JP3843139B2 - Manufacturing method and apparatus for large round sealed quartz glass tube - Google Patents

Manufacturing method and apparatus for large round sealed quartz glass tube Download PDF

Info

Publication number
JP3843139B2
JP3843139B2 JP15267493A JP15267493A JP3843139B2 JP 3843139 B2 JP3843139 B2 JP 3843139B2 JP 15267493 A JP15267493 A JP 15267493A JP 15267493 A JP15267493 A JP 15267493A JP 3843139 B2 JP3843139 B2 JP 3843139B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
round
sealed
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15267493A
Other languages
Japanese (ja)
Other versions
JPH06345470A (en
Inventor
敏治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP15267493A priority Critical patent/JP3843139B2/en
Publication of JPH06345470A publication Critical patent/JPH06345470A/en
Application granted granted Critical
Publication of JP3843139B2 publication Critical patent/JP3843139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、端部が丸封されたガラス管、さらに詳しくは半導体製造用等に使用される大型の丸封石英ガラス管の製造方法及びその装置に関する。
【0002】
【従来の技術】
従来、丸封部を有するガラス管の製造方法としては、図7に示すように、所定寸法の径に加工したガラス管を加工治具に取り付け、回転させながら該ガラス管の丸封箇所を加熱し、ガラスの可塑領域において周縁部分よりすぼめて密封し丸部を成形していた。
【0003】
また、丸封部の形状を正確なものとするためには、図8に示すような黒鉛製の型中で吹いて膨らませる成型法も用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の丸封箇所を加熱し周縁部分よりすぼめて丸部を形成する方法では、石英ガラスのような高粘性を有するものについては、ガラスを可塑領域とするのにかなりの高温にしなければならず、まして半導体製造用材料として使用する場合、ウエハー径自体が近年の高集積度化とともに大型化し、それに伴い材料自体も大型化となるので非常なエネルギー消費とともに、多大な加工労力を要していた。
【0005】
例えば、縦型半導体熱処理用石英ガラス製治具は、200φ以上の大口径の炉芯管を必要とするため、その要求形状に見合う丸封部を形成するには径の二乗に見合う丸封部面積を必要とし、徐々に縮径しながら密封するには相当の熱エネルギー源と多大な加工労力を要していた。
【0006】
また、ガラス管丸封箇所の加熱は、ガラス旋盤等によりガラス管を回転させその遠心力を利用してバーナーによる火炎加熱するため、管周縁からすぼめながら丸封部を形成していく方法では管周縁部と管中心部でバーナーによる熱エネルギーの供給バランスが不均一となりやすく、丸封部の内外周上に粘性差が生じて管中心部近傍における肉厚の不均一化である「肉切れ」が生じ、このため薄肉化部で大幅な強度低下を招くという問題を有していた。
【0007】
さらに、中心部はすぼめながら溶断密封するため、いわゆるヘソ部分が残るとともに、管の回転によりヘソ部分周辺の丸封面が回転軸に沿って円状に微細な凹凸状となり、平滑な面が得にくく、所定の曲率を持つ丸封面形状を再現性良く安定的に製造することが困難となる。
【0008】
また、黒鉛製の型中に吹いて膨らませる成型法は、二次的なエネルギーコストと労力を要するとともに、生産性が悪く、また汚染源との接触により純度を損なう危険性が高く、高純度の製品が要求される半導体用の製造材料として用いるには問題があった。
【0009】
このように、従来の方法では、近年の半導体用製造材料として大型化した丸封石英ガラス管を得るには多大な労力とエネルギーを要し、また、半導体用としての高純度品を得ることができず、作業性が向上され再現性良く、高精度な大型丸封石英ガラス管の提供が求められていた。
【0010】
本発明は、なめらか、かつ高精度に所定の曲率を持つ大型丸封石英ガラス管を高度な熟練度を必要とすることなく、一体的な連続作業で生産性良く、かつ、再現性良く製造し、半導体製造用治具として、強度、寸法性に優れた大型丸封石英ガラス管を提供することを目的とする。
【0011】
【課題を解決するための手段】
そこで、本発明者は、前記課題を解決するために鋭意研究を重ねた結果、石英ガラス管端部面と石英ガラス製円板を、両者の中心を合致させて対向配置させ高温火炎で溶着した後、該一体化物を回転させながら被丸封面を高温火炎で加熱すると共に、該石英ガラス管の他端から挿入される気体圧力を調整して、被丸封部面を所定の曲率を持つR部とすれば、連続的な簡易な作業で再現性良く、高精度な大型丸封石英ガラス管を製造することが出来るとの知見を得て本発明を完成した。
【0012】
また、この大型丸封石英ガラス管の製造装置としては、石英ガラス管をその長尺軸を中心として回転させながら支持する回転支持手段と、該石英ガラス管端部面及び石英ガラス製円板若しくは該溶着一体物を加熱軟化させる局所加熱手段と、該溶着一体物内に気体圧力を付与する圧力付与手段と、該溶着一体物の被丸封面を所定の曲率を持つ曲部とするための丸封形状規制手段を備えたものである。
【0013】
【作用】
石英ガラス管と石英ガラス製円板との溶着は、通常のガラス旋盤を使用して両サイドに回転可能な支持手段で各々を取り付け、回転軸を合わせて溶着時の位置ずれ等が生じないように対向配置する。
【0014】
石英ガラス製円板は、石英ガラス管端部面の外径と略同径・同厚として両者の中心を合致させて対向配置するか(図2)、または、石英ガラス管内径より若干小さな径・略同厚としてガラス管に嵌挿し(図3)、両者を高温火炎で溶着する。これにより熱伝導差等に起因する丸封部の曲部形成の際の肉厚変動を抑止し熱バランスを保つことができる。なお、丸封部を形成する石英ガラス製円板の板厚は、丸封部面の曲率と指定厚さの関係から、略同厚を原則として適宜調整する。
【0015】
石英ガラス製円板を溶着した石英ガラス管の溶着端面をガラス管径よりテーパー状に拡径して該拡径部と溶着一体物を加熱し、内圧負荷により外側へ膨出させることが、後述する丸封時に、該溶着面が丸封部中心側へずれこむのを防ぎ、かつ、均一な粘性の可塑領域を保持して丸封面全体の肉厚変動を抑止する上で有効である(図4)。
【0016】
テーパー状へ拡径しないと、丸封作成時の加熱と内圧により該溶着面が丸封部中心側へずれこむとともに、石英ガラス管の外径ストレート部と丸封面境界部にあたるコーナー部の曲率が所定の曲率に比して小さくなりやすくなり、管ストレート部と丸封部の頂点間距離を測定して、所定の曲率を検知し、フィードバッグする際の誤差を生じる原因ともなる。これは、形状の大きなものほど、また丸封面の所定の曲率半径が小さくなるほど、この傾向が強くなるので、特に大型製品や曲率の小さい丸封部を形成する際にはテーパー状の拡径が有効となる。
【0017】
テーパー状への拡径は、拡径部を加熱して内圧をかけることにより得られるが、円板溶着前に予め端部の拡径したガラス管を用いてもよい。
【0018】
石英ガラス製円板の径を石英ガラス管端部面の外径と略同径にするか、若干小さな径とするか、また、拡径部の径については、必要とされる丸封部の曲率によって適宜選択される。
【0019】
加熱手段は、移動手段を備えた角度調整機構付きの酸水素火炎バーナーを1又は複数個用いるのが好ましく、該石英ガラス管端部面及び石英ガラス製円板若しくは該溶着一体物を、回転支持手段によって支持された石英ガラス管を回転させながら加熱軟化させる。
【0020】
また、該溶着一体物の他端は、該溶着一体物内に気体圧力を付与する圧力付与手段に連結され、これにより該溶着一体物内を適宜な圧力に調整する。
【0021】
丸封形状規制手段とは、溶着一体物に対向配置し、ガラス管回転軸上を移動し被丸封面の所定曲率に設定したガイドと(図5、図6)、ガイドを覆い中心部付近から上下に可動する熱線を遮断するための熱遮蔽からなる。
【0022】
ガイドは、摩耗しないためにもステンレス等の金属製のものが好ましく、ガイド自体概ね求める曲率を有し、被丸封部の曲率を検知・修正する役割を持つもので、図5に示すように上下2分割にして用いることもできる。
【0023】
曲率差の検知は、無接触にて被丸封面の突出頂点間距離を測定し、ガイドとの差から曲率差を算出したり、モニターに映しだす等して確認し、コンピューター制御により石英ガラス管の内圧や加熱温度をガイドの曲率に沿うように調整、制御を行なって被丸封面を所定の曲率を持つR部とするが、求める曲率を有したガイドを接触させて所定曲率とすることもできる。また、当初無接触で丸封部を作成し、R部形成工程後の最終段階で、ガイドを被丸封面に押圧して最終調整を行うことも、検知による測定誤差を緩和して所定の曲率を得る上で有効である。
【0024】
熱遮蔽手段としては、平板、曲面、またはこれらを組み合わせた形状のもので、熱線遮蔽効果を有するものが用いられ、ガラス管等との共材で、純度、耐熱性の良い石英ガラス製のものを用いてもよい。熱遮蔽手段を被丸封物と対向配置させることで、バーナーからの熱エネルギーの拡散によるムダな消費を防ぎ、大型製品時による中心部の不溶の原因となる丸封面中心部における高粘性化を防止し効率良く面全体の均熱化を図るとともに、丸封形状規制手段としての金属製等のガイドの劣化をも防止することができる。
【0025】
本発明の装置は、通常のガラス旋盤装置を容易に改良することによって得られる。
【0026】
かかる技術手段によれば、ガラス管と円板とを溶着して封じた後、該円板部を膨出させて丸部を形成するので、丸部となる円板の板厚を任意に選択できるとともに、従来技術におけるようなガラス管を縮径して密封の際の肉切れ等の薄肉化を防ぐことが出来る。また、ガラス管と円板の溶着一体物を加熱すればよいので、面全体の均一加熱が可能となり、丸封面の内外周面粘性を略同一条件で所定の曲率を持つ面への加工ができ、溶着一体物の面にかかる内圧負荷を軽減して、円板部膨出による肉厚減から面全体を均一なものにできる。このため丸封部の肉厚変動が非常に少ない大型丸封石英ガラス管の製造を可能にし、また、丸封面自体も人目を引く中心部に管回転軸同心円状の微細な凹凸状痕跡やヘソが残ることもなく、全体にわたって滑らかな優れた平滑面を得ることが出来る。
【0027】
【効果】
本発明によれば、前述した如く丸封面が滑らかな曲面で形成され、高精度に所定の曲率を持つ大型丸封石英ガラス管が、高度な熟練度を必要とすることなく、ガラス旋盤のような通常的な装置を改良することよって一体的な連続作業で生産性良く、かつ再現性良く製造することが出来る。特に管外径のストレート部長さ及び丸封部の頂点間距離等の制御性も良いことから、縦型半導体熱処理用二重管等の半導体製造用治具として、強度、寸法性に優れた大型丸封石英ガラス管を提供することが出来る。
【0028】
【実施例】
実施例1
石英ガラスインゴットから通常の製管法により、外径314mm×内径305mm×肉厚4.5mm×長さ1500mmの大型石英ガラス管を得た。ガラス旋盤左端の回転支持手段に該石英ガラス管を管の長尺軸を中心として回転するように取り付け、ガラス旋盤右端の回転支持手段に外径314mm×肉厚4.7mmの石英ガラス製円板を円板の中心が対向するガラス管の中心と合致するように設置した。次いで、右端回転支持手段を移動させ酸水素火炎バーナーにより両者を仮溶着し、さらに酸水素火炎バーナーにより本溶着するとともに、内圧を高め、かつ、ガラス管先端部を加熱し、溶着端部面を15mmにおいて外径が344mmとなるようにテーパー状に拡径した。
【0029】
次に、図6に示すような、ガラス管回転軸上を移動可能な所定の曲率面を持つガイドと、ガイドを覆うように2分割され各々、上下方向に移動可能な熱遮蔽を有する丸封規制手段が取り付けられた右端回転支持手段を管と円板の溶着一体物に所定の距離を有するように対向配置し、溶着一体物面を、管の開口端からの気体による圧力付与手段での内圧(5.0〜50mbar)をかけながら、バーナー角度を調整しつつ酸水素火炎で加熱し(1800〜2000℃)、ガイドで曲率を検知しながら内圧、温度を調整して、所定の曲率を持つR部となるように加工した。
【0030】
実施例2
端部が15mmにおいて外径が344mmとなるようにテーパー状に拡径された外径314mm、内径305mm×肉厚4.5mm×長さ1500mmの大型石英ガラス管に外径334mm×肉厚4.7mmの石英ガラス製円板をガラス管拡径部端部に内挿し、実施例1に準じて溶着し、所定の曲率を持つR部となるように加工した。
【0031】
実施例1及び2に準じて大型丸封石英ガラス管を各々5本製造し、丸封面の外観、曲率、肉厚を測定したところ、外観、曲率は全て滑らかな所定の曲率を持つ曲面となっており、肉厚も全て丸封面中心から外縁にいたるまで肉切れすることなく4.3〜4.7mmで十分所定公差を満足する範囲内であった。
【図面の簡単な説明】
【図1】大型丸封石英ガラス管の製造装置の全体概念図
【図2】石英ガラス管端部面の外径と略同径・同厚の石英ガラス製円板を対向配置した概念図
【図3】石英ガラス製円板を石英ガラス管内径より若干小さな径・略同厚としてのガラス管に嵌挿した概念図
【図4】石英ガラス管の溶着端面をテーパー状に拡径した概念図
【図5】丸封形状規制手段例を示す概念図
【図6】熱遮蔽を有する丸封形状規制手段例を示す概念図
【図7】従来の丸封部を有するガラス管の製造方法を示す図
【図8】従来の丸封部を有するガラス管の成型法を示す図
【符号の説明】
1 大型丸封石英ガラス管の製造装置
2 管
3 板
4 丸封形状規制手段
5 バーナー
6 ガイド
7 熱遮蔽
8 熱線
9 テーパー
10 圧力付与
[0001]
[Industrial application fields]
The present invention relates to a glass tube having a round end sealed, and more particularly, to a method for manufacturing a large round sealed quartz glass tube used for semiconductor manufacturing or the like and an apparatus therefor.
[0002]
[Prior art]
Conventionally, as a method of manufacturing a glass tube having a round sealed portion, as shown in FIG. 7, a glass tube processed into a predetermined size diameter is attached to a processing jig, and the round sealed portion of the glass tube is heated while rotating. In the plastic region of the glass, the round portion was formed by sealing from the peripheral portion.
[0003]
Moreover, in order to make the shape of a round seal part accurate, the shaping | molding method which blows and expands in the mold | die made from graphite as shown in FIG. 8 is also used.
[0004]
[Problems to be solved by the invention]
However, in the conventional method of forming a round portion by heating a round-sealed portion and squeezing from the peripheral portion, a material having a high viscosity such as quartz glass must be heated to a considerably high temperature to make the glass a plastic region. In addition, when used as a material for semiconductor manufacturing, the wafer diameter itself has become larger with the recent high degree of integration, and the material itself has also become larger. It was.
[0005]
For example, a quartz glass jig for vertical semiconductor heat treatment requires a furnace core tube having a large diameter of 200φ or more, so that a round seal portion corresponding to the square of the diameter is required to form a round seal portion corresponding to the required shape. It requires an area, and it takes a considerable heat energy source and a great amount of processing effort to seal it while gradually reducing its diameter.
[0006]
In addition, the glass tube is sealed by rotating the glass tube with a glass lathe or the like and using the centrifugal force to heat the flame with a burner. The balance of heat energy supplied by the burner at the periphery and the center of the tube tends to be non-uniform, and a difference in viscosity occurs on the inner and outer circumferences of the round seal, resulting in a non-uniform thickness near the center of the tube. For this reason, there has been a problem that a significant reduction in strength is caused in the thinned portion.
[0007]
In addition, since the center part is melted and sealed, the so-called navel portion remains, and the round seal surface around the navel portion becomes circular and uneven along the rotation axis due to the rotation of the tube, making it difficult to obtain a smooth surface. Therefore, it becomes difficult to stably produce a round sealed surface shape having a predetermined curvature with good reproducibility.
[0008]
In addition, the molding method that blows and expands into a graphite mold requires secondary energy costs and labor, is not productive, and has a high risk of impairing purity due to contact with a contamination source. There was a problem in using the product as a manufacturing material for semiconductors for which products are required.
[0009]
Thus, in the conventional method, enormous labor and energy are required to obtain a large-sized round sealed quartz glass tube as a recent semiconductor manufacturing material, and a high-purity product for semiconductors can be obtained. However, it has been demanded to provide a large-sized round sealed quartz glass tube with improved workability, good reproducibility and high accuracy.
[0010]
The present invention produces a large round sealed quartz glass tube having a predetermined curvature with high precision and smoothness, with high productivity and reproducibility in an integrated continuous operation without requiring a high degree of skill. An object of the present invention is to provide a large round quartz glass tube excellent in strength and dimensionality as a semiconductor manufacturing jig.
[0011]
[Means for Solving the Problems]
Therefore, as a result of intensive research in order to solve the above problems, the present inventor fused the quartz glass tube end face and the quartz glass disk so as to face each other with their centers aligned and welded by a high temperature flame. Thereafter, the sealed surface is heated with a high-temperature flame while rotating the integrated object, and the gas pressure inserted from the other end of the quartz glass tube is adjusted so that the sealed surface has a predetermined curvature. As a result, the present invention was completed with the knowledge that a large round-sealed quartz glass tube with high reproducibility and high accuracy can be manufactured by continuous simple work.
[0012]
In addition, the large round sealed quartz glass tube manufacturing apparatus includes a rotation support means for supporting the quartz glass tube while rotating the quartz glass tube around its long axis, and the quartz glass tube end face and the quartz glass disk or A local heating means for heating and softening the welded integrated article, a pressure applying means for applying a gas pressure in the welded integrated article, and a round for forming a round sealed surface of the welded integrated article into a curved portion having a predetermined curvature. It is provided with sealing shape regulating means.
[0013]
[Action]
The quartz glass tube and quartz glass disk are welded to each other using a normal glass lathe with support means that can be rotated on both sides, so that the rotational axis is aligned and no misalignment occurs during welding. Opposing to the.
[0014]
Quartz glass discs are arranged to face each other with the same diameter and thickness as the outer diameter of the quartz glass tube end face (Fig. 2), or slightly smaller than the quartz glass tube inner diameter.・ Insert into a glass tube with approximately the same thickness (FIG. 3), and weld them together with a high temperature flame. As a result, it is possible to suppress the wall thickness variation during the formation of the curved portion of the round-sealed portion due to the difference in heat conduction and to maintain the heat balance. In addition, the thickness of the quartz glass disk forming the round seal part is appropriately adjusted in principle with the same thickness in principle from the relationship between the curvature of the round seal part surface and the specified thickness.
[0015]
It is possible to expand the weld end surface of the quartz glass tube on which the quartz glass disk has been welded in a taper shape from the glass tube diameter, heat the enlarged portion and the welded integral, and bulge outward by an internal pressure load. This is effective in preventing the welded surface from shifting toward the center of the sealed portion during round sealing, and maintaining a uniform viscous plastic region to suppress fluctuations in the thickness of the entire round sealed surface (see FIG. 4).
[0016]
If the diameter is not expanded into a taper shape, the welding surface will be displaced toward the center of the round seal due to heating and internal pressure during the creation of the round seal, and the curvature of the corner corresponding to the boundary between the outer diameter straight portion and the round seal surface of the quartz glass tube It tends to be smaller than the predetermined curvature, and the distance between the vertices of the tube straight portion and the round seal portion is measured to detect the predetermined curvature and cause an error in feeding back. This is because the larger the shape and the smaller the predetermined radius of curvature of the round sealing surface, the stronger this tendency. Therefore, especially when forming a large-sized product or a round sealing portion with a small curvature, the taper-shaped diameter increases. It becomes effective.
[0017]
The diameter-expansion to the taper shape is obtained by heating the diameter-expanded portion and applying an internal pressure, but a glass tube whose end portion has been diameter-expanded in advance before disc welding may be used.
[0018]
The diameter of the quartz glass disk should be approximately the same as or slightly smaller than the outer diameter of the quartz glass tube end face. It is appropriately selected depending on the curvature.
[0019]
The heating means preferably uses one or a plurality of oxyhydrogen flame burners with an angle adjusting mechanism provided with a moving means, and supports the end face of the quartz glass tube and the quartz glass disk or the welded integrated body in a rotating manner. The quartz glass tube supported by the means is heated and softened while rotating.
[0020]
The other end of the welded integrated object is connected to a pressure applying means for applying a gas pressure in the welded integrated object, thereby adjusting the inside of the welded integrated object to an appropriate pressure.
[0021]
The round-sealed shape restricting means is a guide that is arranged opposite to the welded integrated object, moves on the rotation axis of the glass tube and is set to a predetermined curvature of the round-sealed surface (FIGS. 5 and 6), covers the guide from the vicinity of the center portion It consists of a heat shield for blocking the heat rays that move up and down.
[0022]
The guide is preferably made of a metal such as stainless steel so that it does not wear. The guide itself has a curvature that is generally required, and has the role of detecting and correcting the curvature of the sealed portion, as shown in FIG. The upper and lower parts can be divided into two parts.
[0023]
To detect the difference in curvature, measure the distance between the protruding vertices of the sealed surface without contact, calculate the difference in curvature based on the difference from the guide, and display it on the monitor. Adjusting and controlling the internal pressure and heating temperature so as to follow the curvature of the guide, the rounded sealing surface is set as the R portion having a predetermined curvature, but it is also possible to bring the guide having the desired curvature into contact with the predetermined curvature. it can. In addition, it is also possible to create a round-sealed portion without contact at first and press the guide against the round-sealed surface in the final stage after the R-section forming process to make final adjustments. It is effective in obtaining.
[0024]
As a heat shielding means, a flat plate, a curved surface, or a combination of these, a material having a heat ray shielding effect is used, and is made of quartz glass having high purity and heat resistance, which is a common material with a glass tube or the like. May be used. By arranging the heat shielding means opposite to the sealed object, it prevents wasteful consumption due to the diffusion of heat energy from the burner, and increases the viscosity at the center of the sealed surface, which causes insolubility of the center due to large products. It is possible to prevent and efficiently soak the entire surface, and to prevent deterioration of the guide made of metal or the like as the round-sealed shape regulating means.
[0025]
The apparatus of the present invention can be obtained by easily improving a conventional glass lathe apparatus.
[0026]
According to such technical means, the glass tube and the disk are welded and sealed, and then the disk part is bulged to form a round part. Therefore, the thickness of the disk to be the round part is arbitrarily selected. In addition, the diameter of the glass tube as in the prior art can be reduced to prevent thinning such as thinning during sealing. In addition, since it is only necessary to heat the glass tube and disk welded integral, the entire surface can be heated uniformly, and the inner and outer peripheral surface viscosity of the round sealed surface can be processed into a surface with a predetermined curvature under substantially the same conditions. The internal pressure load applied to the surface of the welded integrated object can be reduced, and the entire surface can be made uniform by reducing the wall thickness due to the bulge of the disk portion. This makes it possible to produce a large round quartz glass tube with very little wall thickness fluctuation at the round seal, and the round seal surface itself is conspicuous in the center of the tube. An excellent smooth surface that is smooth throughout can be obtained without remaining.
[0027]
【effect】
According to the present invention, as described above, a large round sealed quartz glass tube having a round curved surface formed with a smooth curved surface and having a predetermined curvature with high accuracy is like a glass lathe without requiring a high degree of skill. By improving such an ordinary apparatus, it is possible to manufacture with good productivity and reproducibility in an integrated continuous operation. Especially because the controllability such as the straight part length of the pipe outer diameter and the distance between the apexes of the round seal part is good, it is a large size excellent in strength and dimensionality as a jig for semiconductor manufacturing such as a double pipe for vertical semiconductor heat treatment A round sealed quartz glass tube can be provided.
[0028]
【Example】
Example 1
A large quartz glass tube having an outer diameter of 314 mm, an inner diameter of 305 mm, a thickness of 4.5 mm, and a length of 1500 mm was obtained from a quartz glass ingot by an ordinary pipe manufacturing method. The quartz glass tube is attached to the rotation support means at the left end of the glass lathe so as to rotate about the long axis of the tube, and the quartz glass disk having an outer diameter of 314 mm × wall thickness of 4.7 mm is attached to the rotation support means at the right end of the glass lathe Was placed so that the center of the disc coincided with the center of the opposing glass tube. Next, the right end rotation support means is moved, and both are temporarily welded with an oxyhydrogen flame burner, and further, the main pressure is increased with an oxyhydrogen flame burner, the internal pressure is increased, and the tip of the glass tube is heated to The diameter was increased in a tapered shape so that the outer diameter was 344 mm at 15 mm.
[0029]
Next, as shown in FIG. 6, a guide having a predetermined curvature surface that can move on the rotation axis of the glass tube, and a round seal that is divided into two so as to cover the guide and each has a heat shield that can move in the vertical direction. The right end rotation support means to which the restricting means is attached is disposed opposite to the welded integrated object of the tube and the disk so as to have a predetermined distance, and the surface of the welded integrated object is formed by the pressure applying means by the gas from the opening end of the pipe. While applying the internal pressure (5.0 to 50 mbar), heat with an oxyhydrogen flame while adjusting the burner angle (1800 to 2000 ° C.), adjust the internal pressure and temperature while detecting the curvature with the guide, and adjust the predetermined curvature. It processed so that it might become the R section.
[0030]
Example 2
3. A large quartz glass tube having an outer diameter of 314 mm, an inner diameter of 305 mm, a thickness of 4.5 mm, and a length of 1500 mm, with an outer diameter of 344 mm and an outer diameter of 344 mm at an end of 15 mm. A 7 mm quartz glass disk was inserted into the end of the enlarged diameter portion of the glass tube, welded according to Example 1, and processed to be an R portion having a predetermined curvature.
[0031]
According to Examples 1 and 2, five large round sealed quartz glass tubes were manufactured, and when the appearance, curvature, and thickness of the round sealed surface were measured, the appearance and curvature were all curved surfaces having a smooth predetermined curvature. All the wall thicknesses were within the range satisfying the predetermined tolerance at 4.3 to 4.7 mm without being cut from the center of the round seal surface to the outer edge.
[Brief description of the drawings]
[Fig. 1] Overall conceptual diagram of a large round-sealed quartz glass tube manufacturing device [Fig. 2] Conceptual diagram of opposing arrangement of quartz glass discs with the same diameter and thickness as the outer diameter of the end surface of the quartz glass tube [ FIG. 3 is a conceptual diagram in which a quartz glass disc is inserted into a glass tube having a diameter slightly smaller than the inner diameter of the quartz glass tube and substantially the same thickness. FIG. 4 is a conceptual diagram in which the weld end surface of the quartz glass tube is expanded in a tapered shape. FIG. 5 is a conceptual diagram showing an example of a round seal shape regulating means. FIG. 6 is a conceptual diagram showing an example of a round seal shape regulating means having a heat shield. FIG. 7 shows a conventional method for manufacturing a glass tube having a round sealed portion. [Fig. 8] Diagram showing a conventional method of forming a glass tube having a round seal [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of a large round sealed quartz glass tube 2 Tube 3 Plate 4 Round seal shape regulation means 5 Burner 6 Guide 7 Heat shield 8 Hot wire 9 Taper 10 Pressure application

Claims (5)

石英ガラス管の一端を回転支持手段で保持し、石英ガラス管の他端に石英ガラス製円板を高温火炎で溶着し、溶着端部をテーパー状に拡径させて溶着一体物を回転させながら被丸封面を管軸方向に移動可能な丸封形状規制手段によって規制して高温火炎で加熱すると共に、石英ガラス管内の気体圧力を調整して被丸封面を所定の曲率のR部に成形する大型丸封石英ガラス管の製造方法。While holding one end of the quartz glass tube with a rotating support means, welding a quartz glass disk to the other end of the quartz glass tube with a high-temperature flame, expanding the welding end in a tapered shape and rotating the welded integral The sealed surface is controlled by a sealing shape restricting means movable in the tube axis direction and heated with a high-temperature flame, and the gas pressure in the quartz glass tube is adjusted to form the sealed surface into an R portion having a predetermined curvature. A manufacturing method for large round quartz glass tubes. 請求項1において、石英ガラス製円板は石英ガラス管と同厚であり、その直径が、石英ガラス管の溶着する端面の外径と同径、または、内径より小径である大型丸封石英ガラス管の製造方法。2. The large round quartz glass according to claim 1, wherein the quartz glass disc has the same thickness as the quartz glass tube, and the diameter thereof is the same as the outer diameter of the end face to which the quartz glass tube is welded or is smaller than the inner diameter. A method of manufacturing a tube. 石英ガラス管を保持し、石英ガラス管をその軸を中心に回転させる 回転支持手段と、高温火炎を生成する局所加熱手段と、石英ガラス管内の気体圧力を調整する圧力付与手段と、溶着一体物の被丸封面の曲率を規制する管軸方向に移動可能な丸封形状規制手段を有する大型丸封石英ガラス管の製造装置。Rotating support means for holding the quartz glass tube and rotating the quartz glass tube around its axis, local heating means for generating a high-temperature flame, pressure applying means for adjusting the gas pressure in the quartz glass tube, and an integrated weld Apparatus for manufacturing a large round sealed quartz glass tube having round-sealed shape regulating means movable in the tube axis direction for regulating the curvature of the round-sealed surface. 請求項3において、丸封形状規制手段が、曲率検知手段を有する大型丸封石英ガラス管の製造装置。4. The apparatus for manufacturing a large-sized round sealed quartz glass tube according to claim 3, wherein the round-sealed shape regulating means has curvature detecting means. 請求項3または4のいずれかにおいて、丸封形状規制手段を覆う移動可能な熱遮断手段を有する大型丸封石英ガラス管の製造装置。5. The apparatus for producing a large round sealed quartz glass tube according to claim 3, further comprising a movable heat blocking means that covers the round shape regulating means.
JP15267493A 1993-05-31 1993-05-31 Manufacturing method and apparatus for large round sealed quartz glass tube Expired - Lifetime JP3843139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15267493A JP3843139B2 (en) 1993-05-31 1993-05-31 Manufacturing method and apparatus for large round sealed quartz glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15267493A JP3843139B2 (en) 1993-05-31 1993-05-31 Manufacturing method and apparatus for large round sealed quartz glass tube

Publications (2)

Publication Number Publication Date
JPH06345470A JPH06345470A (en) 1994-12-20
JP3843139B2 true JP3843139B2 (en) 2006-11-08

Family

ID=15545632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15267493A Expired - Lifetime JP3843139B2 (en) 1993-05-31 1993-05-31 Manufacturing method and apparatus for large round sealed quartz glass tube

Country Status (1)

Country Link
JP (1) JP3843139B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699682B2 (en) * 2018-03-12 2020-05-27 日本電気硝子株式会社 Method for manufacturing glass joined body
CN115010355A (en) * 2022-07-05 2022-09-06 江苏先品光子科技有限公司 Extension method of quartz sleeve

Also Published As

Publication number Publication date
JPH06345470A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
US3652248A (en) Process for redrawing silica glass rods
US3368588A (en) Smooth precision dimensional bodies of vitreous material and method and apparatus for producing the same
JP3843139B2 (en) Manufacturing method and apparatus for large round sealed quartz glass tube
WO2020147860A1 (en) Method for forming nozzle component of aerospace engine
US5917103A (en) Method of manufacturing crucible for double-crucible crystal growing technique
US5573566A (en) Method of making a quartz dome reactor chamber
US4047915A (en) Method of manufacturing glass vacuum envelopes
CN109807453B (en) Welding method of high-purity copper rotary target
JP4346202B2 (en) Manufacturing method of round sealed quartz tube
WO2021077514A1 (en) Large-size thin-wall ring housing inflation hot-bending forming device and method
JPS6172659A (en) Heat sealing method and device
US4243401A (en) Apparatus for producing double-walled heat insulating containers
US4012217A (en) Bending silicon rods into U-shapes
JPH09315831A (en) Furnace core tube made of quartz glass and its production
JP2565156Y2 (en) Semiconductor manufacturing apparatus and wafer mounting table thereof
JP2002012432A (en) Device for molding glass optical element
JPH0562595A (en) Manufacture of lighting tube
JPH10101352A (en) Production of quartz glass tube and device for the production
JP4393607B2 (en) Continuous heating furnace
KR102578361B1 (en) glass molding mold structure for vehicle display
CN103880274A (en) Processing making method of cross-shaped discharge tube
CN211564893U (en) Thin-wall part welding anti-deformation processing device
US3597182A (en) Method of making small glass caps having a non-circular cross section
SU837943A1 (en) Device for making tubes from quartz glass
JPH04367526A (en) Method for forming glass optical element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

EXPY Cancellation because of completion of term