces the indicated value of the horizontal slide type DC ammeter with the life of the electrode, and the area indicated by the pointer 29 is divided into a use area 30, a caution area 31, and an unusable area 32. ,
(C) In the figure, the indication value of the DC ammeter is replaced with the lighting of the display lamp 35 sequentially, and the life of the electrodes is displayed in the same area as above,
(D) In the figure, the display of the reversible counter is provided with a memory circuit by a mechanical mechanism according to the DC current value, and the above-mentioned division display is always performed over time.
In addition, it is easy to see the above-described divided area by color-coded display, for example, dividing the use area 30 into white, the caution area 31 into yellow, and the unusable area 32 into red.
[0018]
FIG. 9 is a block diagram showing a configuration of an electrode life indicator equipped with a memory circuit.
In the figure, 38 is a current line, 39 is a current detector, 40a to 40c are reversible counters, 41a to 41c are detection circuits, and 42a to 42c are signal line switches.
The signal from the current detector 39 drives the reversible counter 40a via the signal line switch 42a, and displays the use area 30 on the display unit 37a.
When the signal from the current detector 39 decreases with time and reaches the lower limit of the use area 30, the value is detected by the detection circuit 41a, and the signal line switch 42a is turned OFF by the signal, The display unit 37a is reset to 0, the signal line switch 42b is turned on, the next-stage reversible counter 40b is driven, and the caution area 31 is displayed on the display unit 37b.
[0019]
When the signal from the current detector 39 further decreases with time and reaches the lower limit of the area 31 requiring attention, the current detector 41b detects the value, and the signal line switch 42b is turned off by the signal. The display unit 37b is reset to 0, the signal line switch 42c is turned on, the next-stage reversible counter 40c is driven, and the unusable area 32 is displayed on the display unit 37c.
When the power is turned off for electrode replacement, the detector 41c detects that the signal line switch 42c is turned off, and the life indicator is ready for restart.
If the display units 37a to 37c are, for example, a mechanical display holding type, the area display can be performed even when the main power is turned off.
[0020]
Next, switching of automatic residual chlorine concentration is described.
The effective concentration in the experimental machine is set by adjusting the amount of raw water (tap water) diluted to a certain concentration of electrolyzed water 14.
For example, the standard mode is about 30 ppm (water supply amount: 3.2 L / min) and the high concentration mode is about 50 ppm (water supply amount: 2.3 L / min), and the chlorine concentration setter 5 (FIGS. 1 and 2) The adjustment electromagnetic valve 20 is manually adjusted via the control unit 12.
Therefore, it is always used in the standard mode, and when the life of the electrodes 15 and 15 ′ reaches the caution area 31 (FIG. 8), the signal is detected and the high concentration mode is automatically set via the control unit 12. When the flow rate adjusting electromagnetic valve 20 is switched, the residual chlorine concentration P increases once, so that the wash water can be used for a long time.
However, electrode wear has already occurred even at the time of switching, and the value of the remaining plating thickness t does not change. For example, if the limit value is 20 ppm, the remaining plating thickness t at that time is 0.25 μm. (Fig. 4).
For this reason, even if the chlorine concentration is raised thereafter, the thickness of the remaining plating thickness t becomes the limit value of the lifetime.
From the graph of FIG. 4, the remaining plating thickness t at that point is estimated to be about 0.08 μm.
As mentioned above, plating damage is due to loss of gloss on the plated surface, uneven plating due to wear and peeling (exposed and exposed metal base), etc., so the thickness is reduced even to an extremely thin thickness. There is no going.
[0021]
Further, when the display of the electrode life indicator 6 reaches the unusable area 32, the alarm device 8 (FIG. 2), such as lighting of an alarm lamp and notification by voice through the controller 12 in conjunction with the notification by the display unit. Can issue an alarm and clearly communicate the replacement time to the user.
[0022]
【The invention's effect】
According to the present invention, the following excellent effects can be exhibited.
1. According to the invention of claim 1 of the present invention,
Attenuation of the current value in the electric power supplied to the electrode of an electrolytic cell in a continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water using saline, dilute hydrochloric acid or a mixture of saline and dilute hydrochloric acid as an electrolyte Because it is equipped with an electrode life indicator that converts the rate into the life of the electrode, a conventional sample of washing water is extracted and the test with test paper and reagents is cumbersome and not performed in a timely manner. Furthermore, residual chlorine concentration meters and electrical conductivity meters are expensive, and the estimation based on the number of ON and OFF cycles varies in correlation with the life of the electrode. Measurement can be displayed.
2. According to the invention of claim 2,
The electrode life indicator replaces the current decay rate with a correlated electrode life and displays it in a use area, a caution area, and an unusable area. I can know.
[0023]
3. According to the invention of claim 3,
The electrode life indicator is equipped with a memory circuit to indicate that it is in the use area, caution area, or unusable area over time, so that the current area can be known even when the main power is turned off. it can.
4). According to the invention of claim 4,
When the life display of the electrode reaches a caution area, the generation of electrolyzed water in the electrolyzer switches to the high concentration mode, so that the period of use of the cleaning water can be extended.
5. When the life display of the electrode reaches the unusable area, an alarm such as lamp lighting and voice notification is issued in conjunction with the display, so that the replacement time can be clearly communicated to the user.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an electrolysis apparatus used in this experiment,
FIG. 2 is a block diagram of a basic configuration of an electrolysis apparatus and a measuring instrument used;
FIG. 3 is a graph showing the correlation of voltage, current, remaining plating thickness, and residual chlorine concentration with ON and OFF cycles set to ON 7 seconds and OFF 5 seconds, and the number of cycles set to 0 to 125,000 times;
FIG. 4 is a graph showing the correlation of voltage, current, remaining plating thickness and residual chlorine concentration with ON and OFF cycles set to ON 7 seconds, OFF 20 seconds, and the number of cycles set to 0 to 20,000 times;
FIG. 5 is a graph showing the transition of voltage after electrolysis is stopped;
FIG. 6 is a voltage observation waveform diagram when the ON / OFF cycle is set to 7 seconds ON and 5 seconds OFF,
FIG. 7 is a waveform diagram of voltage observation when the ON / OFF cycle is 7 seconds ON and 20 seconds OFF,
FIG. 8 is a front view of the display part of various displays;
FIG. 9 is a block diagram showing a configuration of an electrode life indicator equipped with a memory circuit;
[Explanation of symbols]
1: Electrolyzer 2: Operation switches 3: Water supply pipe 4: Discharge pipe 5: Chlorine concentration setting device 6: Ammeter (display)
7: Power cord 8: Alarm device 9: Constant voltage power source 10: Power source line 11: DC power source switch 12: Control unit 13: Voltmeter 14: Electrolyzed water 14 ': Electrolyzer 15, 15': Electrode 16: Raw water mixed Inlet 17: Additive liquid inlet 18: Additive liquid 18 ': Additive liquid tank 19: Injection pump 20: Solenoid valve for flow rate adjustment 21: Electromagnetic valve for additive liquid 22: Solenoid valve for water discharge 23: Electrolyte delivery outlet 24: Diluted liquid mixture 24 ': Diluted liquid tank 26: Plating thickness measuring instrument 27: Residual chlorine concentration measuring instrument 28: Washing water 29: Pointer 30: Use area 31: Caution area 32: Unusable area 33: Horizontal slide electrode Life indicator 34: Lamp lighting type electrode life indicator 35: Display lamp 36: Front view of electrode life indicator provided with memory circuit 37: Reversible counter mechanism display unit 38: Current line 39: Current detectors 40a to 40c: reversible Counter 41a to 41c: detection circuit 42 a to 42 c: the signal line switcher 43: raw water mixed port

Claims (5)

食塩水、希塩酸あるいは、食塩水と希塩酸の混合液を電解液として、弱酸性電解水を製造するための連続式無隔膜電解装置において、
定電圧の電力がON−OFF操作により、かつOFF時間が20秒以上であるサイクルで供給される電解槽内の白金メッキされたチタン板製の電極を備え、そして電解槽内における電流値の減衰率を電極の寿命に換算して表示する電極の寿命表示器を備えてなることを特徴とする電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。
In a continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water using saline, dilute hydrochloric acid, or a mixture of saline and dilute hydrochloric acid as an electrolyte,
Equipped with an electrode made of platinum-plated titanium plate in an electrolytic cell supplied with a cycle in which a constant voltage power is turned on and off and the OFF time is 20 seconds or more, and the current value in the electrolytic cell is attenuated A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water having an electrode life indicator, characterized in that it comprises an electrode life indicator that displays the rate in terms of electrode life.
電極の寿命表示器が、電流値の減衰率に相関性を有する電極の寿命を、(a)使用領域、(b)要注意領域、(c)使用不可領域に区分して表示されるものであることを特徴とする請求項1に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。The electrode life indicator displays the life of an electrode having a correlation with the decay rate of the current value divided into (a) use area, (b) caution area, and (c) unusable area. A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water comprising the electrode life indicator according to claim 1. 電極の寿命表示器が記憶回路を備え、経時的に(a)使用領域、(b)要注意領域、(c)使用不可領域のいずれかにあることが表示されるものであることを特徴とする請求項1又は2に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。The electrode life indicator is equipped with a memory circuit, and it is displayed over time to indicate that it is in one of (a) use area, (b) caution area, or (c) unusable area. A continuous diaphragmless electrolyzer for producing weakly acidic electrolyzed water comprising the electrode life indicator according to claim 1 or 2. 電極の寿命表示が(b)要注意領域に至ると、電解装置の電解水の生成モードが高濃度モードに切り替わるものであることを特徴とする請求項1〜3のいずれか1項に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。4. The method according to claim 1, wherein when the electrode life display reaches (b) a sensitive area, the electrolyzed water generation mode of the electrolyzer is switched to the high concentration mode. 5. A continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water having an electrode life indicator. 電極の寿命表示が(c)使用不可領域に至ると、警報を発するものであることを特徴とする請求項1〜4のいずれか1項に記載の電極の寿命表示器を備えた弱酸性電解水を製造するための連続式無隔膜電解装置。The weak acid electrolysis provided with the electrode life indicator according to any one of claims 1 to 4, wherein an alarm is issued when the electrode life indication (c) reaches an unusable region. A continuous diaphragm electrolyzer for producing water .
JP2002044056A 2002-02-20 2002-02-20 Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator Expired - Fee Related JP3843450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002044056A JP3843450B2 (en) 2002-02-20 2002-02-20 Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044056A JP3843450B2 (en) 2002-02-20 2002-02-20 Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator

Publications (2)

Publication Number Publication Date
JP2003247092A JP2003247092A (en) 2003-09-05
JP3843450B2 true JP3843450B2 (en) 2006-11-08

Family

ID=28659060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044056A Expired - Fee Related JP3843450B2 (en) 2002-02-20 2002-02-20 Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator

Country Status (1)

Country Link
JP (1) JP3843450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915761B2 (en) * 2005-03-25 2012-04-11 株式会社竹中工務店 Flowing water electrolyzer
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
WO2016174783A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Electrolyzed water generator
JP6521385B6 (en) * 2016-04-18 2019-06-26 エア・ウォーター・バイオデザイン株式会社 Electrolyzed water generator

Also Published As

Publication number Publication date
JP2003247092A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
TW404989B (en) Water electrolyzer
US20110108438A1 (en) Electrochemical Liquid Treatment System Using Dose Control
US7922890B2 (en) Low maintenance on-site generator
US20090229992A1 (en) Reverse Polarity Cleaning and Electronic Flow Control Systems for Low Intervention Electrolytic Chemical Generators
JP2006247640A (en) Apparatus for adjusting concentration of electrified substance in liquid, and apparatus and method for controlling quality of solution
TW201029934A (en) Water treatment apparatus
JP3843450B2 (en) Continuous diaphragm electrolyzer for producing weakly acidic electrolyzed water with electrode life indicator
JP3284350B2 (en) Electrolytic ionic water generator
JP3368436B2 (en) Electrode life determination device in electrolytic ionic water generator
JP4463928B2 (en) Water treatment equipment
KR100421256B1 (en) Sterilizing Processing Apparatus for Swimming Pool Using Artificiality Salt Water
JP3319841B2 (en) Electrolyzed water generator
JP2016049517A (en) Hydrogen water generator
JP3484793B2 (en) Electrolytic water generation method
JP5547661B2 (en) Cleaning method of ozone water sensor
JP3543365B2 (en) Ionized water generator and pH sensor cleaning method
JP3018131B2 (en) Electrolytic ionic water generator
CN217664910U (en) Cleaning device for probe of sewage online detection instrument
TW201237219A (en) Electrolyzed water production device
JP2019063782A (en) Hypochlorous acid water generator with pH automatic measurement device
JP2995447B2 (en) Electrolytic ionic water generator
JPH07227594A (en) Automatic electrolytic device of strongly acidic water generator
JPH07204649A (en) Ionic water generator
JP2006035055A (en) Ion water making apparatus
JPH07195076A (en) Strongly acidic water forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees