JP3842399B2 - Girder fall prevention device for bridge - Google Patents

Girder fall prevention device for bridge Download PDF

Info

Publication number
JP3842399B2
JP3842399B2 JP24005797A JP24005797A JP3842399B2 JP 3842399 B2 JP3842399 B2 JP 3842399B2 JP 24005797 A JP24005797 A JP 24005797A JP 24005797 A JP24005797 A JP 24005797A JP 3842399 B2 JP3842399 B2 JP 3842399B2
Authority
JP
Japan
Prior art keywords
girder
buffer
prevention device
bridge
support body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24005797A
Other languages
Japanese (ja)
Other versions
JPH1181237A (en
Inventor
徹 浮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibata Industrial Co Ltd
Original Assignee
Shibata Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibata Industrial Co Ltd filed Critical Shibata Industrial Co Ltd
Priority to JP24005797A priority Critical patent/JP3842399B2/en
Publication of JPH1181237A publication Critical patent/JPH1181237A/en
Application granted granted Critical
Publication of JP3842399B2 publication Critical patent/JP3842399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁において、地震により桁が橋脚から落下するのを防ぐ装置に関する。
【0002】
【従来の技術】
地震の振動により、高速道路や鉄道等における橋梁の桁の落下を防止する構造としては、兵庫県南部地震以前では桁間を補強板と金属ピンを使用して接続する技術やチェーンやケーブルで桁間を連結する技術が行われていた。
【0003】
【発明が解決しようとする課題】
ところが、従来技術は、桁が載置される橋脚上面の桁かかり部を越えて桁が落下するのを阻止するために設置されたものであるが、桁の落下という事態が生じ、下部の道路も完全に封鎖することとなり、その後の復旧活動の大きな障害となった。
【0004】
また、地震による桁の落下現象の発生要因を地震力と地震エネルギーとすると、地震力に対しては発生した地震力を緩和するための緩衝材は有効であり、この緩衝材としてチェーンの間にゴムのダンパー機能を活用した緩衝チェーンやゴムによってピンの外周を覆った緩衝ピンの技術が開発され、接続部や連結部に用いての衝撃実験でその性能が実証されて実用化されている。
【0005】
一方、地震エネルギーに対しては少しでも多くのエネルギーの吸収が可能な部材が有効であることから、ゴムの中に繊維体を積層埋設した材料を設けて上記の緩衝チェーンやピンの緩衝材として用い、その繊維体を破壊することにより吸収エネルギー総量を増大させる積層体が提案されている。
しかし、地震エネルギーが巨大であることからこれらの緩衝材や積層体ではエネルギー吸収量が不足であり、桁が桁かかり部を移動して落下することが考えられる。
【0006】
【課題を解決するための手段】
そこで本発明は、橋脚上面の桁かかり部に支承体を介して桁が取り付けられている桁かかり部に、断面形状がほぼ三角形の板状で弾性体製の緩衝体を、支承体の周囲の橋軸方向およびそれと直交する方向に、支承体に傾斜面が向くように少なくとも一列配置することを特徴とし、さらには緩衝体の内部に繊維体を積層させたことを特徴とする。
【0007】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。
第1実施の形態例
図1は平面図、図2〜図5は作動状態を示す説明図、図6は緩衝体の断面図であり、図において、1は橋脚上面の桁かかり部、2は桁、3は桁2を桁かかり部1に支持する支承体であり、一般にゴムや合成樹脂等の弾性体4を鉄板5を介して桁2と桁かかり部1にそれぞれボルト等の固定具によって固着している。したがって、桁2は支承体3を介して桁かかり部1に載置固定された状態となる。
【0008】
6は緩衝体であり、断面形状がほぼ三角形で板状の弾性体製であり、ゴムもしくは合成樹脂等の弾性体7の中に天然繊維、合成繊維等の繊維や金属等による織布、不織布、網状体等による繊維体8を積層埋設して全一体にした構造であり、必要に応じて下部に鉄板等の剛体9を埋設しておく。
なお、断面形状は、上記の如く傾斜面10を有するほぼ三角形であり、さらには図7、図8に示す如く上端部に平坦部11を形成した形状でもよく、それらの傾斜面10は凹もしくは凸に湾曲していてもよく、表面は平滑面でなく段状等の不滑面であってもよい。また、上表面を鉄板等の剛体で覆ってもよい。
【0009】
上記した繊維体8の積層方向は、底面と平行な状態、表面と平行な状態、底面に垂直な状態等どのような方向の配置でもよい。さらには、歩道橋のような軽量な梁の構造物においては繊維体8のない弾性体単体の構造でもよい。
この緩衝体6の桁かかり部1への固定状態はボルト等の固定具によって固定してもよく、さらには図8に示す如く予め底部に係止部12を形成しておき、桁かかり部1に形成した係止凹部に嵌合係止させるような構造等どのような固定構造でもよい。
【0010】
このようにした緩衝体6は、図1に示す如く、支承体3の周囲の桁かかり部1の橋軸方向およびそれと直交する方向に、支承体3に傾斜面が向くように一列もしくは複数列配置し、支承体3と緩衝体6の間および緩衝体6と緩衝体6の間には必要に応じて緩衝体6の構造と同様に弾性体中に繊維体を積層埋設した緩衝板13を配置しておくと緩衝効果がある。また、緩衝板13を介在させずに緩衝体6を連続して配置しておいても無論よい。
【0011】
以上のようにして桁かかり部1の支承体3の周囲に緩衝体6を配置すると、地震が発生して支承体3が剪断破壊した場合、桁2は図3に示す如く、緩衝板13上もしくは緩衝体6上に落下し、さらに、余震動でさらに桁2が動く場合には、緩衝体6の傾斜面を上方に向けて内部の繊維体8を破壊しながら移動し、それでも移動がすすむ場合には、桁2は図5に示す如く、次の緩衝板13上や緩衝体6上に落下することになる。
【0012】
この場合のエネルギーの吸収は、▲1▼緩衝体6の弾性歪みエネルギー、▲2▼繊維体8の破壊エネルギー、▲3▼緩衝体6から落下する位置エネルギーとなり、特に位置エネルギーの占める比率は図9に示すように高く、このエネルギー減衰を生み出すところに本発明の特長があり、落下する位置エネルギーはEh=W・hで示される巨大なエネルギー減衰である。
【0013】
これらのエネルギーの減衰によって、支承体3が剪断破壊した桁が橋脚から落下するのを防ぐことができることになる。
したがって、緩衝体6を連続して配置することは、エネルギーの減衰効果が大きく、桁が橋脚上面の桁かかり部から落下する可能性が少なくなる。しかし、桁かかり部を大きくすることは構造上の制約があり、緩衝体6の設置量は桁かかり部の大きさおよび緩衝体6の傾斜面の傾斜角度と高さによる緩衝体6の大きさによって決まってくる。
【0014】
なお、本発明の構成とは関係はないが、桁かかり部の周囲にはコンクリート等による剛体による係止部が構成されているとより桁の落下の安全性は高まる。
第2実施の形態例
本形態例は、図10に示す如く、緩衝板13を緩衝体6と一体に形成した例であり、この緩衝板13の長さは緩衝体6の傾斜面の傾斜角度と高さによる緩衝体6の大きさによって決まってくる。
【0015】
第3実施の形態例
本形態例は、桁かかり部の支承体3の周りを囲むように緩衝体6を形成した構成であり、図11に示す如く角形や図12に示す如く円形等どのような形状でもよい。
このような構成によると、どのような方向にも対応することができると共に取り付け作業が容易となる。
【0016】
【発明の効果】
以上詳細に説明した本発明によると、橋脚上面の桁かかり部に支承体を介して桁が取り付けられている桁かかり部に、断面形状がほぼ三角形で板状の弾性体製の緩衝体を、支承体の周囲の橋軸方向およびそれと直交する方向に、支承体に傾斜面が向くように一列もしくは複数列配置することにより、地震が発生して支承体が剪断破壊して桁が動く場合には、桁端は緩衝体の傾斜面を上方に向けて緩衝体の弾性歪みエネルギーによって地震エネルギーを減衰させながら移動し、それでも移動がすすむ場合には、その緩衝体から落下することによりさらに地震エネルギーを減衰させることにより、桁の橋脚からの落下を防止するこができる効果を有する。
【0017】
さらに、緩衝体の内部に繊維体を積層させた構造においては、繊維体の破壊エネルギーによってさらに地震エネルギーを減衰させることができ一層の減衰効果が期待できる効果を有する。
【図面の簡単な説明】
【図1】第1実施の形態例を示す平面図
【図2】作動状態を示す説明図
【図3】作動状態を示す説明図
【図4】作動状態を示す説明図
【図5】作動状態を示す説明図
【図6】緩衝体の断面図
【図7】他の緩衝体例を示す断面図
【図8】他の緩衝体例を示す断面図
【図9】エネルギーの減衰を示すグラフ
【図10】第2実施の形態例を示す緩衝体の断面図
【図11】第3実施の形態例を示す緩衝体の平面図
【図12】第3実施の形態例を示す緩衝体の平面図
【符号の説明】
1 桁かかり部
2 桁
3 支承体
6 緩衝体
7 弾性体
8 繊維体
9 剛体
10 傾斜面
11 平坦部
12 係止部
13 緩衝板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for preventing a girder from falling from a pier due to an earthquake in a bridge.
[0002]
[Prior art]
As a structure to prevent bridge girders from dropping on highways and railways due to earthquake vibration, before the Hyogoken-Nanbu Earthquake, girders are connected with a technology using a reinforcing plate and metal pins, or with a chain or cable. There was a technology to connect between them.
[0003]
[Problems to be solved by the invention]
However, the conventional technology was installed to prevent the girder from falling over the girder hanging part on the top of the pier where the girder is placed. Was completely blocked, which became a major obstacle to the subsequent recovery activities.
[0004]
Also, if the cause of the phenomenon of girder dropping due to an earthquake is assumed to be seismic force and seismic energy, a buffer material for mitigating the generated seismic force is effective against the seismic force. The technology of the buffer pin which utilized the damper function of rubber and the buffer pin which covered the outer periphery of the pin with rubber has been developed, and its performance has been proved and put into practical use by the impact test using the connecting part and the connecting part.
[0005]
On the other hand, a member capable of absorbing as much energy as possible against earthquake energy is effective. Therefore, a material in which a fibrous body is laminated and embedded in rubber is provided as a buffer material for the above-mentioned buffer chain or pin. Laminates have been proposed that use and increase the total amount of absorbed energy by breaking the fibrous body.
However, since the seismic energy is enormous, these cushioning materials and laminates have insufficient energy absorption, and it is considered that the girders move over the girder and fall.
[0006]
[Means for Solving the Problems]
In view of the above, the present invention provides an elastic buffer body having a substantially triangular plate-like cross-sectional shape to a girder part where a girder is attached to a girder part on the upper surface of the pier via a support body. It is characterized in that it is arranged in at least one row so that the inclined surface faces the support body in the bridge axis direction and the direction orthogonal thereto, and further, the fibrous body is laminated inside the buffer body.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First Embodiment FIG. 1 is a plan view, FIGS. 2 to 5 are explanatory views showing an operating state, FIG. 6 is a sectional view of a shock absorber, and in the figure, 1 is a girder on the upper surface of the pier, 2 is Girder 3 is a support for supporting girder 2 to girder 1 and generally elastic body 4 such as rubber or synthetic resin is attached to girder 2 and girder 1 by means of bolts or the like via iron plate 5. It is stuck. Therefore, the girder 2 is placed and fixed to the girder hanging portion 1 via the support body 3.
[0008]
Reference numeral 6 denotes a buffer, which is made of a plate-like elastic body having a substantially triangular cross-sectional shape. In the elastic body 7 such as rubber or synthetic resin, a woven fabric or a non-woven fabric made of natural fibers, synthetic fibers, or the like, or metal. The fiber body 8 made of a net or the like is laminated and embedded so as to be fully integrated, and a rigid body 9 such as an iron plate is embedded in the lower part as necessary.
Note that the cross-sectional shape is a substantially triangular shape having the inclined surface 10 as described above, and may be a shape in which a flat portion 11 is formed at the upper end as shown in FIGS. 7 and 8, and the inclined surface 10 is concave or The surface may be curved convexly, and the surface may be not a smooth surface but a non-slip surface such as a stepped shape. Further, the upper surface may be covered with a rigid body such as an iron plate.
[0009]
The above-described fiber body 8 may be laminated in any direction such as a state parallel to the bottom surface, a state parallel to the surface, or a state perpendicular to the bottom surface. Furthermore, in the structure of a light beam such as a pedestrian bridge, a structure of a single elastic body without the fiber body 8 may be used.
The buffer body 6 may be fixed to the girder 1 by using a fixing tool such as a bolt. Further, as shown in FIG. Any fixing structure such as a structure in which the engaging recess is fitted and locked to the locking recess may be used.
[0010]
As shown in FIG. 1, the buffer body 6 configured as described above is arranged in a line or a plurality of lines so that the inclined surface faces the support body 3 in the bridge axis direction of the girder 1 around the support body 3 and in the direction orthogonal thereto. Between the support body 3 and the buffer body 6 and between the buffer body 6 and the buffer body 6, a buffer plate 13 in which a fiber body is laminated and embedded in an elastic body is provided as necessary in the same manner as the structure of the buffer body 6. If placed, there is a buffering effect. Of course, the buffer bodies 6 may be continuously arranged without the buffer plate 13 interposed.
[0011]
As described above, when the buffer body 6 is arranged around the support body 3 of the girder hanging portion 1, when the earthquake occurs and the support body 3 is sheared and broken, the girder 2 is placed on the buffer plate 13 as shown in FIG. Alternatively, if the girder 2 falls on the shock absorber 6 and further moves due to the aftershock, it moves with the inclined surface of the shock absorber 6 facing upward and destroys the internal fiber body 8, and the movement is still promoted. In this case, the girder 2 falls on the next buffer plate 13 or the buffer body 6 as shown in FIG.
[0012]
Energy absorption in this case is (1) elastic strain energy of the buffer body (6), (2) breaking energy of the fiber body (8), and (3) potential energy falling from the buffer body. As shown in FIG. 9, the present invention is characterized in that this energy attenuation is high, and the falling potential energy is a huge energy attenuation represented by Eh = W · h.
[0013]
By the attenuation of these energies, it is possible to prevent the girder that the support body 3 has sheared and broken from falling from the pier.
Therefore, arranging the buffer bodies 6 continuously has a large energy attenuation effect, and the possibility that the girder falls from the girder portion on the upper surface of the pier is reduced. However, there is a structural limitation in enlarging the girder part, and the installation amount of the buffer body 6 depends on the size of the girder part and the size of the buffer body 6 depending on the inclination angle and height of the inclined surface of the buffer body 6. It depends on.
[0014]
Although not related to the configuration of the present invention, the safety of the girder dropping is further enhanced if a locking portion made of a rigid body such as concrete is formed around the girder hanging portion.
Second Embodiment In this embodiment, as shown in FIG. 10, the buffer plate 13 is formed integrally with the buffer body 6, and the length of the buffer plate 13 is the inclination angle of the inclined surface of the buffer body 6. It depends on the size of the buffer body 6 depending on the height.
[0015]
Third Embodiment In this embodiment, a buffer body 6 is formed so as to surround the support body 3 of the girder part. The buffer body 6 is formed in a square shape as shown in FIG. 11 or in a circular shape as shown in FIG. Any shape may be used.
According to such a configuration, it is possible to cope with any direction and the attachment work is facilitated.
[0016]
【The invention's effect】
According to the present invention described in detail above, a shock absorber made of a plate-like elastic body having a substantially triangular cross-section in a girder part where a girder is attached to a girder part on the upper surface of a pier via a support body, When the girder moves due to the occurrence of an earthquake and shear breakage of the support body by arranging one or more rows so that the inclined surface faces the support body in the bridge axis direction and the direction perpendicular to it The girder end moves with the inclined surface of the shock absorber facing upward while attenuating the earthquake energy due to the elastic strain energy of the shock absorber. By attenuating, it has the effect of preventing the girder from falling off the pier.
[0017]
Furthermore, in the structure in which the fibrous body is laminated inside the buffer body, the seismic energy can be further attenuated by the breaking energy of the fibrous body, and an effect that a further attenuation effect can be expected.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment. FIG. 2 is an explanatory diagram showing an operating state. FIG. 3 is an explanatory diagram showing an operating state. FIG. 4 is an explanatory diagram showing an operating state. FIG. 6 is a cross-sectional view of a shock absorber. FIG. 7 is a cross-sectional view of another shock absorber. FIG. 8 is a cross-sectional view of another shock absorber. FIG. 9 is a graph showing energy attenuation. FIG. 11 is a plan view of a buffer body showing a third embodiment. FIG. 12 is a plan view of a buffer body showing a third embodiment. Explanation of]
DESCRIPTION OF SYMBOLS 1 Girder part 2 Girder 3 Support body 6 Buffer body 7 Elastic body 8 Fiber body 9 Rigid body 10 Inclined surface 11 Flat part 12 Locking part 13 Buffer plate

Claims (5)

橋脚上面の桁かかり部に支承体を介して桁が取り付けられている桁かかり部に、断面形状がほぼ三角形の板状で弾性体製の緩衝体を、支承体の周囲の橋軸方向およびそれと直交する方向に、支承体に傾斜面が向くように少なくとも一列配置することを特徴とする橋梁における桁落下防止装置。In the girder part where the girder is attached to the girder part on the upper surface of the pier via a support body, a shock absorber made of an elastic body having a substantially triangular cross-sectional shape, the axial direction of the bridge around the support body and the same A girder drop prevention device for a bridge, wherein the girder drop prevention device is arranged in at least one row so that an inclined surface faces a support body in a direction perpendicular to the bearing. 請求項1において、緩衝体の内部に繊維体を積層させたことを特徴とする橋梁における桁落下防止装置。The girder drop prevention device according to claim 1, wherein a fibrous body is laminated inside the buffer body. 請求項1において、緩衝体の支承体側の前部に緩衝板を配置したことを特徴とする橋梁における桁落下防止装置。The girder fall prevention device for a bridge according to claim 1, wherein a buffer plate is disposed at a front portion of the buffer body on the support body side. 請求項1において、桁かかり部の支承体の周りを囲むように緩衝体を配置したことを特徴とする橋梁における桁落下防止装置。2. The girder falling prevention device for a bridge according to claim 1, wherein a buffer body is arranged so as to surround the support body of the girder hanging portion. 請求項1において、緩衝体の上表面を剛性体製の板で覆ったことを特徴とする橋梁における桁落下防止装置。The girder drop prevention device according to claim 1, wherein the upper surface of the buffer body is covered with a rigid plate.
JP24005797A 1997-09-04 1997-09-04 Girder fall prevention device for bridge Expired - Fee Related JP3842399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24005797A JP3842399B2 (en) 1997-09-04 1997-09-04 Girder fall prevention device for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24005797A JP3842399B2 (en) 1997-09-04 1997-09-04 Girder fall prevention device for bridge

Publications (2)

Publication Number Publication Date
JPH1181237A JPH1181237A (en) 1999-03-26
JP3842399B2 true JP3842399B2 (en) 2006-11-08

Family

ID=17053851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24005797A Expired - Fee Related JP3842399B2 (en) 1997-09-04 1997-09-04 Girder fall prevention device for bridge

Country Status (1)

Country Link
JP (1) JP3842399B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561661B2 (en) * 2007-12-14 2014-07-30 オイレス工業株式会社 Sliding bearings for structures
CN110082054B (en) * 2019-04-29 2020-11-10 泉州惠安兆尼商贸有限公司 Impacter for preventing round head from deviating for lead storage battery groove

Also Published As

Publication number Publication date
JPH1181237A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
US5014474A (en) System and apparatus for limiting the effect of vibrations between a structure and its foundation
KR20080061215A (en) Protection barriers for absorbing impulse
JP6173553B1 (en) Seismic control device for bridge
US6581340B2 (en) Modular anti-seismic protection device to be used in buildings and similar constructions
CN111287344B (en) Shock-absorbing and collapse-preventing combined structure
KR100407513B1 (en) Apparatus for preveting separating super structure from continous steel box bridge and construction work method there of
JP3842399B2 (en) Girder fall prevention device for bridge
JP3842400B2 (en) Girder fall prevention device for bridge
CN113431208A (en) CSIPs-steel composite structure energy-consuming type anti-seismic node
JP2019031827A (en) Function separation type shock absorber and bridge provided with function separation type shock absorber
JP2011153491A (en) Safety barrier
JP3593609B2 (en) Shock absorbing fence
JP7202586B1 (en) protective fence
JP3639950B2 (en) Shock absorbing fence
JP2001107321A (en) Falling stone preventive method by pocket type covering net
KR100533117B1 (en) The construction method using a falling-stone prevention net and this
CN215164615U (en) Telescoping device with energy dissipation shock-absorbing function
JP3808822B2 (en) Shock absorber of bridge
HU190312B (en) Apparatus for decreasing the seismic loads arising on tower-like constructions of high centre of gravity for preventing the turning-over of building wedge provided with flexible members between the foundation and the wall structure
JP7165555B2 (en) Function-separated shock absorber
JP2005330688A (en) Aseismatic reinforcing method and structure for bridge
KR102497123B1 (en) Fall Prevention Fence System
JP2002013125A (en) Connecting structure of flowing-down matter capturing work
KR200326748Y1 (en) falling-stone prevention net
KR102605012B1 (en) Checking way of bridge having buffering function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees