JP3842501B2 - CVD equipment - Google Patents

CVD equipment Download PDF

Info

Publication number
JP3842501B2
JP3842501B2 JP33472199A JP33472199A JP3842501B2 JP 3842501 B2 JP3842501 B2 JP 3842501B2 JP 33472199 A JP33472199 A JP 33472199A JP 33472199 A JP33472199 A JP 33472199A JP 3842501 B2 JP3842501 B2 JP 3842501B2
Authority
JP
Japan
Prior art keywords
substrate
gas
film
chamber
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33472199A
Other languages
Japanese (ja)
Other versions
JP2001152340A (en
Inventor
正明 小畑
秀美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33472199A priority Critical patent/JP3842501B2/en
Publication of JP2001152340A publication Critical patent/JP2001152340A/en
Application granted granted Critical
Publication of JP3842501B2 publication Critical patent/JP3842501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速性、均一性に優れ、原料ガスの使用効率を高めて成膜コストを低減することを可能としたCVD装置に関するものであり、特に、炭化珪素の高速成膜用CVD装置に関するものである。
【0002】
【従来技術】
CVD(Chemical Vapor Deposition)法は、化学気相成長法と呼ばれ、半導体または液晶を製造する工程や表面処理の薄膜形成方法として広く用いられている。このCVD法を行うために、種々の方式が開発されてきた。例えば、熱CVD、プラズマCVD、マイクロ波プラズマCVD、光CVD、MOCVD(有機金属CVD)等である。
【0003】
これらの各種CVD法のうち、熱CVD法は他法と比較して反応機構も単純であり、大型および複雑形状品の製造に適した方法である。特に、この熱CVD法により合成された炭化珪素は、近年、半導体製造プロセスに高純度材料として使用されており、膜厚が数mmの炭化珪素をさらに低コストで作製することが要求されている。
【0004】
しかし、従来の熱CVD法においては、一般に、成膜速度が遅いので長時間の成膜が必要であったり、原料効率が低く、CVD法で作製した炭化珪素はコスト高となっていた。また、大型基体への成膜においては、膜厚が不均一になりやすかった。
【0005】
そこで、膜厚の均一性や成膜速度を高めるために、CVD炉の炉内構造が検討されてきた。その際、膜厚の均一性、成膜速度、および原料ガスの使用効率については、ガスの反応状態が重要な要因となるため、ガスの流れおよびガスを構成する分子の拡散状態を改善するような炉構造、または基体の温度分布を考慮した炉構造などが考えられてきた。
【0006】
例えば、特開平11−67675号公報に開示されたCVD装置は、図2に示すように反応炉20を有しており、基体21は、回転基板保持体22上に載置され、回転軸23によって回転され、ヒータ24によって加熱される。また、原料ガスは、ガス供給口25から導入され、整流板26に設けられた整流孔を通り、整流となって基体21に供給され、基体21上で原料ガスが分解および/または反応して膜が形成される。反応に寄与しなかった原料ガスおよび反応生成ガスは排気口27を通って反応炉20外に排出される。
【0007】
この装置においては、整流板26を通ってガス流を整流化することにより基体21表面に均質なガス流を作り出すとともに、ガス渦流を排除する構造を有するため、均一で高品質な膜を得ることができる。
【0008】
また、日本金属学会誌第41巻(1977年)358−367頁には、2mm/hの高速でSi34の得られるCVD装置が報告されている。このCVD装置は、図3に示すように、反応炉31内に、基体32があり、グラファイトソケット33で固定されており、電極34に通電し、基体32が直接通電加熱により1100〜1500℃に加熱される。
【0009】
この装置において、原料ガスは2つのガス供給口35、36から導入され、基体32上で反応してSi34を形成すると共に、未反応ガスおよび反応生成ガスは排気口37から排出される。この装置は直接通電加熱により基体を加熱することにより、2mm/hの高速成膜を行っている。
【0010】
【発明が解決しようとする課題】
しかしながら、日本金属学会誌第41巻(1977年)358−367頁に示されたCVD装置は、基体の加熱を直接通電で行っているため、個々の製品に通電するために生産性が低く、特に大型製品や複雑形状品には不適当な構造であるという問題があった。
【0011】
また、原料ガスは2つのガス供給口35、36から噴出されるが、基体に近いガス供給口36のガス流に強い影響を受け、原料ガスが吹き付けられた部分を中心に膜が厚く、周辺では膜が薄くなり、膜厚の差ができ、不均一となりやすかった。
【0012】
一方、特開平11−67675号公報によれば、整流板26を使用してガスの流れを制御し、またガス渦流の発生を防ぐ炉構造によって膜厚の均一化を図っており、結晶性を高めているものの、成膜速度が低く、かつ基体以外の部分への成膜や未反応ガスが多いため、原料ガスの使用効率が低く、コストが高くなってしまうという問題があった。
【0013】
本発明は、原料ガスの使用効率を高め、大型部品に対しても高速で均一に成膜することによって低コスト化の可能なCVD装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、均一性、成膜速度および原料使用効率の低い原因が、未反応ガスおよび基体以外の炉内部材への成膜量が多いためであるとの知見に基づくものであり、炉内構造を加熱室と成膜室とに分離し、成膜室の基体以外の炉内温度を下げ、回転による駆動手段を設けて基体を加熱室と成膜室との間で交互に移動させることによって、原料使用効率、成膜速度および膜厚の均一性を改善し、本発明に至ったものである。
【0015】
本発明のCVD装置は、基体を加熱するための加熱室と、前記基体表面に所定の薄膜を成膜するための成膜室とを、断熱壁を介して隣接して設置するとともに、前記基体を支持治具に固定し、該支持治具を30乃至1000rpmの速度で回転させることにより、前記基体を前記加熱室と前記成膜室との間で交互に、かつ連続的に移動させるための基体駆動手段とを具備したことを特徴とするものであり、この構造を有することにより、原料ガスの使用効率を高め、高速で成膜を可能とし、膜厚分布を均一にすることができる。また、膜厚のばらつきを小さくするとともに、基体温度の低下を小さくできるため、成膜速度を飛躍的に高め、コスト低減を実現できる。
【0018】
さらにまた、成膜室の内部に、該成膜室に配置された基体に対して成膜原料を供給するためのガスノズルを設けることが好適であり、成膜速度と原料効率を高めることができる。
【0019】
【発明の実施の形態】
本発明のCVD装置は、図1に示すように、反応炉1を成膜室2と加熱室3の2つの部屋に分け、成膜室2と加熱室3とは断熱壁4で仕切られている。基体5は、支持治具6を介して回転装置7という基体駆動手段により回転し、断熱壁4に開けられれた開口部8を通って、成膜室2と加熱室3を交互に移動する。
【0020】
加熱室3には、ヒーター9が設けられており、不活性ガスを導入することにより成膜ガスの進入を防ぐ構造となっている。また、成膜室2には、ガスノズル10が設けられており、ガス配管から反応炉1に導かれてきた原料ガスは、ガスノズル10から基体5に吹き付けられ、基体5表面で分解および/または反応して成膜し、未反応ガスと反応で生成した反応生成ガスとが排気口11から排出される。
【0021】
基体5は、加熱室3で成膜温度以上に加熱された後、回転に伴い成膜室2に移動し、ガスノズル10から導入された原料ガスが基体5表面で反応して薄膜が形成され、基体5は、再び加熱室3に戻り加熱される。この動きを連続的に繰り返すことにより、成膜を行うものである。
【0022】
加熱室3の熱は断熱壁4で遮断されており、また加熱室3全体を断熱材によって囲んでいるため、成膜室2内の炉壁や治具の表面温度の上昇を防ぐことができる。その結果、原料ガスは最も高温である基体表面で選択的に成膜され、原料ガスが基体表面でのみ消費するため、原料使用効率が高くなるとともに、成膜が基体表面のみに限定されるため、成膜条件が安定し、再現性が良いという利点がある。
【0023】
なお、断熱状態によっては、成膜室2も時間の経過と共に温度がしだいに上昇することがあり得るため、成膜室壁への水冷ジャケットの設置、炉壁および/または断熱壁に不活性ガスを流す等の冷却機構を設けることが望ましい。
【0024】
図1の往復方法は回転方式であり、長方形形状の開口部6を介して円板形状である基体5が回転し、成膜室2と加熱室3の往復が行なわれているが、リング形状や他の複雑形状においても、開口部8の形状を変えることによって対応できる。
【0025】
さらに、成膜室2内への原料ガスの導入法は特に規定するものではなく、成膜室2の基体5表面に原料ガスが供給されていれば良いが、加熱室3内への原料ガスの進入が防ぎ易く、かつ原料効率をより高めるためには、図1に示したように、基体表面にガスノズル10にて原料ガスを吹き付ける方法が好ましい。
【0026】
また、成膜室2と加熱室3の往復方法は、例えば一定の角度を持つ円弧上を往復する回転方式によって対応することができる。ただし、膜厚を均一にするためには、成膜室と加熱室の基体の往復は、ピストン方式や旋回方式のような間欠式ではなく、連続回転方式が好ましい。
【0027】
また、基体5が、成膜室2と加熱室3と往復する回転の速さは、高速成膜を均一に得るために、30〜1000rpmが、さらには50〜500rpmが好ましい。さらに、基体に原料ガスが均一に当たるように、基体形状を考慮して複数のノズルを配置することも可能である。
【0028】
本発明のCVD装置を炭化珪素膜の成膜に用いた場合、高速成膜により、3〜10mmの膜厚を有する高純度炭化珪素膜を容易に得られるため、得られた膜を基体から分離して、セラミックバルク材を得ることが可能である。例えば、内径190mm、外径210mmのリング形状で、高純度カーボン製の基体5をカーボン製の支持治具6に取り付け、加熱室のヒーターを1650℃に加熱し、成膜室と加熱室を回転速度100rpmで連続的に回転し、ガスノズル10から水素とメチルトリクロロシランガスとの混合ガスを導入し、成膜することにより、4時間で3mmの炭化珪素膜が得られ、基体を機械的に除去することにより、短時間かつ低コストでセラミックバルク材料を製造することができる。
【0029】
本発明のCVD装置で使用する炉材および治具の材質は、使用原料、雰囲気、温度等のCVD条件に適したものを選択する必要が有る。例えば、高純度CVD材料を作製する場合には、金属不純物の混入を抑制することが要求されるため、炉材や治具にも高純度材料、例えば高純度黒鉛や石英ガラス等の使用が求められる。さらに、配管等の金属材料の使用が不可欠な部材には、SUS、ハステロイ、インコネル等の特殊合金を使用することが好ましい。
【0030】
また、加熱室3における基体の加熱方法は、黒鉛製のヒーター9による加熱方式を示しているが、この方式に限るものではなく、成膜室2の温度上昇を防ぐことができれば、例えば高周波加熱方式やバーナー方式等の他の方法でも良い。
【0031】
本発明によれば、原料の効率が高く、高速で、大型部品に対しても均一性に優れたCVDが可能なCVD装置を提供することができる。
【0032】
【実施例】
従来のCVD装置および図1に示した本発明のCVD装置とを使用し、カーボン基体上に炭化珪素膜を形成した。従来のCVD装置では、回転装置を有するものの成膜室が加熱室をも兼ねており、ガスはガスノズルを用いて導入された。
【0033】
また、本発明のCVD装置では、水冷されたSUS製真空容器を反応炉1とした。成膜室2と加熱室3を分離するために、断熱壁4(カーボン製)を用いて加熱室3を形成し、その中に棒状の黒鉛ヒーター9を設置した。また、成膜室2には、原料ガスを流し込む高純度石英ガラス製のガスノズル10、及び廃ガスを排出するための排気口11を設けた。
【0034】
基体5は、外径210mm、内径190mm、厚さ10mmのリング形状で、高純度黒鉛製である。この基体5は、支持治具6に固定され、回転装置7によって、成膜室2と加熱室3の間の断熱壁4に設けられた開口部8を通って回転させた。
【0035】
加熱室のヒーター温度を1650℃、圧力を2.7kPaとし、ガスノズル10より、メチルトリクロロシラン(CH3SiCl3)と水素ガスとの混合ガスをそれぞれ1.5l/min、10l/minの流量で流し、リング形状の基体5上に3時間、炭化珪素を成膜した。このとき、炉壁は水冷されており、断熱壁は1150℃以下であった。また、断熱壁にそってArガスを流したところ断熱壁温度は1000℃以下であった。
【0036】
尚、表1中で、駆動手段において「間欠」は、90度回転して0.5秒停止するのを繰り返すものである。また、ガスノズル位置は、「内」で表されるものは成膜室2内にノズルが設けられており、「外」で表されるものは成膜室2の炉壁からガスが導入される。
【0037】
得られた炭化珪素膜を、リング形状の基体とともにおよそ8等分に破断し、それぞれの断面を顕微鏡で写真撮影して膜厚を測定し、その平均値を算出した。また、膜厚のばらつきは、膜厚の最大値と最小値について平均値との差をそれぞれ算出し、この差のいずれか大きい方の値を平均値で割り、パーセントに換算した。さらに、原料使用効率は、成膜前後における基体の重量変化を測定し、流した原料ガスに対して成膜に寄与した原料ガスの割合を求めた。結果を表1に示す。
【0038】
【表1】

Figure 0003842501
【0039】
本発明の試料No.4〜13は、原料使用効率が16%以上、平均膜厚が2.3mm以上、膜厚のばらつきが25%以下であった。特に、回転速度が30〜1000rpmである試料No.5〜9は、原料使用効率が20%以上、平均膜厚が3.0mm以上、膜厚のばらつきが6%以下であった。また、回転速度が50〜500rpmである試料No.6〜8は、原料使用効率が27%以上、平均膜厚が4.0mm以上と優れていた。
【0040】
一方、炉内が成膜室2と加熱室3とに分離していない試料No.1および2は、基体の回転機構の有無に関わらず、原料使用効率が4または5%、平均膜厚が0.6または0.7mm、膜厚のばらつきが60または40%であった。また、炉内が成膜室2と加熱室3とに分離しているものの、基体の駆動機構のない試料No.3では、原料使用効率が10%、平均膜厚は1.4mm、膜厚のばらつきが80%であった。
【0041】
【発明の効果】
本発明のCVD装置では、反応炉内構造を、断熱壁を介して加熱室と成膜室とに分離設置し、基体を加熱室と成膜室を往復させることで、原料ガスの使用効率が向上し、高速成膜が実現でき、大型基板にも均一な膜を製造することができる。
【図面の簡単な説明】
【図1】本発明のCVD装置を示す断面図である。
【図2】従来のCVD装置を示す断面図である。
【図3】従来の他のCVD装置を示す断面図である。
【符号の説明】
1・・反応炉
2・・成膜室
3・・加熱室
4・・断熱壁
5・・基体
6・・支持治具
7・・基体駆動手段(回転装置)
8・・開口部
9・・ヒーター
10・・ガスノズル
11・・排気口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CVD apparatus that is excellent in high speed and uniformity, and that can increase the use efficiency of a source gas to reduce the film formation cost, and particularly relates to a CVD apparatus for high speed film formation of silicon carbide. Is.
[0002]
[Prior art]
The CVD (Chemical Vapor Deposition) method is called a chemical vapor deposition method and is widely used as a process for manufacturing a semiconductor or liquid crystal or a thin film forming method for surface treatment. Various methods have been developed to perform this CVD method. For example, thermal CVD, plasma CVD, microwave plasma CVD, photo CVD, MOCVD (organic metal CVD), and the like.
[0003]
Among these various CVD methods, the thermal CVD method has a simple reaction mechanism as compared with other methods, and is a method suitable for manufacturing large-sized and complex shaped products. In particular, silicon carbide synthesized by this thermal CVD method has recently been used as a high-purity material in semiconductor manufacturing processes, and it is required to produce silicon carbide having a thickness of several millimeters at a lower cost. .
[0004]
However, in the conventional thermal CVD method, since the film formation rate is generally slow, film formation for a long time is necessary, or the raw material efficiency is low, and the cost of silicon carbide produced by the CVD method is high. In addition, in film formation on a large substrate, the film thickness tends to be non-uniform.
[0005]
Therefore, in order to increase the uniformity of the film thickness and the film forming speed, the furnace structure of the CVD furnace has been studied. At that time, since the reaction state of the gas is an important factor for the uniformity of the film thickness, the deposition rate, and the use efficiency of the source gas, the gas flow and the diffusion state of molecules constituting the gas should be improved. A furnace structure that takes into account the temperature distribution of the substrate or the like has been considered.
[0006]
For example, the CVD apparatus disclosed in Japanese Patent Laid-Open No. 11-67675 has a reaction furnace 20 as shown in FIG. 2, and a base 21 is placed on a rotating substrate holder 22 and a rotating shaft 23. And heated by the heater 24. The source gas is introduced from the gas supply port 25, passes through the rectifying holes provided in the rectifying plate 26, is rectified and supplied to the base 21, and the source gas is decomposed and / or reacted on the base 21. A film is formed. The raw material gas and the reaction product gas that have not contributed to the reaction are discharged out of the reaction furnace 20 through the exhaust port 27.
[0007]
In this apparatus, the gas flow is rectified through the rectifying plate 26 to create a uniform gas flow on the surface of the base 21 and to eliminate the gas vortex flow, so that a uniform and high-quality film can be obtained. Can do.
[0008]
Further, in the Journal of the Japan Institute of Metals, Vol. 41 (1977), pages 358-367, a CVD apparatus capable of obtaining Si 3 N 4 at a high speed of 2 mm / h is reported. As shown in FIG. 3, this CVD apparatus has a base 32 in a reaction furnace 31 and is fixed by a graphite socket 33. The electrode 34 is energized, and the base 32 is heated to 1100-1500 ° C. by direct current heating. Heated.
[0009]
In this apparatus, a raw material gas is introduced from two gas supply ports 35 and 36, reacts on the substrate 32 to form Si 3 N 4 , and unreacted gas and reaction product gas are discharged from an exhaust port 37. . This apparatus performs high-speed film formation at 2 mm / h by heating the substrate by direct current heating.
[0010]
[Problems to be solved by the invention]
However, since the CVD apparatus shown in Journal of the Japan Institute of Metals, Vol. 41 (1977), pages 358-367, directly heats the substrate, the productivity is low because the individual products are energized. In particular, there is a problem that the structure is inappropriate for a large product or a complicated shape product.
[0011]
In addition, the source gas is ejected from the two gas supply ports 35 and 36, but it is strongly influenced by the gas flow of the gas supply port 36 close to the base, and the film is thick around the portion where the source gas is sprayed. Then, the film was thinned, a difference in film thickness was made, and it was easy to become non-uniform.
[0012]
On the other hand, according to Japanese Patent Laid-Open No. 11-67675, the flow of gas is controlled using the rectifying plate 26, and the thickness of the film is made uniform by a furnace structure that prevents the generation of gas vortex flow. Although increased, there is a problem that the film formation rate is low, and film formation on a portion other than the substrate and a large amount of unreacted gas cause the use efficiency of the raw material gas to be low and the cost to be high.
[0013]
An object of the present invention is to provide a CVD apparatus capable of reducing the cost by increasing the use efficiency of a source gas and uniformly forming a large part at a high speed.
[0014]
[Means for Solving the Problems]
The present invention is based on the knowledge that the cause of low uniformity, film formation speed and raw material use efficiency is that the amount of film formation on the in-furnace members other than the unreacted gas and the substrate is large. The structure is separated into a heating chamber and a film forming chamber, the temperature inside the furnace other than the substrate in the film forming chamber is lowered, and a drive means by rotation is provided to move the substrate alternately between the heating chamber and the film forming chamber. Thus, the raw material use efficiency, the film forming speed and the film thickness uniformity are improved, and the present invention has been achieved.
[0015]
CVD apparatus of the present invention includes a heating chamber for heating the substrate, and a film formation chamber for forming a predetermined thin film on the substrate surface, as well as installed adjacent via the heat insulating wall, the base body Is fixed to a support jig, and the support jig is rotated at a speed of 30 to 1000 rpm, whereby the substrate is moved alternately and continuously between the heating chamber and the film forming chamber. The substrate driving means is provided, and by having this structure, the use efficiency of the source gas can be increased, the film can be formed at a high speed, and the film thickness distribution can be made uniform. In addition, since the variation in film thickness can be reduced and the decrease in the substrate temperature can be reduced, the film formation rate can be dramatically increased and the cost can be reduced.
[0018]
Furthermore, it is preferable to provide a gas nozzle for supplying a film forming raw material to the substrate disposed in the film forming chamber inside the film forming chamber, so that the film forming speed and the material efficiency can be increased. .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the CVD apparatus of the present invention divides a reaction furnace 1 into two chambers, a film formation chamber 2 and a heating chamber 3, and the film formation chamber 2 and the heating chamber 3 are partitioned by a heat insulating wall 4. Yes. The substrate 5 is rotated by a substrate driving means called a rotating device 7 via the support jig 6, and moves alternately between the film forming chamber 2 and the heating chamber 3 through the opening 8 opened in the heat insulating wall 4.
[0020]
The heating chamber 3 is provided with a heater 9 and has a structure that prevents the deposition gas from entering by introducing an inert gas. Further, the film forming chamber 2 is provided with a gas nozzle 10, and the raw material gas introduced from the gas pipe to the reaction furnace 1 is blown from the gas nozzle 10 to the base 5 and decomposes and / or reacts on the surface of the base 5. Then, the film is formed, and the unreacted gas and the reaction product gas generated by the reaction are discharged from the exhaust port 11.
[0021]
After the substrate 5 is heated to the film formation temperature or higher in the heating chamber 3, it moves to the film formation chamber 2 as it rotates, and the raw material gas introduced from the gas nozzle 10 reacts on the surface of the substrate 5 to form a thin film. The substrate 5 is returned to the heating chamber 3 and heated again. Film formation is performed by continuously repeating this movement.
[0022]
Since the heat in the heating chamber 3 is blocked by the heat insulating wall 4 and the entire heating chamber 3 is surrounded by the heat insulating material, it is possible to prevent an increase in the surface temperature of the furnace wall and the jig in the film forming chamber 2. . As a result, the source gas is selectively deposited on the surface of the substrate at the highest temperature, and the source gas is consumed only on the substrate surface, so that the use efficiency of the source is increased and the deposition is limited only to the substrate surface. There are advantages that the film forming conditions are stable and the reproducibility is good.
[0023]
Depending on the heat insulation state, the temperature of the film forming chamber 2 may gradually increase with time, so that a water cooling jacket is installed on the wall of the film forming chamber, an inert gas is applied to the furnace wall and / or the heat insulating wall. It is desirable to provide a cooling mechanism such as flowing water.
[0024]
The reciprocating method shown in FIG. 1 is a rotation method, and a substrate 5 having a disk shape rotates through a rectangular opening 6 to reciprocate between the film forming chamber 2 and the heating chamber 3. Even other complicated shapes can be dealt with by changing the shape of the opening 8.
[0025]
Further, the method of introducing the source gas into the film forming chamber 2 is not particularly specified, and it is sufficient that the source gas is supplied to the surface of the substrate 5 in the film forming chamber 2, but the source gas into the heating chamber 3 is not limited. In order to make it easier to prevent the intrusion and to improve the raw material efficiency, a method of spraying a raw material gas on the surface of the substrate with a gas nozzle 10 is preferable as shown in FIG.
[0026]
Further, the reciprocating method of the film forming chamber 2 and the heating chamber 3, thus for example the rotating scheme reciprocated on an arc having a constant angle may correspond to that. However, in order to make the film thickness uniform, the reciprocation of the substrate between the film forming chamber and the heating chamber is preferably not a intermittent method such as a piston method or a swivel method, but a continuous rotation method .
[0027]
Further, the rotation speed of the substrate 5 to reciprocate between the film formation chamber 2 and the heating chamber 3 is preferably 30 to 1000 rpm, and more preferably 50 to 500 rpm , in order to obtain high-speed film formation uniformly. Furthermore, it is possible to arrange a plurality of nozzles in consideration of the shape of the base so that the source gas uniformly hits the base.
[0028]
When the CVD apparatus of the present invention is used for forming a silicon carbide film, a high-purity silicon carbide film having a film thickness of 3 to 10 mm can be easily obtained by high-speed film formation, so that the obtained film is separated from the substrate. Thus, it is possible to obtain a ceramic bulk material. For example, in a ring shape with an inner diameter of 190 mm and an outer diameter of 210 mm, a high-purity carbon base 5 is attached to a carbon support jig 6, a heating chamber heater is heated to 1650 ° C., and the film formation chamber and the heating chamber are rotated. By continuously rotating at a speed of 100 rpm, a mixed gas of hydrogen and methyltrichlorosilane gas is introduced from the gas nozzle 10 to form a film, thereby obtaining a 3 mm silicon carbide film in 4 hours, and mechanically removing the substrate. Thus, the ceramic bulk material can be manufactured in a short time and at a low cost.
[0029]
The material of the furnace material and jig used in the CVD apparatus of the present invention needs to be selected in accordance with the CVD conditions such as the raw material used, atmosphere, and temperature. For example, when producing a high-purity CVD material, it is required to suppress the mixing of metal impurities, so the use of a high-purity material such as high-purity graphite or quartz glass is also required for furnace materials and jigs. It is done. Furthermore, it is preferable to use a special alloy such as SUS, Hastelloy, or Inconel for a member that requires the use of a metal material such as piping.
[0030]
Further, the heating method of the substrate in the heating chamber 3 shows a heating method using the graphite heater 9, but is not limited to this method. For example, if the temperature increase in the film forming chamber 2 can be prevented, high-frequency heating is performed. Other methods such as a method and a burner method may be used.
[0031]
According to the present invention, it is possible to provide a CVD apparatus capable of performing CVD with high raw material efficiency, high speed, and excellent uniformity even for large parts.
[0032]
【Example】
Using a conventional CVD apparatus and the CVD apparatus of the present invention shown in FIG. 1, a silicon carbide film was formed on a carbon substrate. In a conventional CVD apparatus, a film forming chamber having a rotating device also serves as a heating chamber, and gas is introduced using a gas nozzle.
[0033]
In the CVD apparatus of the present invention, a water-cooled SUS vacuum vessel was used as the reactor 1. In order to separate the film formation chamber 2 and the heating chamber 3, the heating chamber 3 was formed using a heat insulating wall 4 (made of carbon), and a rod-shaped graphite heater 9 was installed therein. Further, the film forming chamber 2 was provided with a gas nozzle 10 made of high-purity quartz glass into which a source gas was flowed, and an exhaust port 11 for exhausting waste gas.
[0034]
The base 5 is a ring shape having an outer diameter of 210 mm, an inner diameter of 190 mm, and a thickness of 10 mm, and is made of high purity graphite. The substrate 5 was fixed to the support jig 6 and rotated by the rotating device 7 through the opening 8 provided in the heat insulating wall 4 between the film forming chamber 2 and the heating chamber 3.
[0035]
The heater temperature in the heating chamber is 1650 ° C., the pressure is 2.7 kPa, and a mixed gas of methyltrichlorosilane (CH 3 SiCl 3 ) and hydrogen gas is supplied from the gas nozzle 10 at a flow rate of 1.5 l / min and 10 l / min, respectively. The silicon carbide film was formed on the ring-shaped substrate 5 for 3 hours. At this time, the furnace wall was water-cooled and the heat insulation wall was 1150 degrees C or less. Moreover, when Ar gas was flowed along the heat insulation wall, the heat insulation wall temperature was 1000 degrees C or less.
[0036]
In Table 1, “intermittent” in the driving means repeats 90-degree rotation and stops for 0.5 seconds. The gas nozzle positions indicated by “inside” are provided with nozzles in the film forming chamber 2, and those indicated by “outside” are introduced with gas from the furnace wall of the film forming chamber 2. .
[0037]
The obtained silicon carbide film was broken into approximately eight equal parts together with the ring-shaped substrate, each cross section was photographed with a microscope, the film thickness was measured, and the average value was calculated. Further, for the variation in film thickness, the difference between the maximum value and the minimum value of the film thickness was calculated from the average value, and the larger of the differences was divided by the average value and converted into a percentage. Furthermore, the raw material use efficiency was determined by measuring the change in the weight of the substrate before and after the film formation and determining the ratio of the raw material gas that contributed to the film formation with respect to the flow of the raw material gas. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0003842501
[0039]
Sample No. of the present invention. In Nos. 4 to 13 , the raw material use efficiency was 16% or more, the average film thickness was 2.3 mm or more, and the film thickness variation was 25% or less. In particular, Sample No. with a rotation speed of 30 to 1000 rpm. 5 to 9 had a raw material usage efficiency of 20% or more, an average film thickness of 3.0 mm or more, and a film thickness variation of 6% or less. Sample No. with a rotation speed of 50 to 500 rpm was used. In Nos. 6 to 8, the raw material use efficiency was 27% or more, and the average film thickness was 4.0 mm or more.
[0040]
On the other hand, the sample No. 1 in which the inside of the furnace is not separated into the film forming chamber 2 and the heating chamber 3. 1 and 2 had a raw material usage efficiency of 4 or 5%, an average film thickness of 0.6 or 0.7 mm, and a film thickness variation of 60 or 40%, regardless of the presence or absence of the substrate rotation mechanism. Further, although the inside of the furnace is separated into the film forming chamber 2 and the heating chamber 3, the sample no. 3, the raw material usage efficiency was 10%, the average film thickness was 1.4 mm, and the film thickness variation was 80%.
[0041]
【The invention's effect】
In the CVD apparatus of the present invention, the internal structure of the reactor is separated and installed in the heating chamber and the film forming chamber via the heat insulating wall, and the substrate gas is reciprocated between the heating chamber and the film forming chamber, so that the use efficiency of the source gas is improved. The film can be improved and high-speed film formation can be realized, and a uniform film can be manufactured even on a large substrate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a CVD apparatus of the present invention.
FIG. 2 is a cross-sectional view showing a conventional CVD apparatus.
FIG. 3 is a cross-sectional view showing another conventional CVD apparatus.
[Explanation of symbols]
1 .. Reactor 2.. Film formation chamber 3. Heating chamber 4. Heat insulation wall 5. Base 6. Support jig 7. Base drive means (rotating device)
8. Opening 9 Heater 10 Gas nozzle 11 Exhaust port

Claims (2)

基体を加熱するための加熱室と、前記基体表面に所定の薄膜を成膜するための成膜室とを、断熱壁を介して隣接して設置するとともに、前記基体を支持治具に固定し、該支持治具を30乃至1000rpmの速度で回転させることにより、前記基体を前記加熱室と前記成膜室との間で交互に、かつ連続的に移動させるための基体駆動手段とを具備したことを特徴とするCVD装置。A heating chamber for heating the substrate and a film forming chamber for forming a predetermined thin film on the surface of the substrate are installed adjacent to each other through a heat insulating wall, and the substrate is fixed to a support jig. And a substrate driving means for moving the substrate alternately and continuously between the heating chamber and the film forming chamber by rotating the support jig at a speed of 30 to 1000 rpm . A CVD apparatus characterized by that. 成膜室の内部に、該成膜室に配置された基体に対して成膜原料を供給するためのガスノズルを設けたことを特徴とする請求項1記載のCVD装置。Inside the deposition chamber, CVD apparatus according to claim 1 Symbol mounting, characterized in that a gas nozzle for supplying a film forming material against arranged substrates film forming chamber.
JP33472199A 1999-11-25 1999-11-25 CVD equipment Expired - Fee Related JP3842501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33472199A JP3842501B2 (en) 1999-11-25 1999-11-25 CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33472199A JP3842501B2 (en) 1999-11-25 1999-11-25 CVD equipment

Publications (2)

Publication Number Publication Date
JP2001152340A JP2001152340A (en) 2001-06-05
JP3842501B2 true JP3842501B2 (en) 2006-11-08

Family

ID=18280482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33472199A Expired - Fee Related JP3842501B2 (en) 1999-11-25 1999-11-25 CVD equipment

Country Status (1)

Country Link
JP (1) JP3842501B2 (en)

Also Published As

Publication number Publication date
JP2001152340A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US5204145A (en) Apparatus for producing diamonds by chemical vapor deposition and articles produced therefrom
US6248672B1 (en) Method of producing a semiconductor device in a heating furnace having a reaction tube with a temperature-equalizing zone
JP2003166059A (en) Film-forming apparatus and film-forming method
JP2001181846A (en) Cvd system
JP2003151737A (en) Heater
CN109804110B (en) Apparatus and method for applying a carbon layer
US4920012A (en) Articles having coatings of fine-grained and/or equiaxed grain structure
US20040178176A1 (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JPS612321A (en) Vertical hot wall type cvd reactor
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
JP3842501B2 (en) CVD equipment
EP0502657A1 (en) Improved apparatus for producing diamonds by chemical vapor deposition and articles produced thereform
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
CN115595552A (en) Silicon carbide ring for plasma etching equipment and forming process of silicon carbide ring
US5221355A (en) Silicon carbide film forming apparatus
CN107641796B (en) Processing equipment and chemical vapor deposition process
JP2002069649A (en) Device and method for film formation
JPH04187592A (en) Device of preparing thin film
JPH03130366A (en) Apparatus for producing silicon carbide film
SU905342A1 (en) Apparatus for depositing layers from gaseous phase
JP2839612B2 (en) Synthesis method of vapor phase diamond
JP2001214267A (en) Method for producing high purity silicon carbide tube
JP4319316B2 (en) Method for producing ceramic tubular molded body
JPH0551294A (en) Vapor growth device
JPH03138370A (en) Thin film forming device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees