JP3842565B2 - Roller conveyor - Google Patents

Roller conveyor Download PDF

Info

Publication number
JP3842565B2
JP3842565B2 JP2001062401A JP2001062401A JP3842565B2 JP 3842565 B2 JP3842565 B2 JP 3842565B2 JP 2001062401 A JP2001062401 A JP 2001062401A JP 2001062401 A JP2001062401 A JP 2001062401A JP 3842565 B2 JP3842565 B2 JP 3842565B2
Authority
JP
Japan
Prior art keywords
magnetic wheel
rollers
conveyance
conveyor
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001062401A
Other languages
Japanese (ja)
Other versions
JP2002265026A (en
Inventor
保雄 原
Original Assignee
マルヤス機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルヤス機械株式会社 filed Critical マルヤス機械株式会社
Priority to JP2001062401A priority Critical patent/JP3842565B2/en
Publication of JP2002265026A publication Critical patent/JP2002265026A/en
Application granted granted Critical
Publication of JP3842565B2 publication Critical patent/JP3842565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rollers For Roller Conveyors For Transfer (AREA)
  • Attitude Control For Articles On Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、みかんやオレンジ、トマト、馬鈴薯等の外形が丸い果物や野菜等の搬送物を搬送するローラコンベアに関し、さらに詳しくは、搬送物をまとめて供給した状態から搬送中に順次分散し、一列に整列せしめた状態にて搬出するローラコンベアに関する。
【0002】
【従来の技術】
従来、みかんやオレンジ、橙等、比較的外形の丸い搬送物を搬送するローラコンベアがある(特開平11−199033号,特開平11−343024号,特開2000−177831号)。
【0003】
これらのローラコンベアは、コンベア本体の左右両側に沿ってローラを並列し、各のローラの先端部を搬送路の略中央にて対向することで搬送路を構成している。そして、左右両側のローラを各々駆動回転することで、搬送路の始端部にまとめて供給された搬送物を搬送路の中央へ向けて移動し、搬送中に振動及び揺動させることにより、まとまった状態の搬送物を前後に分散させながら搬送路の中央にて一列状に整列せしめた後、同搬送路の終端から仕分け工程等のラインに一個ずつ搬出するように構成したものである。
【0004】
上記した従来のローラコンベアは、比較的小径のローラを多数本並列した状態で回転自在に軸支することにより搬送路を構成し、且つ、左右両側に並列したローラの基端側に各々プーリを設け、該プーリと、ローラ列の下部に沿って設けた駆動軸との間に、無端状の丸ベルトを架け渡すことにより、上記した左右両側の全ローラを駆動回転している。
【0005】
【発明が解決しようとする課題】
しかし、上記したように、左右両側の各ローラを無端状の駆動ベルトを介して駆動するものにあっては、各ローラと駆動軸とが備える数多いプーリとベルトとが接触することにより駆動回転力が伝達される為、ベルトの摩耗や発塵、接触騒音を発生する上、ベルトの接触による摩擦抵抗が必然的に生じる。また、多くのローラを同時に駆動回転させる場合、一軸のローラ故障によりその他のローラ駆動に影響を及ぼし、ベルトの切断や乗り上げ等の不具合を生じる場合もあった。
【0006】
また、上記した従来のローラコンベアは、左右2本の駆動軸と、各ローラに設けるプーリ、及びプーリと駆動軸との間に架け渡すベルトを必要とするので、製造コストが高く、円滑な駆動を保つためのメンテナンスも大変であった。さらに、駆動機構を収めるのに比較的大きなスペースが必要なため、装置が大型化してしまう問題もあった。
【0007】
本発明のローラコンベアは、搬送路の始端部に、みかんやオレンジ、馬鈴薯等、外形の丸い搬送物をまとめた状態で供給し、その搬送の途中にて物品を分散し、一列状に並べて一個ずつ搬出する機能を具備しつつ、摩耗や発塵、接触音等の発生要因となる駆動機構を合理的に簡素化し、装置の小型化と製造コストの低減、及びメンテナンス性の向上を図ることを課題とする。
【0008】
【課題を解決するための手段】
上記した課題を解決するために、本発明のローラコンベアは、コンベア本体の一側と他側とに分けて搬送ローラを並列してある。これらの搬送ローラは一側、他側両搬送ローラの近接する方の端部同士を搬送路の略中央において搬送方向へ交互に配列した状態にて回転自在に軸支してある。
また、一側、他側の各搬送ローラは、正面視において、近接側の軸芯同士を搬送路幅の略中央にて交差せしめてあり、これにより、コンベア本体の一側及び他側から搬送路幅の略中央へ向けて低く傾斜する正面視略V形の搬送路を構成している。
【0009】
一方、一側、他側両搬送ローラにおける交差部の近傍には、従動磁気車を装着して固定してあり、且つ、各ローラ交差部の下部に沿って長軸状の駆動磁気車を配置して回転自在に軸支してある。
上記駆動磁気車は、ローラ交差部の近傍にて長手方向へ一列状に並列する各従動磁気車と、平面視において軸芯が略直角に交差する状態にて支持して、各従動磁気車の外周面に近接せしめてあり、駆動磁気車の磁力により、従動磁気車を駆動回転することで、搬送路を構成する一側、他側の各搬送ローラが所定の方向へ駆動回転せしめる。
【0010】
尚、本願のローラコンベアで用いる駆動磁気車、及び従動磁気車は、特開平7−177724号,特開平7−177725号,特開平8−9625号等にて開示されているものと同様に構成する。即ち、従動磁気車は、その外周面に沿って、NS両極帯を所定のピッチにて交互に配置するか、若しくは螺旋状に配置する。また、駆動磁気車は、その外周面に沿ってNS両極帯を螺旋状に設けてあり、この極帯の螺旋ピッチは各従動磁気車のNS両極帯のピッチに対応させてある。これにより、両磁気車間のN極帯とS極帯とは最接近した状態で吸引し合う状態を常に維持しようとする。よって、駆動磁気車を駆動回転すると、上記したNS両極帯による吸引力により、各従動磁気車が追従する形で駆動回転する。
【0011】
ローラコンベアの搬送路を構成する一側、他側両搬送ローラは、上記駆動磁気車の駆動回転に伴って各従動磁気車が同期した状態で駆動回転することにより、所定の方向へ回転する。
一側、他側両搬送ローラが駆動回転する状態にて、搬送路の始端部にまとまってみかん等の搬送物が供給されると、これらの搬送物は、回転する搬送ローラにより凹凸の路面を移動する如く適度に振動しながら搬送される。
すると、まとまっていた搬送物が振動により前後に分散すると共に、正面視略V形に傾斜する路面により、各搬送物は最低部位となる搬送路幅の中央へ向けて常に転がり落ちようとし、隣り合う物同士でぶつかり合いながら、最低部位となる搬送路の略中央にて一列状に並列する。そして、搬送路の終端では、仕分け工程等のラインに搬送物を一個ずつ搬出する。
尚、請求項2の説明は、実施例の説明の中で合わせて説明する。
【0012】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて説明する。
図1乃至図4は、本発明を実施したローラコンベアAを示している。
ローラコンベアAは、みかんやオレンジ、馬鈴薯等の外形が丸いものを搬送するものであり、搬送路の始端部にまとまって供給された搬送物を搬送しながら一列状に並列させ、この搬送物を仕分け工程に至るラインに一個ずつ供給するように構成したものである。このローラコンベアAは、コンベア本体aの一側と他側、本実施例の場合、搬送路bの搬送方向を基準として右側と左側とに分けて搬送ローラ1a,1bを並列することにより、搬送路bを構成してある(図1,図2)。また、ローラコンベアAは後述する駆動磁気車50と各従動磁気車4との間に生じる磁力を利用して動力の伝達を行なっている。また、上記コンベア本体aの始端側に駆動モータ8を設置してある。
【0013】
ローラコンベアAは、左右一対のフレ−ムa1を平行状に配置し、このフレ−ムa1の間を底板a2により連絡することで断面略コ形のコンベア本体aを構成してある。コンベア本体aの底板a2の上面には、後述する搬送ローラ1a,1bを支持する支持材2aを底板a2の右側及び左側に沿って定間隔を置いて配置してある。各支持材2a上には長帯状の取り付け板2bを各々取り付け固定してある。
即ち、左右両支持材2aは、所定の間隔を置いて平面視平行状に設置し、その一側がコンベア本体aの中央へ向けて上がるように傾斜させてある。また、上記した左右両取り付け板2bの上には、搬送ローラ1a,1bを片持ち状態にて軸支する軸支体3を各々一定の間隔、即ち、搬送ローラ1a同士、及び1b同士の間隔を置いて並列し、同取り付け板2bに対してねじ止めしてある(図2)。
【0014】
上記した如く左右両側に分けて設置した各軸支体3は、搬送ローラ1a,1bの支軸11を軸支する軸受部3aを有する。軸受部3aは中空状に形成し、その内部に搬送ローラ1a,1bの支軸11を挿入し、ベアリング12を介して回転自在に軸受してある。また、軸受された右側の各支軸11は、左側のフレ−ムa1の上部へ向けて延出し、反対に、左側の各支軸11は、右側のフレ−ムa1の上部へ向けて延出する。尚、上記した両支軸11の傾斜角は、搬送ローラ1a,1bの一半部、他半部の傾斜角となるものであり、本実施例の場合、水平を基準として略15度に設定してある。尚、この傾斜角は必要に応じて変更してもよい。
【0015】
コンベア本体aの左右両フレ−ムa1には、それぞれガイド支持材9aを設け、略く形に折曲した先端部にガイド板9を取り付け支持してある。ガイド板9は、搬送路bの左右両側部を全長に亘ってカバーする部材であって、左右両側の搬送ローラ1a,1bの傾斜よりも幾分大きな角度にて取り付け支持してあり、その下端側の縁の下に左右両側の搬送ローラ1a,1bの上端側が入り込むように構成してある。上記したように設置した左右の両ガイド板9は作動中において、左右両側部の搬送ローラ1a,1bから外側にはみだそうとする搬送物を受けて搬送路bの中央へ向けて転がり落として定位置に戻す機能を有する。
【0016】
上記支軸11にはカラー13を介して従動磁気車4を嵌挿し、さらに先端側を中空状に形成したローラ体14の一端口から圧入して支軸11とローラ1a,1bと従動磁気車4とが一体化して回転するように構成してある。また、本実施例のローラ体14はフレ−ムa1側の径が幾分大径となるように成形してある。
尚、搬送路bの右側半部に並設した搬送ローラ1aと、左側に並設した搬送ローラ1bとは、平面視において従動磁気車4を設けた近接側の部位を搬送路bの搬送方向へ向けて交互に配置し、右側の搬送ローラ1aと左側の搬送ローラ1bの交差部分が近接し、非接触状態にて回動するように構成してある(図3,図6)。
【0017】
上記したように配置した左右の両搬送ローラ1aと1bとは、正面視(図2)において、近接側の軸芯同士を搬送路幅の中央にて交差せしめてあり、これにより、コンベア本体aの右側及び左側から搬送路b幅の略中央へ向けて低くなるように傾斜する正面視略V形の搬送路bを構成している。
また、上記搬送ローラ1a,1bの正面視における交差部の直下に沿っては、略長軸状の駆動磁気車50を軸支してある。
駆動磁気車50は、中芯軸5aの外周に略筒状に形成した磁気車5を順次嵌装し、同中芯軸5aの軸芯に沿って定間隔をおいて取り付け固定してある。さらに、駆動磁気車50は、中芯軸5aの下部に沿って適宜な間隔を置いて設けた軸受体6によって回転自在に支持し、各磁気車5の外周が、左右両側の従動磁気車4の外周に近接した状態を保つように構成してある(図2,図3)。
【0018】
上記したように、右側搬送ローラ1aに設けた各従動磁気車4は、搬送ローラ1a,1bの交差部中心よりも幾分傾斜下方(図2中左側)へずらした位置に固定し、且つ磁気車5の軸芯方向の一半部にかかる状態で保持してある。(図3,図6)。他方、左側の搬送ローラ1bに設けた各従動磁気車体4は、搬送ローラ1a,1bの交差中心よりも幾分傾斜下方(図2中右側)へずらした位置に固定し、且つ同磁気車5の軸芯方向の一半部にかかる状態で保持してある(図4−a)。即ち、一個の磁気車5の磁力により左右一対の搬送ローラ1a,1bを駆動回転するように構成してある。尚、上記した状態において、磁気車5の軸芯と、左右両搬送ローラ1a,1bの軸芯は、平面視において直交する。
【0019】
ところで、駆動磁気車50を構成する各磁気車5は、Mn −Al 磁石等の永久磁石からなり、筒状に形成した周面に、N極帯5nとS極帯5sとを螺旋状に着磁することにより構成してある。一方、左右両側の搬送ローラ1a,1bに装着される従動磁気車4は、上記した磁気車5と同様に、筒状に形成した周面にN極帯4nとS極帯4sとを螺旋状に着磁してある。
また、上記駆動磁気車50が備える各磁気車5は、NS両極帯5n,5Sのピッチ、即ち、螺旋ピッチは、搬送ローラ1a,1bに設けた従動磁気車4のNS両極体4n,4sの両螺旋ピッチに一致させてある。
【0020】
よって、上記したように磁気車を利用した駆動機構にあっては、駆動磁気車50の各磁気車5のN極帯とS極帯5n,5sと、左右両搬送ローラ1a,1bの従動磁気車4のNS両極体4n,4sとは、磁界による吸引力により常時最接近した状態を維持しようとする。
即ち、駆動磁気車50を駆動回転させると、各磁気車5の螺旋状に構成されるNS両極帯5n,5sの範囲は、回転に伴って磁気車5の軸方向へ向けて連続的に移動する。
【0021】
一方、各従動磁気車4は、上記駆動磁気車50と軸芯が略直交し、且つNS両極帯4n,4sを周面に沿って交互に配置してあるため、駆動磁気車50の各磁気車5のNS両極帯5n,5sの螺旋移動を追って順次移動して回転する。
これにより、駆動磁気車50の磁力が各従動磁気車4に作用して回転力を与え、これら従動磁気車4を具備する左右両搬送ローラ1a,1bが同一方向へ駆動回転せしめる。ちなみに、駆動磁気車50を逆方向に回転させると、各従動磁気車4及び左右両搬送ローラ1a,1bも逆方向に回転することになる。
【0022】
尚、上記した実施例において、駆動磁気車50は、中芯軸5aの外周に筒状の磁気車5を所定の間隔を置いて配置することにより略長軸状に構成したが、本発明の駆動磁気車は、1本の長軸状に形成した駆動磁気車の周面に永久磁石のN極帯とS極帯とを所定の螺旋ピッチにて着磁することにより構成してもよい。
また、各従動磁気車の周面に沿っては永久磁石のN極帯とS極帯とが交互に設けられている。また、各従動磁気車は駆動磁気車に対して軸芯を直角若しくは斜めに交差し、互いの周面を非接触状態にて近接させた状態で軸支されている。
【0023】
また、搬送ローラを回動せしめる従動磁気車は、図4−bにて示すように構成してもよい。この従動磁気車4'は、従動磁気車の周面に沿ってN極4nとS極4sとを交互に着磁したものである。搬送ローラに設ける従動磁気車4'は、上記したもののようにN極とS極とを上記した如く配置しても、前述した従動磁気車4と同様に駆動回転する。
上記した駆動磁気車50の中芯軸5aの一端部には、プーリ7aを装着し、該プーリ7aとコンベア本体aの底板a2に設置した駆動モータ8の出力軸8aに取り付けたプーリ7bとの間に無端状のベルト7cを架設する。これにより、駆動モータ8の駆動により駆動磁気車50が駆動回転するように構成してある。
【0024】
図7−aは、搬送路bを構成する左右両側の搬送ローラ1a,1bの回転速度の違いを示している。上記したローラコンベアAは、始端部の範囲において、左右両搬送ローラ1a,1bの回転速度は同じになるように設定してある。また、左側の搬送ローラ1bは、始端部から終端部までの範囲b2の回転速度を、上記搬送路b始端の範囲b1の搬送ローラ1a,1bよりも幾分早くなるように設定してある。さらに、搬送路bの終端部の範囲b3は、左右両搬送ローラ1a,1bの双方の回転速度を上記した範囲b2と同じ回転速度になるように設定してある。尚、搬送ローラ1a,1bの回転速度の増減は、従動磁気車、又は駆動磁気車の極数を変更することにより行なう。
【0025】
上記したように左右の搬送ローラ1aと1bとの間で回転速度に差をつけることにより、みかんやオレンジ等の丸い搬送物を搬送路bの始端b1にまとめて供給した際に、その搬送物は、略そのままの状態で次の範囲b2に移行する。範囲b2では、左側半部の搬送ローラ1bの回転速度が早いので、移動する搬送物に対して搬送路bの幅方向へ振るような付勢力を与える。これにより、まとまった状態で供給された搬送物を搬送路bにおける範囲b2内において確実に分散することができる。また、搬送路bの終端部の範囲b3では左右両搬送ローラ1a,1bの速度が早い速度に保たれ、終端部に至った搬送物を一個ずつ確実に搬出することができる。
【0026】
尚、左右両搬送ローラ1a,1bにつける回転速度の差とその範囲は、上記したものに限定するものではなく、任意に設定してもよい。例えば図7−bに示すローラコンベアA'のように、回転速度の早い範囲b1〜b6を搬送路b上において左右交互に配置することで、搬送物の分散を蛇行する形で行ない、その効果をより高めることも可能である。
【0027】
次に、上記した如く構成したローラコンベアAの作動について説明する。
図5にて示すように、ローラコンベアAの始端には、みかんやオレンジを搬送する供給コンベアd1を設置する。また、同搬送路bの終端には、搬送物を仕分けする仕分け用のコンベアd2を接続してある。
そして、駆動磁気車50の駆動回転により左右両側の搬送ローラ1a,1bを駆動回転させた状態にて、搬送路bの始端部にみかん等の搬送物がまとまった状態にて供給されると、これらの搬送物は、回転する搬送ローラ1a,1bの駆動回転により、凹凸の路面を移動するように適度に振動しながら搬送路の中間部に移行する。
【0028】
この際、まとまっていた搬送物が搬送ローラ1a,1b上を移動する際の振動により前後に分散すると共に、正面視略V形に傾斜する搬送路の路面により、各搬送物は最低部位となる搬送路bの幅の中央へ向けて常に転がり落ちようとする。さらに、上記搬送物には、前記したように左右の搬送ローラ1a,1bとの間の速度差による分散力も働くことになる。
上記搬送物は、隣り合う物同士でぶつかり合いながら、最低部位となる搬送路bの中央に沿って、一列状に並列する。そして、搬送路の終端では、仕分け工程等に連絡する仕分け用コンベアd2の始端へ向けて搬送物を一個ずつ確実に供給する。
【0029】
次に、図8にて示すローラコンベアA''について説明する。
このローラコンベアA''は、前記したローラコンベアAと同様に構成してあるが、断面略コ形に折曲成形したフレ−ムa3の底面部に、所定の断面形に押出し成形したアルミ製の支持基板eを取り付け固定してある。上記支持基盤eには、左右両搬送ローラ1a,1bの軸支体3'をスライド可能にネジ止めすることにより構成してある。
上記したように構成したローラコンベアA''は、アルミを押出し成形してなる支持基板eを各軸支体3'と駆動磁気車50の取り付け部材として利用したので、各軸支体や駆動磁気車の取り付け構造を一体化して簡素に構成することができ、製造コストの低減と、分解や組み立て作業を容易に行なえる利点がある。
【0030】
次に、図9にて示すローラコンベアA2について説明する。
このローラコンベアA2は、上記したローラコンベアA''と同様に構成されるが、左右両側の搬送ローラ1a,1bに設ける従動磁気車4を、同搬送ローラ1a,1bの支軸11下端側を延出し、ここに嵌装して固定してある。これら従動磁気車4の直下に沿って、各々駆動磁気車50を配置し、各従動磁気車4の軸芯と駆動磁気車50の軸芯とが直交するように構成してある。
また、上記駆動磁気車50の端部にはプーリ7aを、また、両駆動磁気車50の中央下部にはテンションプーリ7dを配設する。さらに、駆動モータ8の出力軸8aには駆動プーリ7bを取り付け、これら各プーリ7a,7b及び7dに無端状のベルト7cを掛け回してある。
【0031】
上記した如く構成したローラコンベアA2は、駆動モータ8の駆動により、両駆動磁気車50を同期させて駆動回転する。両駆動磁気車50は、左右両側の搬送ローラ1a,1bを駆動回転させる。上記した如く構成したローラコンベアA2は、各搬送ローラ1a,1bのトルクを高めることができると共に、隣り合う従動磁気車4同士の間で生じる磁気の相互干渉を低減できる利点がある。
【0032】
【発明の効果】
本発明のローラコンベアは、以上説明したように構成したものであるから、搬送路の一端部にみかんやオレンジ、馬鈴薯等の外形の丸い搬送物を搬送路の始端部にまとまった状態で供給した際に、これらの搬送物を搬送路の一側、他側両搬送ローラにより適度に振動させながら搬送する。
また、一側、他側両搬送ローラによって構成される搬送路は、搬送路幅の略中央が最低部位となるよう正面視略V形に傾斜させてあるので、上記したように搬送路の始端部にまとまって供給された搬送物は、隣り合う物同士がぶつかり合いながら、前後方向へ徐々に分散する。搬送物は、分散するのと同時に、最低部位へ向けてずれ落ち、搬送が進むに連れて最低部位となる搬送路の略中央に自然と落ち着いて一列状に整列する。そして、同搬送路の終端では、次に接続される仕分け工程等のラインに搬送物を一個ずつ供給する。即ち、本願のローラコンベアは、簡素な構造にて、上記したようにみかんやオレンジ、馬鈴薯等の丸い搬送物の分散と整列を円滑且つ確実に行なうことができる。
【0033】
また、本発明のローラコンベアの駆動は、1本の駆動磁気車から各搬送ローラに設けた従動磁気車に対する駆動回転力の伝達を、駆動磁気車との間に生じる磁力を利用して非接触状態のまま行なうので、プーリと丸ベルト等を用いて駆動回転する従来のコンベアのように、ベルトの摩耗や発塵、接触騒音、接触抵抗を発生することがなく、各ローラの同時回転に伴う駆動回転力の伝達をスムースに行なうことができる。即ち、1本の駆動磁気車により一側及び他側の各搬送ローラを駆動回転できるので、構造を簡素化でき、製造コストを低減できると共に、駆動機構を設置するためのスペースを削減できるので、ローラコンベアの小型化を図ることができ、さらに、従来の丸ベルトのように切れや削れがなく、メンテナンスフリーである。
更に、搬送路における所定の範囲において、搬送路一側と同搬送路他側の両搬送ローラの間に、回転速度の差をつけたものであるから、みかんやオレンジ等の丸い搬送物を搬送路にまとめて供給した際に、その搬送物が搬送される途中において、上記搬送ローラの速度差によって、移動する搬送物に対して搬送路の幅方向へ振るような付勢力を与えることで、まとまった状態で搬送される搬送物を決められた範囲内においてより確実に分散することができる。
【0034】
請求項2記載のローラコンベアは、上記した請求項1記載のローラコンベアと同様に、簡素な構造にてみかんやオレンジ等の丸い搬送物の分散と整列を円滑に行ない、次に接続されるラインに向けて搬送物を一個ずつ供給することができる。
また、一側、他側両搬送ローラにおける交差する近接側の端部近傍に各々従動磁気車を装着し、この両従動磁気車列の下部に沿って、各々駆動磁気車を配設したので、より大きなトルクを確保できると共に、一側及び他側の各搬送ローラの間で回転速度の差をつける際において、回転速度の設定を幅広く且つ容易に行なうことができる。
更に、搬送路における所定の範囲において、搬送路一側と同搬送路他側の両搬送ローラの間に、回転速度の差をつけたものであるから、みかんやオレンジ等の丸い搬送物を搬送路にまとめて供給した際に、その搬送物が搬送される途中において、上記搬送ローラの速度差によって、移動する搬送物に対して搬送路の幅方向へ振るような付勢力を与えることで、まとまった状態で搬送される搬送物を決められた範囲内においてより確実に分散することができる。
【図面の簡単な説明】
【図1】 本発明を実施したローラコンベアを示す平面図。
【図2】 同ローラコンベアを駆動モータを設けたコンベアの始端側から視た正面図。
【図3】 駆動磁気車と搬送ローラに設けた従動磁気車の配置関係を示す斜視図。
【図4】 磁気車と両従動磁気車の配置関係を示す斜視図。
【図5】 同ローラコンベアの作動状態を示す平面図。
【図6】 搬送路の中央部を一部切欠して示す平面図。
【図7】 回転速度差を設けた搬送ローラを示す平面図であり、(a)は早い回転範囲を搬送路の左半部に設けてなるコンベア、(b)は、早い範囲を搬送路の左右に、且つ交互に配置した搬送ローラを示す。
【図8】 押出し成形してなる支持基板を各軸受部と駆動磁気車の取り付け部材として構成したローラコンベアの始端側を示す正面図。
【図9】 従動磁気車を左右両側の各搬送ローラの軸支側端部に設け、これら左右両従動磁気車の列に沿って駆動磁気を配置して成るローラコンベアの始端側を示す正面図。
【符号の説明】
A,A’,A'',A2・・・ローラコンベア
a・・・コンベア本体
b・・・搬送路
1a,1b・・・搬送ローラ
3,3’・・・軸支体
4,4’・・・従動磁気車
5・・・磁気車
8・・・駆動モータ
9・・・ガイド板
50・・・駆動磁気車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a roller conveyor that conveys a transported product such as a fruit or vegetable having a round outer shape, such as oranges, oranges, tomatoes, potatoes, etc., and more specifically, sequentially distributed during transport from a state in which transported products are supplied together, The present invention relates to a roller conveyor that carries out in a line-up state.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there are roller conveyors for transporting transported objects having a relatively round outer shape such as oranges, oranges, oranges, etc. (Japanese Patent Laid-Open Nos. 11-199033, 11-343024, 2000-177831).
[0003]
These roller conveyors form a conveyance path by arranging rollers in parallel along the left and right sides of the conveyor body, and facing the front ends of the rollers at the approximate center of the conveyance path. Then, by driving and rotating the left and right rollers respectively, the conveyed items collectively supplied to the starting end of the conveying path are moved toward the center of the conveying path, and are vibrated and oscillated during conveyance. In this configuration, the transported articles in the state are arranged in a line at the center of the transport path while being dispersed back and forth, and then transported one by one from the end of the transport path to a line such as a sorting step.
[0004]
The conventional roller conveyor described above forms a conveyance path by rotatably supporting a plurality of relatively small-diameter rollers arranged in parallel, and pulleys are provided on the base end sides of the rollers arranged in parallel on the left and right sides. The endless round belt is bridged between the pulley and the drive shaft provided along the lower part of the roller row, so that all the rollers on the left and right sides are driven and rotated.
[0005]
[Problems to be solved by the invention]
However, as described above, in the case where each of the left and right rollers is driven via an endless drive belt, the driving rotational force is generated by the contact between the numerous pulleys and belts of each roller and the drive shaft. Therefore, belt wear, dust generation and contact noise are generated, and frictional resistance due to belt contact inevitably occurs. Also, when many rollers are driven and rotated at the same time, a failure of one roller affects other roller driving, and may cause problems such as belt cutting and running.
[0006]
In addition, the above-described conventional roller conveyor requires two drive shafts on the left and right, pulleys provided on each roller, and a belt spanning between the pulleys and the drive shaft. The maintenance to keep up was also difficult. Furthermore, since a relatively large space is required to accommodate the drive mechanism, there is a problem that the apparatus becomes large.
[0007]
The roller conveyor according to the present invention supplies the rounded outer shapes such as oranges, oranges, potatoes and the like to the starting end of the conveyance path, distributes the articles in the middle of the conveyance, and arranges them in a line. While having the function of carrying out each one, the drive mechanism that causes wear, dust generation, contact noise, etc. is rationally simplified, downsizing of the device, reduction of manufacturing costs, and improvement of maintainability. Let it be an issue.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the roller conveyor of the present invention has transport rollers arranged in parallel on one side and the other side of the conveyor body. These transport rollers are rotatably supported in a state in which the adjacent ends of the one and other transport rollers are alternately arranged in the transport direction at the approximate center of the transport path.
In addition, each of the conveying rollers on one side and the other side crosses the adjacent axial cores at the approximate center of the conveying path width in front view, thereby conveying from one side and the other side of the conveyor body. A substantially V-shaped conveyance path in front view that is inclined downward toward the approximate center of the path width is formed.
[0009]
On the other hand, a driven magnetic wheel is mounted and fixed in the vicinity of the intersecting portion of both the one side and the other side conveying rollers, and a long-axis driving magnetic wheel is disposed along the lower portion of each roller intersecting portion. And it is pivotally supported.
The drive magnetic wheels are supported in a state where the driven magnetic wheels are arranged in a line in the longitudinal direction in the vicinity of the roller intersection, and in a state where the shaft cores intersect substantially at right angles in a plan view. It is brought close to the outer peripheral surface, and the driven magnetic wheel is driven and rotated by the magnetic force of the driving magnetic wheel, so that the conveying rollers on one side and the other side constituting the conveying path are rotated in a predetermined direction.
[0010]
The driving magnetic wheel and the driven magnetic wheel used in the roller conveyor of the present application are configured in the same manner as those disclosed in JP-A-7-177724, JP-A-7-177725, JP-A-8-9625, and the like. To do. That is, in the driven magnetic wheel, NS bipolar zones are alternately arranged at a predetermined pitch or spirally along the outer peripheral surface thereof. Further, the driving magnetic wheel has NS bipolar zones spiraled along the outer peripheral surface thereof, and the helical pitch of this polar zone corresponds to the pitch of the NS bipolar zone of each driven magnetic wheel. As a result, the N pole band and the S pole band between the two magnetic wheels always try to maintain a state of attracting each other in the closest state. Therefore, when the drive magnetic wheel is driven and rotated, each driven magnetic wheel is driven and rotated by the above-described attractive force of the NS bipolar band.
[0011]
The one-side and other-side conveyance rollers constituting the conveyance path of the roller conveyor are rotated in a predetermined direction by driving and rotating in a state where each driven magnetic wheel is synchronized with the driving rotation of the driving magnetic wheel.
When transported objects such as mandarin oranges are fed together at the start end of the transport path in a state where both the one side and other side transport rollers are driven and rotated, these transported objects are made to have uneven road surfaces by the rotating transport rollers. It is conveyed while being vibrated appropriately as it moves.
As a result, the transported objects that have been gathered are dispersed back and forth due to vibration, and each transported object always tries to roll down toward the center of the transport path width, which is the lowest part, by the road surface inclined in a substantially V shape in front view. While colliding each other with matching objects, they are arranged in a line at the approximate center of the conveyance path that is the lowest part. And at the terminal of a conveyance path, a conveyance thing is carried out one by one to lines, such as a sorting process.
The description of claim 2 will be described together with the description of the embodiment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 to 4 show a roller conveyor A embodying the present invention.
The roller conveyor A conveys rounded objects such as mandarin oranges, oranges, potatoes, etc., and conveys the conveyed items supplied together at the beginning of the conveying path in a line, and these conveyed items are arranged in a line. It is configured to supply one by one to the line leading to the sorting process. The roller conveyor A is conveyed by arranging the conveyance rollers 1a and 1b in parallel on one side and the other side of the conveyor main body a, in the case of this embodiment, divided into right and left sides with reference to the conveyance direction of the conveyance path b. A path b is formed (FIGS. 1 and 2). The roller conveyor A transmits power using a magnetic force generated between a driving magnetic wheel 50 and each driven magnetic wheel 4 described later. A drive motor 8 is installed on the start end side of the conveyor body a.
[0013]
The roller conveyor A has a pair of left and right frames a1 arranged in parallel and communicates between the frames a1 by a bottom plate a2 to constitute a conveyor body a having a substantially U-shaped cross section. On the upper surface of the bottom plate a2 of the conveyor main body a, support members 2a for supporting later-described transport rollers 1a and 1b are arranged at regular intervals along the right side and the left side of the bottom plate a2. A long strip-shaped mounting plate 2b is mounted and fixed on each support member 2a.
That is, the left and right support members 2a are installed in parallel with each other at a predetermined interval, and are inclined so that one side thereof rises toward the center of the conveyor body a. Further, on the left and right mounting plates 2b, the shaft supports 3 for supporting the transport rollers 1a and 1b in a cantilevered state are set at a constant interval, that is, between the transport rollers 1a and 1b. Are parallel to each other and screwed to the mounting plate 2b (FIG. 2).
[0014]
As described above, each shaft support 3 installed separately on the left and right sides has a bearing portion 3a that supports the support shaft 11 of the transport rollers 1a and 1b. The bearing portion 3a is formed in a hollow shape, and the support shafts 11 of the transport rollers 1a and 1b are inserted therein and are rotatably supported via a bearing 12. Also, the right support shafts 11 that are supported are extended toward the upper portion of the left frame a1, and conversely, the left support shafts 11 are extended toward the upper portion of the right frame a1. Put out. Note that the inclination angles of the two support shafts 11 are the inclination angles of one half and the other half of the transport rollers 1a and 1b. In the present embodiment, the inclination angles are set to approximately 15 degrees with respect to the horizontal. It is. In addition, you may change this inclination-angle as needed.
[0015]
The left and right frames a1 of the conveyor body a are each provided with a guide support material 9a, and a guide plate 9 is attached and supported at the tip end portion that is bent into a substantially rectangular shape. The guide plate 9 is a member that covers the left and right sides of the conveyance path b over its entire length, and is attached and supported at an angle somewhat larger than the inclination of the conveyance rollers 1a and 1b on both the left and right sides. The upper end sides of the conveyance rollers 1a and 1b on both the left and right sides are configured to enter under the side edge. During the operation, the left and right guide plates 9 installed as described above receive a conveyed product to be protruded outward from the conveying rollers 1a and 1b on the left and right sides, and roll down toward the center of the conveying path b. Function to return to the home position.
[0016]
The driven magnetic wheel 4 is inserted into the support shaft 11 via a collar 13, and is further press-fitted from one end of a roller body 14 having a hollow end, and the support shaft 11, the rollers 1a and 1b, and the driven magnetic wheel. 4 is configured to rotate integrally. Further, the roller body 14 of this embodiment is formed so that the diameter on the frame a1 side is somewhat larger.
The conveyance roller 1a arranged side by side on the right half of the conveyance path b and the conveyance roller 1b arranged side by side on the left side are arranged in the conveyance direction of the conveyance path b in the vicinity where the driven magnetic wheel 4 is provided in plan view. The crossing part of the right conveyance roller 1a and the left conveyance roller 1b is close to each other and rotates in a non-contact state (FIGS. 3 and 6).
[0017]
The left and right transport rollers 1a and 1b arranged as described above are crossed at the center of the transport path width in the front view (FIG. 2). A substantially V-shaped conveyance path b is formed that is inclined from the right side and the left side of the sheet toward the approximate center of the width of the conveyance path b.
In addition, a substantially long drive magnetic wheel 50 is pivotally supported immediately below the intersection in the front view of the transport rollers 1a and 1b.
In the drive magnetic wheel 50, the magnetic wheel 5 formed in a substantially cylindrical shape is sequentially fitted on the outer periphery of the core shaft 5a, and is attached and fixed at regular intervals along the shaft core of the core shaft 5a. Further, the driving magnetic wheel 50 is rotatably supported by a bearing body 6 provided at an appropriate interval along the lower portion of the core shaft 5a, and the outer periphery of each magnetic wheel 5 is a driven magnetic wheel 4 on both the left and right sides. It is comprised so that the state close | similar to the outer periphery may be maintained (FIG. 2, FIG. 3).
[0018]
As described above, each driven magnetic wheel 4 provided on the right conveyance roller 1a is fixed at a position shifted slightly downward from the center of the intersection of the conveyance rollers 1a and 1b (left side in FIG. 2) and magnetically. The vehicle 5 is held in a state of being applied to one half of the axial direction of the vehicle 5. (FIGS. 3 and 6). On the other hand, each driven magnetic vehicle body 4 provided on the left conveyance roller 1b is fixed at a position slightly inclined downward (right side in FIG. 2) from the intersection center of the conveyance rollers 1a and 1b, and the magnetic vehicle 5 It is hold | maintained in the state concerning one half part of the axial direction (FIG. 4-a). That is, the pair of left and right transport rollers 1a and 1b are driven and rotated by the magnetic force of one magnetic wheel 5. In the state described above, the axis of the magnetic wheel 5 and the axes of the left and right transport rollers 1a and 1b are orthogonal to each other in plan view.
[0019]
By the way, each magnetic wheel 5 constituting the drive magnetic wheel 50 is made of a permanent magnet such as an Mn-Al magnet, and an N-pole band 5n and an S-pole band 5s are spirally attached to a circumferential surface formed in a cylindrical shape. It is configured by magnetizing. On the other hand, the driven magnetic wheel 4 mounted on the left and right conveying rollers 1a and 1b, like the magnetic wheel 5 described above, spirals an N-pole band 4n and an S-pole band 4s on a cylindrical peripheral surface. Is magnetized.
In addition, each magnetic wheel 5 provided in the drive magnetic wheel 50 has NS bipolar poles 5n and 5S having a pitch, that is, a helical pitch, of the NS bipolar bodies 4n and 4s of the driven magnetic wheel 4 provided on the transport rollers 1a and 1b. It is made to correspond to both spiral pitches.
[0020]
Therefore, in the drive mechanism using the magnetic wheel as described above, the N pole band and the S pole bands 5n and 5s of each magnetic wheel 5 of the drive magnetic wheel 50, and the driven magnets of the left and right transport rollers 1a and 1b. The NS bipolar bodies 4n and 4s of the vehicle 4 always try to maintain the closest state by the attractive force due to the magnetic field.
That is, when the drive magnetic wheel 50 is driven and rotated, the range of the NS bipolar zones 5n and 5s formed in a spiral shape of each magnetic wheel 5 continuously moves in the axial direction of the magnetic wheel 5 as it rotates. To do.
[0021]
On the other hand, each driven magnetic wheel 4 is substantially perpendicular to the driving magnetic wheel 50 and has the NS bipolar zones 4n and 4s arranged alternately along the circumferential surface. The vehicle 5 sequentially moves and rotates following the spiral movement of the NS bipolar zones 5n and 5s.
As a result, the magnetic force of the drive magnetic wheel 50 acts on each driven magnetic wheel 4 to give a rotational force, and the left and right transport rollers 1a and 1b including the driven magnetic wheel 4 are driven to rotate in the same direction. Incidentally, when the drive magnetic wheel 50 is rotated in the reverse direction, each driven magnetic wheel 4 and the left and right transport rollers 1a and 1b are also rotated in the reverse direction.
[0022]
In the above-described embodiment, the drive magnetic wheel 50 is configured to have a substantially long shaft shape by disposing the cylindrical magnetic wheel 5 on the outer periphery of the core shaft 5a at a predetermined interval. The driving magnetic wheel may be configured by magnetizing the N pole band and the S pole band of a permanent magnet at a predetermined helical pitch on the peripheral surface of the driving magnetic wheel formed in one long axis.
Further, along the peripheral surface of each driven magnetic wheel, the N pole band and the S pole band of the permanent magnet are alternately provided. Each driven magnetic wheel is pivotally supported with its axis intersecting the drive magnetic wheel at a right angle or obliquely and its peripheral surfaces are close to each other in a non-contact state.
[0023]
Moreover, you may comprise the driven magnetic wheel which rotates a conveyance roller as shown in FIG. 4-b. This driven magnetic wheel 4 ′ is obtained by alternately magnetizing N poles 4n and S poles 4s along the peripheral surface of the driven magnetic wheel. The driven magnetic wheel 4 ′ provided on the transport roller is driven and rotated in the same manner as the driven magnetic wheel 4 described above even if the N pole and the S pole are arranged as described above.
A pulley 7a is attached to one end of the core shaft 5a of the drive magnetic wheel 50 described above, and the pulley 7a and a pulley 7b attached to the output shaft 8a of the drive motor 8 installed on the bottom plate a2 of the conveyor body a. An endless belt 7c is installed between them. Thus, the drive magnetic wheel 50 is configured to be driven to rotate by driving the drive motor 8.
[0024]
FIG. 7A shows the difference in rotational speed between the conveyance rollers 1a and 1b on the left and right sides constituting the conveyance path b. The roller conveyor A described above is set so that the rotation speeds of the left and right transport rollers 1a and 1b are the same in the range of the starting end. The left transport roller 1b is set so that the rotational speed in the range b2 from the start end to the end end is somewhat faster than the transport rollers 1a and 1b in the range b1 at the start end of the transport path b. Further, the range b3 at the end of the transport path b is set so that the rotational speeds of both the left and right transport rollers 1a and 1b are the same as the above-described range b2. In addition, increase / decrease in the rotational speed of the conveyance rollers 1a and 1b is performed by changing the pole number of a driven magnetic wheel or a drive magnetic wheel.
[0025]
As described above, when the round conveyance objects such as oranges and oranges are collectively supplied to the start end b1 of the conveyance path b by making a difference in rotational speed between the left and right conveyance rollers 1a and 1b, the conveyance object Shifts to the next range b2 in a substantially unchanged state. In the range b2, since the rotation speed of the conveyance roller 1b in the left half is fast, an urging force that swings in the width direction of the conveyance path b is applied to the moving conveyance object. Thereby, the conveyed product supplied in a collective state can be reliably dispersed within the range b2 in the conveyance path b. Further, in the range b3 of the end portion of the transport path b, the speeds of the left and right transport rollers 1a and 1b are maintained at a high speed, so that the transported objects that have reached the end portion can be reliably transported one by one.
[0026]
The difference between the rotation speeds applied to the left and right transport rollers 1a and 1b and the range thereof are not limited to those described above, and may be set arbitrarily. For example, as in the roller conveyor A ′ shown in FIG. 7B, the ranges b1 to b6 having a high rotation speed are alternately arranged on the left and right on the conveyance path b, thereby carrying out the dispersion of the conveyed product in a meandering manner. It is also possible to increase the value.
[0027]
Next, the operation of the roller conveyor A configured as described above will be described.
As shown in FIG. 5, a supply conveyor d <b> 1 that conveys oranges and oranges is installed at the beginning of the roller conveyor A. Further, a sorting conveyor d2 for sorting the transported items is connected to the end of the transport path b.
Then, when the conveyance rollers 1a and 1b on both the left and right sides are driven and rotated by the drive rotation of the drive magnetic wheel 50, when a transported object such as a mandarin orange is supplied to the start end of the transport path b, These transported materials move to the intermediate portion of the transport path while being appropriately vibrated so as to move on the uneven road surface by driving rotation of the rotating transport rollers 1a and 1b.
[0028]
At this time, the transported objects that are gathered are dispersed back and forth due to vibrations when moving on the transport rollers 1a and 1b, and each transported object becomes the lowest part due to the road surface of the transport path inclined in a substantially V shape in front view. It always tries to roll down toward the center of the width of the conveyance path b. Further, as described above, a dispersion force due to a speed difference between the left and right transport rollers 1a and 1b also acts on the transported object.
The transported objects are arranged in a line along the center of the transport path b serving as the lowest part while colliding with adjacent objects. At the end of the transport path, the transported articles are reliably supplied one by one toward the start end of the sorting conveyor d2 that communicates with the sorting process and the like.
[0029]
Next, a description will be given roller conveyor A '' shown boiled FIG.
This roller conveyor A ″ is configured in the same manner as the roller conveyor A described above, but is made of aluminum that is extruded into a predetermined cross-sectional shape on the bottom surface of a frame a3 bent into a substantially U-shaped cross section. The support substrate e is attached and fixed. The support base e is configured by screwing the shaft support 3 'of the left and right transport rollers 1a and 1b so as to be slidable.
The roller conveyor A ″ configured as described above uses the support substrate e formed by extruding aluminum as an attachment member for each shaft support 3 ′ and the drive magnetic wheel 50. The vehicle mounting structure can be integrated into a simple structure, and there are advantages that the manufacturing cost can be reduced and that disassembly and assembly operations can be easily performed.
[0030]
Next, the roller conveyor A2 shown in FIG. 9 will be described.
The roller conveyor A2 is configured in the same manner as the roller conveyor A ″ described above, but the driven magnetic wheel 4 provided on the left and right conveying rollers 1a and 1b is connected to the lower end side of the support shaft 11 of the conveying rollers 1a and 1b. It extends and is fitted and fixed here. The drive magnetic wheels 50 are arranged directly below the driven magnetic wheels 4 so that the axis of each driven magnetic wheel 4 and the axis of the drive magnetic wheels 50 are orthogonal to each other.
A pulley 7 a is disposed at the end of the drive magnetic wheel 50, and a tension pulley 7 d is disposed at the lower center of the drive magnetic wheel 50. Further, a drive pulley 7b is attached to the output shaft 8a of the drive motor 8, and an endless belt 7c is wound around these pulleys 7a, 7b and 7d.
[0031]
The roller conveyor A2 configured as described above is driven and rotated by the drive motor 8 being driven to synchronize both drive magnetic wheels 50. Both drive magnetic wheels 50 drive and rotate the conveyance rollers 1a and 1b on the left and right sides. The roller conveyor A2 configured as described above has an advantage that the torque of each of the transport rollers 1a and 1b can be increased, and the mutual magnetic interference generated between the adjacent driven magnetic wheels 4 can be reduced.
[0032]
【The invention's effect】
Since the roller conveyor of the present invention is configured as described above, a round conveyance object such as a mandarin orange, orange, potato or the like is supplied to one end of the conveyance path in a state of being collected at the start end of the conveyance path. At this time, these conveyed items are conveyed while being appropriately vibrated by the conveying rollers on one side and the other side of the conveying path.
Further, the conveyance path constituted by both the one-side and other-side conveyance rollers is inclined in a substantially V shape when viewed from the front so that the approximate center of the conveyance path width is the lowest part. The transported objects supplied to the unit are gradually dispersed in the front-rear direction while adjacent objects collide with each other. At the same time when the conveyed product is dispersed, it is displaced toward the lowest part, and as the conveyance progresses, it is naturally settled and aligned in a line at the approximate center of the conveyance path that is the lowest part. Then, at the end of the transport path, the transported articles are supplied one by one to a line such as a sorting process to be connected next. That is, the roller conveyor of the present application can smoothly and surely distribute and align round conveyed objects such as oranges, oranges, and potatoes as described above with a simple structure.
[0033]
The roller conveyor according to the present invention is driven in a non-contact manner using a magnetic force generated between the driving magnetic wheel and a driving magnetic wheel transmitted from one driving magnetic wheel to a driven magnetic wheel provided on each transport roller. Because it is carried out in the state, there is no belt wear, dust generation, contact noise, or contact resistance as in the case of conventional conveyors that are driven and rotated using pulleys and round belts. The drive torque can be transmitted smoothly. That is, since one drive magnetic wheel can drive and rotate each of the conveyance rollers on one side and the other side, the structure can be simplified, the manufacturing cost can be reduced, and the space for installing the drive mechanism can be reduced. The roller conveyor can be reduced in size, and further, it is free from maintenance and is not cut or scraped like a conventional round belt.
In addition, because a difference in rotational speed is provided between the transport rollers on one side of the transport path and the other side of the transport path within a predetermined range in the transport path, round objects such as oranges and oranges are transported. By supplying the urging force that swings in the width direction of the conveyance path to the moving conveyance object due to the speed difference of the conveyance rollers in the middle of the conveyance of the conveyance object when being supplied collectively to the path, It is possible to more reliably disperse the conveyed objects conveyed in a collective state within a predetermined range.
[0034]
The roller conveyor according to claim 2 is the same as the roller conveyor according to claim 1 described above, and smoothly distributes and aligns round conveyed objects such as oranges and oranges with a simple structure, and is connected to the next line. The conveyed items can be supplied one by one toward the vehicle.
In addition, since each driven magnetic wheel is mounted in the vicinity of the end portion on the adjacent side where the one side and the other side conveying rollers intersect with each other, and the respective driving magnetic wheels are disposed along the lower part of the both driven magnetic trains, A larger torque can be secured, and the rotational speed can be set widely and easily when a difference in rotational speed is made between the conveying rollers on the one side and the other side.
In addition, because a difference in rotational speed is provided between the transport rollers on one side of the transport path and the other side of the transport path within a predetermined range in the transport path, round objects such as oranges and oranges are transported. By supplying the urging force that swings in the width direction of the conveyance path to the moving conveyance object due to the speed difference of the conveyance rollers in the middle of the conveyance of the conveyance object when being supplied collectively to the path, It is possible to more reliably disperse the conveyed objects conveyed in a collective state within a predetermined range.
[Brief description of the drawings]
FIG. 1 is a plan view showing a roller conveyor embodying the present invention.
FIG. 2 is a front view of the roller conveyor as viewed from the start end side of a conveyor provided with a drive motor.
FIG. 3 is a perspective view showing a positional relationship between a driving magnetic wheel and a driven magnetic wheel provided on a conveyance roller.
FIG. 4 is a perspective view showing a positional relationship between a magnetic wheel and both driven magnetic wheels.
FIG. 5 is a plan view showing an operating state of the roller conveyor.
FIG. 6 is a plan view showing the central portion of the conveyance path with a part cut away.
FIGS. 7A and 7B are plan views showing a transport roller provided with a rotational speed difference, in which FIG. 7A is a conveyor in which a fast rotation range is provided in the left half of the transport path, and FIG. The conveyance rollers arranged on the left and right and alternately are shown.
FIG. 8 is a front view showing a starting end side of a roller conveyor in which a support substrate formed by extrusion molding is configured as an attachment member for each bearing portion and a drive magnetic wheel.
FIG. 9 is a front view showing a starting end side of a roller conveyor in which a driven magnetic wheel is provided at the shaft support side ends of the left and right conveying rollers and drive magnets are arranged along the rows of the left and right driven magnetic wheels. .
[Explanation of symbols]
A, A ', A'', A2 ... Roller conveyor
a ... Conveyor body
b ... transport path
1a, 1b ... conveying rollers
3, 3 '... Shaft support
4,4 '... driven magnetic car
5 ... Magnetic wheel
8 ... Drive motor
9 ... Guide plate
50 ... Drive magnetic wheel

Claims (2)

コンベア本体の一側と他側とに分けて搬送ローラを並列し、回転自在に軸支せしめ、上記一側、他側両搬送ローラの近接する端部同士を搬送方向へ交互に配列し、且つ正面視において、一側、他側両搬送ローラの近接側の軸芯同士を搬送路幅の略中央にて交差せしめて、コンベア本体の一側及び他側から搬送路幅の略中央へ向けて低く傾斜する正面視略V形の搬送路を構成し、上記一側、他側両搬送ローラにおける交差部の近傍に各々従動磁気車を装着し、このローラ交差部の下に沿って略長軸状に構成した駆動磁気車を配置して軸支すると共に、該駆動磁気車の外周面を上記ローラ交差部の従動磁気車の外周面に近接せしめ、該駆動磁気車を駆動回転自在に構成し、更に、前記搬送路における所定の範囲において、従動磁気車、又は駆動磁気車の極数を変更して回転速度を増減させ、搬送路一側と同搬送路他側の両搬送ローラの間に、回転速度の差をつけて成るローラコンベア。  The conveyor body is divided into one side and the other side of the conveyor main body, the conveyance rollers are arranged in parallel, are rotatably supported, and the adjacent ends of the one side and the other side conveyance rollers are alternately arranged in the conveyance direction, and When viewed from the front, the axial cores of the adjacent sides of the one side and the other side conveyance rollers are crossed at the approximate center of the conveyance path width, from one side and the other side of the conveyor body toward the approximate center of the conveyance path width. A substantially V-shaped conveyance path that is inclined downward is formed, and a driven magnetic wheel is mounted in the vicinity of the intersection of the conveyance rollers on the one side and the other side, and a substantially long axis extends under the intersection of the rollers. The drive magnetic wheel is arranged and pivotally supported, and the outer peripheral surface of the drive magnetic wheel is brought close to the outer peripheral surface of the driven magnetic wheel at the intersection of the rollers so that the drive magnetic wheel can be driven and rotated. In addition, a driven magnetic wheel or a drive magnet in a predetermined range in the transport path Change the number of poles car speed increased or decreased, between both the conveying rollers of the conveying path on one side and the transport path the other side, the roller conveyor comprising with a difference in rotational speed. コンベア本体の一側と他側とに分けて搬送ローラを並列し、これらを回転自在に軸支せしめ、上記一側、他側両搬送ローラの近接する端部同士を搬送方向へ交互に配列し、且つ正面視において、前記一側、他側両搬送ローラの近接側の軸芯同士を搬送路幅の略中央にて交差せしめて、コンベア本体の一側及び他側から搬送路幅の略中央へ向けて低く傾斜する正面視略V形の搬送路を構成し、上記一側、他側両搬送ローラにおける交差する近接側の端部近傍に各々従動磁気車を装着すると共に、この両従動磁気車列の下部に沿って、略長軸状に構成した駆動磁気車を各々に配置して軸支し、これら駆動磁気車の外周面を各々の従動磁気車の外周面に近接せしめ、該駆動磁気車を駆動回転自在に構成し、更に、前記搬送路における所定の範囲において、従動磁気車、又は駆動磁気車の極数を変更して回転速度を増減させ、搬送路一側と同搬送路他側の両搬送ローラの間に、回転速度の差をつけて成るローラコンベア。The conveyor rollers are arranged in parallel on one side and the other side of the conveyor body, and these are rotatably supported by shafts, and the adjacent ends of the one side and other side conveyor rollers are alternately arranged in the conveyance direction. and in a front view, the one side, and allowed crossing the axis between the adjacent side of the other side both transport rollers at substantially the center of the conveying path width, substantially the center of the conveying path width from one side and the other side of the conveyor body constitute the conveyance path of the front view substantially V-shaped inclined lower toward said one side, with mounting the each slave dynamic magnetic wheel near the end of the near-side intersecting at the other side both transport rollers, the two Along the lower part of the driven magnetic wheel train, drive magnetic wheels configured in a substantially long shaft shape are arranged and supported on each, and the outer peripheral surfaces of these drive magnetic wheels are brought close to the outer peripheral surface of each driven magnetic wheel, The drive magnetic wheel is configured to be freely rotatable, and further within a predetermined range in the conveyance path. Then, the number of poles of the driven magnetic wheel or the driving magnetic wheel is changed to increase or decrease the rotational speed, and a roller having a rotational speed difference between the transport rollers on one side of the transport path and the other side of the transport path Conveyor.
JP2001062401A 2001-03-06 2001-03-06 Roller conveyor Expired - Lifetime JP3842565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062401A JP3842565B2 (en) 2001-03-06 2001-03-06 Roller conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062401A JP3842565B2 (en) 2001-03-06 2001-03-06 Roller conveyor

Publications (2)

Publication Number Publication Date
JP2002265026A JP2002265026A (en) 2002-09-18
JP3842565B2 true JP3842565B2 (en) 2006-11-08

Family

ID=18921543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062401A Expired - Lifetime JP3842565B2 (en) 2001-03-06 2001-03-06 Roller conveyor

Country Status (1)

Country Link
JP (1) JP3842565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343679A (en) * 2004-06-07 2005-12-15 Maruyasu Kikai Kk Circulation type alignment conveyance device
JP2006321623A (en) * 2005-05-19 2006-11-30 Dainippon Screen Mfg Co Ltd Substrate carrying device
JP2009137689A (en) * 2007-12-05 2009-06-25 Tsubakimoto Chain Co Roller conveyor device

Also Published As

Publication number Publication date
JP2002265026A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
CN104822609B (en) Actively control roller top modular conveying assembly
KR101423940B1 (en) Conveyor
US9428338B2 (en) Conveyor having rollers actuated by electromagnetic induction
US7255218B2 (en) Circulation type line-up conveying apparatus
AU2007265273B2 (en) Roller-belt conveyor with infeed pull-away
JP2016513609A (en) Singulator conveyor
JP6199087B2 (en) Sorting device
JP4178835B2 (en) Branch equipment
JP3842565B2 (en) Roller conveyor
JP3290399B2 (en) Conveyor
JP4659535B2 (en) Roller conveyor
JP3217300B2 (en) Conveyor branching device
JP2683319B2 (en) Conveyor
JP3238131B2 (en) Roller conveyor
JP5451002B2 (en) Pitch alignment conveyor
KR200359779Y1 (en) Accumulation conveyor device using magnets
JP2007197149A (en) Extended belt conveyor
JP2000264436A (en) Direction-change device for carried material
JP4587203B2 (en) Roller conveyor
JP4314941B2 (en) Transport equipment
JP4666341B2 (en) Roller conveyor
JP3579666B2 (en) Fish sorter
JP4587206B2 (en) Roller conveyor
TW200535073A (en) Conveyor
JP2006027899A (en) Branch equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3842565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term