JP3842343B2 - Scroll type fluid machine - Google Patents

Scroll type fluid machine Download PDF

Info

Publication number
JP3842343B2
JP3842343B2 JP23253396A JP23253396A JP3842343B2 JP 3842343 B2 JP3842343 B2 JP 3842343B2 JP 23253396 A JP23253396 A JP 23253396A JP 23253396 A JP23253396 A JP 23253396A JP 3842343 B2 JP3842343 B2 JP 3842343B2
Authority
JP
Japan
Prior art keywords
seal member
diameter side
inner diameter
groove
scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23253396A
Other languages
Japanese (ja)
Other versions
JPH1061570A (en
Inventor
博 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23253396A priority Critical patent/JP3842343B2/en
Publication of JPH1061570A publication Critical patent/JPH1061570A/en
Application granted granted Critical
Publication of JP3842343B2 publication Critical patent/JP3842343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば空気圧縮機、冷媒圧縮機または真空ポンプ等に用いて好適なスクロール式流体機械に関する。
【0002】
【従来の技術】
一般に、鏡板の歯底面に渦巻状のラップ部が立設された固定スクロールと、該固定スクロールに対向して設けられ、鏡板の歯底面に該固定スクロールのラップ部との間で複数の圧縮室を画成するように渦巻状のラップ部が立設された旋回スクロールとを備え、該旋回スクロールまたは固定スクロールのラップ部に該ラップ部の歯先に沿って延びる凹溝を形成し、該凹溝内には相手方の歯底面に摺接するシール部材を装着したスクロール式流体機械は知られている。
【0003】
そして、渦巻状をなす前記シール部材の内周面に多数の切込み溝を形成したものが、例えば、実開平2−147888号公報等により知られている。かかる従来技術によるシール部材では、圧縮運転時等において、圧縮流体の圧力が該シール部材の内周面に作用すると、該シール部材の各切込み溝が拡開し、該各切込み溝の自由端側が凹溝の内側面に押し付けられてシール性を発揮するという作用効果を奏する。
【0004】
【発明が解決しようとする課題】
ところで、上述した従来技術によるシール部材は、スクロールの中心側、即ち、径方向内側に位置する内径側から、スクロールの周辺側、即ち、径方向外側に位置する外径側にかけて、各切込み溝の深さが均一であるため、下記のような問題が生じる。
【0005】
シール部材は通常、金型等を用いて単に円形に湾曲した状態に成形するか、または紐状に成形する。従って、シール部材をラップ部の凹溝に装着する前の段階では、該シール部材はラップ部の渦巻形状と異なり、緩やかに湾曲した形状、または直線状である。そして、スクロール式流体機械を製造する際に、該シール部材に外力を加え、該シール部材をラップ部の渦巻形状に沿うように弾性的に湾曲させて該ラップ部の凹溝内に装着する。
【0006】
この場合、スクロールの中心側、即ち、ラップ部の内径側では該ラップ部の曲率が大きいため、シール部材を該ラップ部の凹溝内に装着するには、該シール部材の内径側を前記ラップ部の渦巻形状に沿うように、大きく湾曲させなければならない。
【0007】
しかし、従来技術によるシール部材では、内径側から外径側にかけて各切込み溝の切込み深さが均一であるため、該シール部材の内径側において各切込み溝の切込み深さが十分でない。この結果、シール部材が曲がりにくく、該シール部材の内径側を、曲率の大きなラップ部の内径側に装着するのが難しくなるという問題がある。
【0008】
さらに、シール部材の内径側をラップ部の内径側に沿うように大きく湾曲させると、シール部材の内径側の断面が台形状に変形する。即ち、シール部材を大きく湾曲させると、シール部材の外周側湾曲面が引っ張り変形し、シール部材の内周側湾曲面が圧縮変形する。これにより、シール部材の内径側の断面形状が台形状に変形する。この結果、シール部材の内径側をラップ部の内径側に装着するのが難しいだけでなく、シール部材の内径部が出っ張り、相手方の歯底面との摺接によって過度のスラスト力を生じたり、シール部材が馴染むまでの間、流体漏れを生じ、圧縮性能等が低下するという問題がある。
【0009】
なお、シール部材の各切込み溝を内径側から外径側にかけて全体的に均一に深くすることも考えられる。しかし、この場合には、比較的曲率の小さいラップ部外径側の渦巻形状に沿うように、シール部材の外径側を緩やかに湾曲させることが難しくなる。このため、シール部材の各切込み溝を内径側から外径側にかけて全体的に均一に深くすると、シール部材の外径側で摩擦抵抗が大きくなり、圧縮運転時等における圧縮流体の圧力が比較的小さいスクロールの周辺側で、シール部材の浮上性が低下するという欠点がある。
【0010】
また、上述した従来技術によるシール部材は、その内径側から外径側にかけて、各切込み溝の離間間隔が均一である。即ち、シール部材の長さ方向に均一の離間間隔で各切込み溝が形成されている。このことによっても、上述した問題が生じる。
【0011】
即ち、従来技術のシール部材では、各切込み溝の離間間隔が大きいため、その内径側を大きく曲げるのが難しい。この結果、ラップ部内径側の比較的曲率の大きい渦巻形状に沿うようにシール部材の内径側を湾曲させるのが難しく、シール部材をラップ部の凹溝に装着するのが難しいという問題がある。
【0012】
なお、シール部材の各切込み溝の離間間隔を内径側から外径側にかけて全体的に均一に小さくすることも考えられる。しかし、この場合も上述したように、シール部材の外径側を緩やかに湾曲させることが難しく、シール部材の外径側で摩擦抵抗が大きくなり、スクロールの周辺側でシール部材の浮上性が低下するという欠点がある。
【0013】
本発明は上述した従来技術の問題に鑑みなされたものであり、本発明は、シール部材をラップ部に装着し易くでき、シール部材の装着を容易に行うことができるようにしたスクロール式流体機械を提供することを目的としている。
【0014】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、鏡板の歯底面に渦巻状のラップ部が立設された2つのスクロール対向して設け、該2つのスクロールのラップ部の間で複数の圧縮室を画成し、前記2つのスクロールラップ部のうち少なくとも一方のラップ部には、該ラップ部の歯先に沿って延びる凹溝を形成し、該凹溝内には相手方の歯底面に摺接するシール部材を装着してなる構成を採用している。
【0015】
そして、請求項1に係る発明は、シール部材には、凹溝の内側面と対向する内周面に該シール部材の長さ方向に離間して斜めに切込んだ多数の切込み溝を設けて、前記凹溝の内側面との間をシールするリップ部を形成し、前記各切込み溝の深さを径方向内側に位置する内径側で大きくし、径方向外側に位置する外径側で小さくしたことにある。
【0016】
上記構成より、シール部材の内径側が、外径側に比較して曲がり易くなる。即ち、シール部材の内径側は各切込み溝の深さが大きいため、該シール部材の内径側を湾曲させると、各切込み溝が形成された部分が互いにずれて、シール部材が曲がり易くなる。
【0017】
これにより、ラップ部の凹溝にシール部材を装着するときに、シール部材の内径側を、ラップ部内径側の比較的曲率が大きい渦巻形状に沿うように容易に湾曲させることができる。
【0018】
一方、シール部材の外径側では、ラップ部の曲率が小さいため、シール部材を該ラップ部に装着する際に、シール部材を緩やかに湾曲させる程度でよい。従って、シール部材の外径側では、各切込み溝の深さを内径側よりも小さくすることにより、シール部材の外径側を緩やかに湾曲させ、シール部材の摩擦抵抗を小さくするようにしている。
【0019】
これにより、圧縮運転時等における圧縮流体の圧力が比較的小さいスクロールの周辺側でもシール部材の浮上性を確保することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って詳述する。
【0023】
ここで、図1ないし図5は本発明の第1の実施例によるスクロール式流体機械をスクロール式空気圧縮機に適用した場合を例に挙げて示している。
【0024】
図において、1は当該スクロール式空気圧縮機のケーシングの一部となる固定スクロールを示し、該固定スクロール1は、大略有蓋筒状に形成されたケーシング本体(図示せず)の開口端側を施蓋するように、この開口端側に固着されている。そして、該固定スクロール1は、その中心が後述する駆動軸14の軸線O1−O1と一致するように配設された円板状の鏡板2と、該鏡板2の歯底面2Aに立設された渦巻状のラップ部3と、前記鏡板2の周辺側に位置し、該ラップ部3を囲むように筒状に形成された支持部4とから大略構成されている。
【0025】
また、該固定スクロール1のラップ部3は、図2に示す如く、中心側が巻始め端となり周辺側が巻終り端となって、例えば3巻半程度の渦巻状に形成されている。そして、該ラップ部3の歯先3Aは、図3に示すように、後述する旋回スクロール9の歯底面10Aから微小なクリアランスCをもって離間している。
【0026】
5はラップ部3の歯先3A側に形成された凹溝を示し、該凹溝5は図3に示す如く、ラップ部3の幅方向中間部に位置して横断面が略コ字状をなすように形成され、その底面5Aおよび左,右の側面5B,5Cはラップ部3の渦巻き形状に沿ってその巻始め端から巻終り端まで延びている。そして、該凹溝5内には後述するシール部材6が装着され、相手方となる旋回スクロール9の歯底面10Aとの間をシールするようになっている。
【0027】
6はラップ部3の凹溝5内に装着されたシール部材を示し、該シール部材6は耐摩耗性や摺動性に優れた弾性樹脂材料、例えばポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリエーテルサルフォン(PES)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)またはポリスルフォン(PSF)等を用いて、横断面が四角形状をなす長尺のチップシールとして形成され、凹溝5の長手方向に沿って渦巻状に伸長している。
【0028】
また、該シール部材6は図3ないし図5に示す如く、圧縮運転時の圧縮空気によって該シール部材6が浮上したときに相手方の歯底面10Aに摺接する上面6Aと、渦巻状をなすシール部材6の径方向内側に位置する内周面6Bと、該シール部材6の径方向外側に位置する外周面6Cと、シール部材6の内径側に位置する内径側端面6Dと、シール部材6の外径側に位置する外径側端面6Eと、凹溝5の底面5A上に載置され圧縮運転時の圧縮空気を受圧する下面6Fとから構成されている。
【0029】
そして、該シール部材6は、内周面6B,外周面6Cが凹溝5内に僅かな隙間をもって挿入されているため、圧縮運転時に、シール部材6の内周面6B側が外周面6C側に比して高圧になると、シール部材6の外周面6Cが凹溝5の側面5Cに密接し、後述の各切込み溝7が圧縮空気の圧力によって拡開し、各リップ部8が凹溝5の側面5Bをシールすると共に、該シール部材6が凹溝5の底面5A上から相手方となる旋回スクロール9の歯底面10Aに向けて浮上する。
【0030】
ここで、該シール部材6は金型等を用いて単に円形に湾曲した状態、または紐状に成形し、当該スクロール式空気圧縮機を製造する際に、図2の如く、該シール部材6をラップ部3の渦巻形状に沿うように弾性的に湾曲させて、該ラップ部3の凹溝5内に装着する。
【0031】
7,7,…はシール部材6の長手方向にそれぞれ所定間隔をもって形成された切込み溝を示し、該各切込み溝7は、図4に示すように、シール部材6の内周面6Bを斜めに切込むことにより形成されている。そして、圧縮運転時には、図4中の二点鎖線に示すように、凹溝5内を矢示B方向に流れる圧縮空気によって該各切込み溝7が拡開し、内周面6Bのうち各切込み溝7が形成された部分がひれ状のリップ部8,8,…となって凹溝5の側面5Bに押し付けられる。
【0032】
また、該各切込み溝7は、その切込み深さが、図5に示すようにシール部材6の径方向内側に位置する内径側で大きく、径方向外側に位置する外径側で小さく形成されている。そして、該各切込み溝7の切込み深さは、シール部材6の外径側から内径側にいくに従って、徐々に、かつ連続的に大きくなるように形成されている。これにより、シール部材6の内径側は、外径側より曲がり易くなる。
【0033】
ここで、ラップ部3は、固定スクロール1の中心側で曲率が大きく、固定スクロール1の周辺側で曲率が比較的小さい渦巻状である。このため、シール部材6を該ラップ部3の凹溝5内に装着するとき、シール部材6の内径側を、外径側よりも大きく湾曲させる必要がある。このとき、前述したように、シール部材6の内径側は、外径側より曲がり易いから、シール部材6の内径側をラップ部3の曲率の大きな渦巻形状に沿うように容易に湾曲させることができ、シール部材6を凹溝5内に装着し易くすることができる。
【0034】
9は固定スクロール1に対向して前記ケーシング本体内に旋回可能に設けられる旋回スクロールを示し、該旋回スクロール9は、表面側が歯底面10Aとなって円板状に形成された鏡板10と、該鏡板10の歯底面10Aから固定スクロール1の鏡板2に向けて立設され、該固定スクロール1のラップ部3と同様に渦巻状に形成されたラップ部11と、鏡板10の背面側中央に設けられたボス部12とから構成され、該ボス部12は、後述する駆動軸14のクランク14Aに回転可能に取付けられている。
【0035】
ここで、該旋回スクロール9のラップ部11についても、固定スクロール1のラップ部3と同様に例えば3巻半程度の渦巻状に形成され、その歯先11A側には、底面13Aおよび左,右の側面13B,13Cから横断面コ字形状をなす凹溝13が形成されている。
【0036】
また、該ラップ部11の凹溝13内には、前記固定スクロール1側と同様に、多数の切込み溝7,7,…が形成されたシール部材6が装着されている。
【0037】
14は前記ケーシング本体に回転自在に設けられる駆動軸を示し、該駆動軸14は先端側がケーシング本体内に延びるクランク14Aとなり、該クランク14Aはその軸線O2 −O2 が駆動軸14の軸線O1 −O1 に対して所定寸法δだけ偏心している。そして、該駆動軸14のクランク14Aには旋回スクロール9のボス部12が旋回軸受15を介して旋回可能に取付けられ、旋回スクロール9には自転防止機構(図示せず)等を介して旋回運動が与えられる。
【0038】
ここで、旋回スクロール9のラップ部11は固定スクロール1のラップ部3に対して周方向に所定角度だけずらして重ね合わせるように配設され、図2に示すように、ラップ部3,11間には三日月形状の複数の圧縮室16,16,…が画成される。そして、旋回スクロール9を固定スクロール1に対して旋回させたときに、該各圧縮室16はその容積が連続的に縮小され、後述する吸込ポート17から吸込んだ空気を圧縮するようになっている。
【0039】
17,18は固定スクロール1に形成された吸込ポート,吐出ポートを示し、該吸込ポート17は最も周辺側に位置する圧縮室16と連通するように鏡板2の周辺側に穿設され、吐出ポート18は、最も中心側に位置する圧縮室16と連通するように鏡板2の中心部に穿設されている。
【0040】
本実施例によるスクロール式空気圧縮機は上述のような構成を有するもので、次にこの動作を説明する。
【0041】
まず、ケーシングの外部からモータ等の駆動源(図示せず)によって駆動軸14を回転駆動すると、この回転は該駆動軸14のクランク14Aから旋回軸受15を介して旋回スクロール9に伝えられ、該旋回スクロール9は駆動軸14の軸線O1 −O1 を中心にして寸法δの旋回半径をもった旋回運動を行う。
【0042】
そして、この旋回運動によって各ラップ部3,11の間に画成される圧縮室16,16,…は中央側に向けて連続的に縮小し、吸込ポート17から吸込んだ空気を順次圧縮しつつ、この圧縮空気を吐出ポート18から外部のエアタンク(図示せず)等に向けて吐出する。
【0043】
ここで、圧縮運転が開始されると、ラップ部3(11)の凹溝5(13)内には図3に示す矢示A方向に高圧側の圧縮室16から圧縮空気の一部が侵入し、シール部材6は受圧面となる下面6Fでこの圧縮空気の圧力を受圧することにより、凹溝5(13)の底面5A(13A)から浮上し、対向する鏡板10(2)の歯底面10A(2A)に向けて押圧される。これにより、該シール部材6は上面6Aが相手方の歯底面10A(2A)に摺接し、ラップ部3(11)間に画成される各圧縮室16を気密にシールする。
【0044】
また、図3中の矢示A方向に凹溝5(13)内に侵入した圧縮空気は、該凹溝5(13)の渦巻形状に沿って、高圧の中心側から低圧の周辺側に向けて図2中の矢示B方向に流れようとする。このとき、シール部材6の各切込み溝7が図2または図4中の二点鎖線に示すように拡開し、各リップ部8が凹溝5(13)の側面5B(13B)に押し付けられる。これにより、圧縮空気が凹溝5(13)の側面5B(13B)とシール部材6との間を流通して、中心側の圧縮室16から周辺側の圧縮室16へと漏洩するのを防止できる。
【0045】
ところで、当該スクロール式空気圧縮機の製造時において、シール部材6を固定スクロール1側のラップ部3に装着する際には、該シール部材6をラップ部3の渦巻形状に沿うように湾曲させる。特に、該ラップ部3の曲率は固定スクロール1の中心側ほど大きく、該ラップ部3の内径側の曲率は外径側と比較して大きいため、シール部材6の内径側は外径側に比較して大きく湾曲させる必要がある。
【0046】
然るに、本実施例によるシール部材6は、その内周面16Bに多数の切込み溝7が形成され、該シール部材6の内径側に形成された各切込み溝7の切込み深さが、外径側に形成された各切込み溝7の切込み深さよりも大きい。このため、シール部材6に外力を加え、該シール部材6を湾曲させると、各切込み溝7が形成された部分が互いにずれるので、シール部材6は曲がり易い。特に、シール部材6の内径側では、各切込み溝7の切込み深さが大きいため、シール部材6の内径側は、外径側よりも曲がり易い。
【0047】
これにより、該シール部材6の内径側をラップ部3内径側の曲率の大きな渦巻形状に沿うように容易に湾曲させることができる。
【0048】
一方、シール部材6の外径側では、ラップ部3の曲率が小さいため、シール部材6を該ラップ部3に装着する際に、シール部材6を緩やかに湾曲させる程度でよい。そこで、シール部材6の外径側では、各切込み溝7の深さを内径側よりも小さくすることにより、シール部材6の外径側を緩やかに湾曲させるようにしている。これにより、シール部材6の摩擦抵抗を小さくすることができ、圧縮運転時における圧縮空気の圧力が比較的小さいスクロールの周辺側でもシール部材6の浮上性を確保することができる。
【0049】
またさらに、本実施例によるシール部材6は、内径側に形成された各切込み溝7の切込み深さを、外径側よりも大きくしたことにより、下記の作用効果を奏する。
【0050】
即ち、従来技術によるシール部材では、シール部材をラップ部内径側の大きな曲率を有する渦巻形状に沿うように大きく湾曲させると、シール部材の外周面側が弾性的に引っ張り変形すると共に、シール部材の内周面側が弾性的に圧縮変形する。このため、シール部材の断面形状が台形状となる。この結果、従来技術では、シール部材の外周面側で高さ寸法(上面−下面間の寸法)が大きくなり、シール部材の上面が相手方の歯底面に片当りし、シール性が悪いという問題があった。また、従来技術では、上述したようにシール部材の上面が相手方の歯底面に片当りする場合があるため、シール部材が馴染んで、シール部材の上面が相手方の歯底面に全面摺接するまで、馴染み運転を長時間行わなければならないという問題があった。
【0051】
ところが、本実施例によるシール部材6は、かかる問題を解消することができる。即ち、本実施例によるシール部材6の各切込み溝7の切込み深さが内径側で大きいため、シール部材6をラップ部3の渦巻形状に沿うように湾曲させると、各切込み溝7の形成された部分が互いにずれるようになる。これにより、シール部材6の断面形状が台形状に変形することがない。
【0052】
従って、本実施例によるシール部材6では、シール部材6の上面6Aが相手方の歯底面10Aに片当りするのを防止でき、圧縮運転時におけるシール性を向上させることができる。特に、該シール部材6の装着当初から、シール部材6の上面6Aが相手方の歯底面10Aに全面摺接させてシール性を発揮させることができ、馴染み運転を大幅に短縮することができる。
【0053】
なお、旋回スクロール9のラップ部11に装着するシール部材6についても同様である。
【0054】
かくして、本実施例によれば、シール部材6の内周面6Bに形成した各切込み溝7の切込み深さを、該シール部材6の内径側で大きくし、外径側で小さくする構成としたから、シール部材6の内径側を、外径側よりも曲がり易くすることができる。
【0055】
従って、シール部材6をラップ部3(11)に装着するに際して、装着作業の容易化、迅速化を図ることができ、装着作業の効率を向上させることができる。これにより、スクロール式空気圧縮機の生産性をよくし、歩留をよくすることができる。
【0056】
また、シール部材6をラップ部3(11)に装着するために大きく湾曲させても、該シール部材6の断面形状が台形状に変形するのを防止できる。これにより、装着当所からシール部材6のシール性を十分に発揮させることができると共に、馴染み運転を短縮することが可能となる。
【0057】
さらに、シール部材6の製造において、シール部材6に切込み溝7を形成するときは、カッタの歯先の形状を変えることなく、切込み深さを変えるだけでよく、各切込み溝7の加工を容易にかつ安価に行うことができる。
【0058】
次に、本発明の第2の実施例によるスクロール式流体機械をスクロール式空気圧縮機に適用した場合を例に挙げて説明するに、本実施例の特徴は、シール部材の内周面に設けた各切込み溝の切込み深さを、シール部材の内径側で大きくすると共に外径側で小さくし、かつ、各切込み溝の切込み深さ寸法をシール部材の内径側と外径側とで2段階に設定したことにある。
【0059】
ここで、図6は本実施例によるスクロール式空気圧縮機において、スクロールのラップ部に設けられた凹溝に装着されるシール部材を長さ方向に展開した状態で示したものである。
【0060】
図において、21は本実施例によるシール部材を示し、該シール部材21は、前述した第1の実施例で述べたシール部材6とほぼ同様に、耐摩耗性や摺動性に優れた弾性樹脂材料により横断面が四角形状をなす長尺のチップシールとして形成され、上面21A、内周面21B、外周面21C、内径側端面21D、外径側端面21E、下面とから構成されている。そして、該シール部材21の内周面21Bには多数の切込み溝22,22,…が形成され、圧縮運転時には、圧縮空気によって該各切込み溝22が拡開し、内周面21Bのうち各切込み溝22が形成された部分がリップ部23,23,…となり凹溝の内側面に押し付けられる。
【0061】
また、該シール部材21に設けられた各切込み溝22の切込み深さは、シール部材21の内径側で大きくなり、シール部材21の外径側で小さくなり、かつ、その切込み深さ寸法がシール部材21の内径側と外径側とで2段階に設定されている。
【0062】
このように構成される本実施例によるスクロール式空気圧縮機においても前述した第1の実施例と同様の作用効果を奏する。
【0063】
なお、本実施例では、シール部材21に設けられた各切込み溝22の切込み深さ寸法を、シール部材21の内径側と外径側とで2段階に設定したが、これに限るものでなく、各切込み溝22の切込み深さがシール部材21の外径側から内径側に行くに従って多段階的に大きくなるように設定してもよく、また、スクロール式空気圧縮機の要求性能に合わせて各切込み溝22の切込み深さを適宜に変化させるように設定してもよい。
【0064】
次に、本発明の第3の実施例によるスクロール式流体機械をスクロール式空気圧縮機に適用した場合を例に挙げて説明するに、本実施例の特徴は、シール部材の内周面に設けた各切込み溝の離間間隔を径方向内側に位置する内径側で小さくし、径方向外側に位置する外径側で大きくしたことにある。
【0065】
ここで、図7は本実施例によるスクロール式空気圧縮機において、スクロールのラップ部に設けられた凹溝に装着されるシール部材を長さ方向に展開した状態で示したものである。
【0066】
図において、31は本実施例によるシール部材を示し、該シール部材31は、前述した第1の実施例で述べたシール部材6とほぼ同様に、耐摩耗性や摺動性に優れた弾性樹脂材料により横断面が四角形状をなす長尺のチップシールとして形成され、上面31A、内周面31B、外周面31C、内径側端面31D、外径側端面31E、下面とから構成されている。
【0067】
また、該シール部材31の内周面31Bには多数の切込み溝32,32,…が形成されている。そして、圧縮運転時には、圧縮空気によって該各切込み溝32が拡開し、内周面31Bのうち各切込み溝32が形成された部分がひれ状のリップ部33,33,…となって凹溝の内側面に押し付けられる。
【0068】
また、該各切込み溝32は、その離間間隔がシール部材31の径方向内側に位置する内径側で小さく、径方向外側に位置する外径側大きく形成されている。即ち、シール部材31の内径側には、各切込み溝32が、該シール部材31の外径側と比較して狭い間隔で形成され、シール部材31の外径側には、各切込み溝32が、該シール部材31の内径側と比較して広い間隔で形成されている。そして、該各切込み溝32の離間間隔は、シール部材31の外径側から内径側にいくに従って、徐々に、かつ連続的に狭くなるように形成されている。
【0069】
本実施例によるスクロール式空気圧縮機は上述したような構成を有するもので、その基本的な作用効果は前述した第1の実施例と格別差異はない。
【0070】
即ち、シール部材31の内周面31Bに形成した各切込み溝32の離間間隔を、該シール部材31の内径側で小さくし、外径側で大きくする構成としたから、シール部材31の内径側を外径側よりも曲がり易くすることでき、シール部材31をラップ部の凹溝に装着し易くすることができる。
【0071】
一方、シール部材31の外径側ではシール部材31を緩やかに湾曲させることができるから、シール部材31の摩擦抵抗を小さくでき、圧縮運転時において比較的圧力の低いスクロール周辺側でもシール部材31の浮上性を確保できる。
【0072】
また、シール部材31の内径側には、各切込み溝32が小さな離間間隔で多数形成されているから、シール部材31をラップ部の凹溝内に装着するために大きく湾曲させたとき、各切込み溝32の形成された部分が互いにずれるため、シール部材31の上面31Aが盛り上がることはない。従って、装着当所から該シール部材31のシール性を十分に発揮させることができると共に、馴染み運転を短縮することが可能となる。
【0073】
さらに、シール部材31の製造において、シール部材31に切込み溝32を形成するときは、カッタの歯先の形状を変えることなく、切込みを入れる間隔だけを変えるだけでよく、各切込み溝32の加工を容易にかつ安価に行うことができる。
【0074】
次に、本発明の第4の実施例によるスクロール式流体機械をスクロール式空気圧縮機に適用した場合を例に挙げて説明するに、本実施例の特徴は、シール部材の内周面に設けた各切込み溝の離間間隔を、シール部材の内径側で小さくすると共に外径側で大きくし、かつ、各切込み溝の離間間隔をシール部材の内径側と外径側とで2段階に設定したことにある。
【0075】
ここで、図8は本実施例によるスクロール式空気圧縮機において、スクロールのラップ部に設けられた凹溝に装着されるシール部材を長さ方向に展開した状態で示したものである。
【0076】
図において、41は本実施例によるシール部材を示し、該シール部材41は、前述した第3の実施例で述べたシール部材31とほぼ同様に、耐摩耗性や摺動性に優れた弾性樹脂材料により横断面が四角形状をなす長尺のチップシールとして形成され、上面41A、内周面41B、外周面41C、内径側端面41D、外径側端面41E、下面とから構成されている。そして、該シール部材41の内周面41Bには多数の切込み溝42,42,…が形成され、圧縮運転時には、圧縮空気によって該各切込み溝42が拡開し、内周面41Bのうち各切込み溝42が形成された部分がリップ部43,43,…となって凹溝の内側面に押し付けられる。
【0077】
また、該シール部材41に設けられた各切込み溝42の離間間隔は、シール部材41の内径側で小さくなり、シール部材41の外径側で大きくなり、かつ、各切込み溝42の離間間隔がシール部材41の内径側と外径側とで2段階に設定されている。
【0078】
このように構成される本実施例によるスクロール式空気圧縮機においても前述した第3の実施例と同様の作用効果を奏する。
【0079】
なお、本実施例では、シール部材41に設けられた各切込み溝42の切込み深さを、シール部材41の内径側と外径側とで2段階に設定したが、これに限るものでなく、各切込み溝42の離間間隔がシール部材41の外径側から内径側に行くに従って多段階的に小さくなるように設定してもよく、また、スクロール式空気圧縮機の要求性能に合わせて各切込み溝42の離間間隔を適宜に変化させるように設定してもよい。
【0080】
また、前記第1の実施例または第2の実施例で述べたように、シール部材の各切込み溝の切込み深さを径方向内側に位置する内径側で大きくし、径方向外側に位置する外径側小さくする構成と、第3の実施例または第4の実施例で述べたように、シール部材の各切込み溝の離間間隔を径方向内側に位置する内径側で小さくし、径方向外側に位置する外径側で大きくする構成とを組合わせてもよい。
【0081】
即ち、シール部材の内径側では、各切込み溝の切込み深さを大きくすると共に、各切込み溝の離間間隔を小さくし、外径側では、各切込み溝の切込み深さを小さくすると共に、各切込み溝の離間間隔を大きくする構成としてもよい。
【0082】
さらに、前記各実施例では、スクロール式流体機械としてスクロール式空気圧縮機を例に挙げて説明したが、例えば真空ポンプ,冷媒圧縮機等にも広く適用することができる。
【0083】
【発明の効果】
以上詳述した通り、請求項1に係る発明によれば、2つのスクロールのラップ部のうち少なくとも一方のラップ部に形成された凹溝内に装着したシール部材には、前記凹溝の内側面と対向する内周面に該シール部材の長さ方向に離間して斜めに切込んだ多数の切込み溝を設けて、前記凹溝の内側面との間をシールするリップ部を形成し、前記各切込み溝の深さを径方向内側に位置する内径側で大きくし、径方向外側に位置する外径側で小さくする構成としたから、シール部材をラップ部の凹溝に装着し易くすることができ、シール部材の装着作業の効率を高めることができると共に、シール部材の装着不良をなくすことができる。
【0084】
また、シール部材の内径側をラップ部の内径側に沿うように大きく湾曲させたときに、シール部材が、切込み溝を形成した部位で互いにずれ、シール部材の内周面の圧縮変形分を切込み溝によって吸収することができる。これにより、シール部材の内径部が台形状に変形するのを防止でき、シール部材の馴染みをよくでき、シール性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例によるスクロール式空気圧縮機の固定スクロール,旋回スクロールおよびシール部材等を示す縦断面図である。
【図2】図1中の矢示II−II方向拡大断面図である。
【図3】図2中の矢示III −III 方向拡大断面図である。
【図4】図1中のシール部材の内径側を示す斜視図である。
【図5】図1中のシール部材を長さ方向に展開した状態で示す平面図である。
【図6】本発明の第2の実施例によるシール部材を長さ方向に展開した状態で示す平面図である。
【図7】本発明の第3の実施例によるシール部材を長さ方向に展開した状態で示す平面図である。
【図8】本発明の第4の実施例によるシール部材を長さ方向に展開した状態で示す平面図である。
【符号の説明】
1 固定スクロール
2,10 鏡板
2A,10A 歯底面
3,11 ラップ部
3A,11A 歯先
5,13 凹溝
5A,13A 底面
5B,13B 側面
6,21,31,41 シール部材
6B,21B,31B,41B 内周面
7,22,32,42 切込み溝
8,23,33,43 リップ部
9 旋回スクロール
16 圧縮室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scroll fluid machine suitable for use in, for example, an air compressor, a refrigerant compressor, or a vacuum pump.
[0002]
[Prior art]
In general, a fixed scroll in which a spiral wrap portion is erected on the tooth bottom surface of the end plate, and a plurality of compression chambers provided between the fixed scroll and the fixed scroll on the end surface of the end plate. A orbiting scroll having a spiral wrap portion so as to define a groove, and a recess groove extending along a tooth tip of the wrap portion is formed in the wrap portion of the orbiting scroll or the fixed scroll. 2. Description of the Related Art A scroll type fluid machine is known in which a seal member that is slidably in contact with a mating tooth bottom surface is mounted in a groove.
[0003]
And what formed many incision grooves in the internal peripheral surface of the said sealing member which makes spiral shape is known by Japanese Utility Model Laid-Open No. 2-147888, for example. In such a conventional seal member, when the pressure of the compressed fluid acts on the inner peripheral surface of the seal member during a compression operation or the like, each cut groove of the seal member is expanded, and the free end side of each cut groove is There is an effect that it is pressed against the inner surface of the concave groove and exhibits sealing performance.
[0004]
[Problems to be solved by the invention]
By the way, the above-described sealing member according to the prior art is configured so that each cut groove is formed from the center side of the scroll, that is, the inner diameter side located on the radially inner side, to the peripheral side of the scroll, that is, the outer diameter side located on the radially outer side. Since the depth is uniform, the following problems occur.
[0005]
The seal member is usually molded in a circularly curved state using a mold or the like, or formed into a string shape. Therefore, before the seal member is mounted in the concave groove of the wrap portion, the seal member has a gently curved shape or a straight shape, unlike the spiral shape of the wrap portion. Then, when manufacturing the scroll fluid machine, an external force is applied to the seal member, and the seal member is elastically curved so as to follow the spiral shape of the wrap portion and is mounted in the concave groove of the lap portion.
[0006]
In this case, since the curvature of the wrap portion is large on the center side of the scroll, that is, the inner diameter side of the wrap portion, the inner diameter side of the seal member is placed on the wrap portion in order to install the seal member in the concave groove of the wrap portion. It must be greatly curved so as to follow the spiral shape of the part.
[0007]
However, in the seal member according to the prior art, the cut depth of each cut groove is uniform from the inner diameter side to the outer diameter side, and therefore the cut depth of each cut groove is not sufficient on the inner diameter side of the seal member. As a result, there is a problem that the seal member is difficult to bend and it is difficult to mount the inner diameter side of the seal member on the inner diameter side of the wrap portion having a large curvature.
[0008]
Further, when the inner diameter side of the seal member is greatly curved along the inner diameter side of the wrap portion, the inner diameter side cross section of the seal member is deformed into a trapezoidal shape. That is, when the seal member is largely bent, the outer peripheral curved surface of the seal member is pulled and deformed, and the inner peripheral curved surface of the seal member is compressed and deformed. Thereby, the cross-sectional shape on the inner diameter side of the seal member is deformed into a trapezoid. As a result, not only is it difficult to mount the inner diameter side of the seal member on the inner diameter side of the wrap part, but the inner diameter part of the seal member protrudes, causing excessive thrust force due to sliding contact with the other tooth bottom surface, There is a problem that fluid leakage occurs and compression performance and the like are reduced until the member becomes familiar.
[0009]
In addition, it is also conceivable that the cut grooves of the seal member are made to be deep uniformly as a whole from the inner diameter side to the outer diameter side. However, in this case, it becomes difficult to gently curve the outer diameter side of the sealing member so as to follow the spiral shape on the outer diameter side of the lap portion having a relatively small curvature. For this reason, if each notch groove of the sealing member is deepened uniformly from the inner diameter side to the outer diameter side, the frictional resistance increases on the outer diameter side of the sealing member, and the pressure of the compressed fluid during the compression operation is relatively low. There is a drawback that the floatability of the seal member is reduced on the peripheral side of the small scroll.
[0010]
Moreover, the sealing member by the prior art mentioned above has the uniform space | interval of each notch groove from the inner diameter side to the outer diameter side. That is, the cut grooves are formed at uniform spacing intervals in the length direction of the seal member. This also causes the problems described above.
[0011]
That is, in the conventional sealing member, since the spacing between the cut grooves is large, it is difficult to bend the inner diameter side greatly. As a result, there is a problem that it is difficult to curve the inner diameter side of the seal member along a spiral shape having a relatively large curvature on the inner diameter side of the wrap portion, and it is difficult to mount the seal member in the concave groove of the wrap portion.
[0012]
Note that it is also conceivable that the spacing between the cut grooves of the seal member is uniformly reduced as a whole from the inner diameter side to the outer diameter side. However, in this case as well, as described above, it is difficult to gently curve the outer diameter side of the seal member, the frictional resistance increases on the outer diameter side of the seal member, and the floatability of the seal member decreases on the peripheral side of the scroll. There is a drawback of doing.
[0013]
The present invention has been made in view of the above-described problems of the prior art, and the present invention can easily attach the seal member to the lap portion, and the scroll fluid machine can be easily attached to the seal member. The purpose is to provide.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention has a spiral wrap portion standing on the tooth bottom surface of the end plate Two scroll The Opposed The two Scroll wrap Between clubs Define multiple compression chambers And the two scroll of A concave groove extending along the tooth tip of the wrap portion is formed in at least one of the wrap portions, and a seal member that is slidably in contact with the tooth bottom surface of the other party is mounted in the concave groove. Adopted.
[0015]
In the invention according to claim 1, the seal member is spaced apart in the length direction of the seal member on the inner peripheral surface facing the inner surface of the groove. Cut diagonally A large number of slits Providing a lip portion that seals between the inner surface of the groove. Forming, Said That is, the depth of each cut groove is increased on the inner diameter side located on the radially inner side and decreased on the outer diameter side positioned on the radially outer side.
[0016]
From the above configuration, the inner diameter side of the seal member is more easily bent than the outer diameter side. That is, since the depth of each notch groove is large on the inner diameter side of the seal member, if the inner diameter side of the seal member is curved, the portions where the notch grooves are formed are displaced from each other and the seal member is easily bent.
[0017]
Accordingly, when the seal member is mounted in the concave groove of the wrap portion, the inner diameter side of the seal member can be easily curved so as to follow a spiral shape having a relatively large curvature on the wrap portion inner diameter side.
[0018]
On the other hand, since the curvature of the wrap portion is small on the outer diameter side of the seal member, it is sufficient that the seal member is gently curved when the seal member is attached to the wrap portion. Therefore, on the outer diameter side of the seal member, the depth of each cut groove is made smaller than that on the inner diameter side, whereby the outer diameter side of the seal member is gently curved to reduce the frictional resistance of the seal member. .
[0019]
Thereby, the floatability of the sealing member can be ensured even on the peripheral side of the scroll where the pressure of the compressed fluid during the compression operation is relatively small.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0023]
Here, FIGS. 1 to 5 show an example in which the scroll fluid machine according to the first embodiment of the present invention is applied to a scroll air compressor.
[0024]
In the figure, reference numeral 1 denotes a fixed scroll which is a part of the casing of the scroll type air compressor, and the fixed scroll 1 is provided with an opening end side of a casing body (not shown) formed in a generally covered cylinder shape. It is fixed to the opening end side so as to cover. The fixed scroll 1 is erected on a disc-shaped end plate 2 disposed so that the center thereof coincides with an axis O1-O1 of a drive shaft 14 described later, and a tooth bottom surface 2A of the end plate 2. The spiral wrap portion 3 and a support portion 4 which is located on the peripheral side of the end plate 2 and is formed in a cylindrical shape so as to surround the wrap portion 3 are roughly constituted.
[0025]
Further, as shown in FIG. 2, the wrap portion 3 of the fixed scroll 1 is formed in a spiral shape of, for example, about three and a half turns, with the center side being the winding start end and the peripheral side being the winding end end. The tooth tip 3A of the wrap portion 3 is separated from the tooth bottom surface 10A of the orbiting scroll 9 described later with a minute clearance C as shown in FIG.
[0026]
Reference numeral 5 denotes a concave groove formed on the tooth tip 3A side of the wrap portion 3, and the concave groove 5 is located in the middle portion in the width direction of the wrap portion 3 and has a substantially U-shaped cross section as shown in FIG. The bottom surface 5A and the left and right side surfaces 5B and 5C extend from the winding start end to the winding end end along the spiral shape of the wrap portion 3. A seal member 6 to be described later is mounted in the concave groove 5 so as to seal between the tooth bottom surface 10A of the orbiting scroll 9 as the counterpart.
[0027]
Reference numeral 6 denotes a seal member mounted in the concave groove 5 of the wrap portion 3, and the seal member 6 is an elastic resin material excellent in wear resistance and slidability, for example, a fluorine-based material such as polytetrafluoroethylene (PTFE). Using a resin, polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystal polymer (LCP) or polysulfone (PSF), etc. It is formed as a tip seal and extends in a spiral shape along the longitudinal direction of the groove 5.
[0028]
3 to 5, the seal member 6 has a spiral seal member and an upper surface 6A that is in sliding contact with the tooth bottom surface 10A when the seal member 6 is lifted by compressed air during the compression operation. 6, an inner peripheral surface 6 </ b> B located on the radially inner side, an outer peripheral surface 6 </ b> C located on the radially outer side of the seal member 6, an inner diameter side end surface 6 </ b> D located on the inner diameter side of the seal member 6, The outer diameter side end surface 6E is located on the radial side, and the lower surface 6F is placed on the bottom surface 5A of the groove 5 and receives the compressed air during the compression operation.
[0029]
Since the inner peripheral surface 6B and the outer peripheral surface 6C of the seal member 6 are inserted into the concave groove 5 with a slight gap, the inner peripheral surface 6B side of the seal member 6 is directed to the outer peripheral surface 6C side during the compression operation. When the pressure is higher, the outer peripheral surface 6C of the seal member 6 is in close contact with the side surface 5C of the concave groove 5, each cut groove 7 described later is expanded by the pressure of the compressed air, and each lip portion 8 is formed in the concave groove 5. The side surface 5B is sealed, and the seal member 6 floats from the bottom surface 5A of the concave groove 5 toward the tooth bottom surface 10A of the orbiting scroll 9 as the counterpart.
[0030]
Here, the seal member 6 is simply bent into a circular shape using a die or the like, or formed into a string shape, and when the scroll type air compressor is manufactured, the seal member 6 is attached as shown in FIG. The wrap portion 3 is elastically curved so as to follow the spiral shape of the wrap portion 3 and is mounted in the concave groove 5 of the wrap portion 3.
[0031]
7, 7,... Indicate cut grooves formed at predetermined intervals in the longitudinal direction of the seal member 6, and each of the cut grooves 7 inclines the inner circumferential surface 6B of the seal member 6 as shown in FIG. It is formed by cutting. At the time of compression operation, as shown by a two-dot chain line in FIG. 4, the cut grooves 7 are expanded by the compressed air flowing in the direction indicated by the arrow B in the concave groove 5, and the cuts in the inner peripheral surface 6B are made. A portion where the groove 7 is formed becomes a fin-shaped lip portion 8, 8,..., And is pressed against the side surface 5B of the groove 5.
[0032]
Further, as shown in FIG. 5, each of the cut grooves 7 is formed so that the cut depth is large on the inner diameter side located on the radially inner side of the seal member 6 and smaller on the outer diameter side located on the radially outer side. Yes. The cut depth of each cut groove 7 is formed so as to gradually and continuously increase from the outer diameter side to the inner diameter side of the seal member 6. Thereby, the inner diameter side of the seal member 6 is more easily bent than the outer diameter side.
[0033]
Here, the wrap portion 3 has a spiral shape having a large curvature on the center side of the fixed scroll 1 and a relatively small curvature on the peripheral side of the fixed scroll 1. For this reason, when the seal member 6 is mounted in the concave groove 5 of the lap portion 3, the inner diameter side of the seal member 6 needs to be bent more greatly than the outer diameter side. At this time, as described above, since the inner diameter side of the seal member 6 is more easily bent than the outer diameter side, the inner diameter side of the seal member 6 can be easily bent so as to follow the spiral shape of the wrap portion 3 having a large curvature. The seal member 6 can be easily mounted in the concave groove 5.
[0034]
Reference numeral 9 denotes a turning scroll provided in the casing body so as to be capable of turning in a manner facing the fixed scroll 1, and the turning scroll 9 includes an end plate 10 having a tooth bottom surface 10 A and a disc shape, A wrap part 11 which is erected from the tooth bottom surface 10A of the end plate 10 toward the end plate 2 of the fixed scroll 1 and is formed in a spiral like the lap part 3 of the fixed scroll 1, and provided at the center of the back side of the end plate 10 The boss portion 12 is rotatably attached to a crank 14A of a drive shaft 14 to be described later.
[0035]
Here, the wrap portion 11 of the orbiting scroll 9 is also formed in a spiral shape of, for example, about three and a half turns like the wrap portion 3 of the fixed scroll 1, and the bottom surface 13A and the left and right sides are formed on the tooth tip 11A side. A concave groove 13 having a U-shaped cross section is formed from the side surfaces 13B and 13C.
[0036]
Further, in the concave groove 13 of the wrap portion 11, a seal member 6 having a large number of cut grooves 7, 7,... Is mounted in the same manner as the fixed scroll 1 side.
[0037]
Reference numeral 14 denotes a drive shaft that is rotatably provided on the casing body. The drive shaft 14 is a crank 14A having a distal end extending into the casing body. Is eccentric by a predetermined dimension δ. The boss 12 of the orbiting scroll 9 is turnably attached to the crank 14A of the drive shaft 14 via an orbiting bearing 15, and the orbiting scroll 9 is orbited via an anti-rotation mechanism (not shown). Is given.
[0038]
Here, the lap portion 11 of the orbiting scroll 9 is disposed so as to be overlapped with the lap portion 3 of the fixed scroll 1 while being shifted by a predetermined angle in the circumferential direction, and as shown in FIG. Are formed with a plurality of crescent-shaped compression chambers 16, 16,. When the orbiting scroll 9 is orbited with respect to the fixed scroll 1, the volume of each compression chamber 16 is continuously reduced, and the air sucked from the suction port 17 described later is compressed. .
[0039]
Reference numerals 17 and 18 denote suction ports and discharge ports formed in the fixed scroll 1, and the suction ports 17 are formed on the peripheral side of the end plate 2 so as to communicate with the compression chamber 16 located on the most peripheral side. 18 is drilled in the central part of the end plate 2 so as to communicate with the compression chamber 16 located closest to the center.
[0040]
The scroll type air compressor according to this embodiment has the above-described configuration, and this operation will be described next.
[0041]
First, when the drive shaft 14 is rotationally driven by a drive source (not shown) such as a motor from the outside of the casing, this rotation is transmitted from the crank 14A of the drive shaft 14 to the orbiting scroll 9 via the orbiting bearing 15, The orbiting scroll 9 performs an orbiting motion with an orbiting radius of dimension δ around the axis O1 -O1 of the drive shaft 14.
[0042]
The compression chambers 16, 16,... Defined between the wrap portions 3, 11 by this turning motion are continuously reduced toward the center side, and the air sucked from the suction port 17 is sequentially compressed. The compressed air is discharged from the discharge port 18 toward an external air tank (not shown) or the like.
[0043]
Here, when the compression operation is started, a part of the compressed air enters the concave groove 5 (13) of the lap portion 3 (11) from the compression chamber 16 on the high pressure side in the direction of arrow A shown in FIG. The seal member 6 is lifted from the bottom surface 5A (13A) of the concave groove 5 (13) by receiving the pressure of the compressed air at the lower surface 6F serving as a pressure receiving surface, and the tooth bottom surface of the facing end plate 10 (2) is opposed. It is pressed toward 10A (2A). As a result, the upper surface 6A of the sealing member 6 is in sliding contact with the other tooth bottom surface 10A (2A), and each compression chamber 16 defined between the wrap portions 3 (11) is hermetically sealed.
[0044]
Also, the compressed air that has entered the groove 5 (13) in the direction of arrow A in FIG. 3 is directed from the center side of the high pressure toward the peripheral side of the low pressure along the spiral shape of the groove 5 (13). 2 in the direction of arrow B in FIG. At this time, each cut groove 7 of the seal member 6 expands as shown by a two-dot chain line in FIG. 2 or FIG. 4, and each lip portion 8 is pressed against the side surface 5B (13B) of the concave groove 5 (13). . This prevents the compressed air from flowing between the side surface 5B (13B) of the concave groove 5 (13) and the seal member 6 and leaking from the compression chamber 16 on the central side to the compression chamber 16 on the peripheral side. it can.
[0045]
By the way, at the time of manufacturing the scroll type air compressor, when the seal member 6 is mounted on the wrap portion 3 on the fixed scroll 1 side, the seal member 6 is bent so as to follow the spiral shape of the wrap portion 3. In particular, since the curvature of the wrap portion 3 is larger toward the center of the fixed scroll 1 and the curvature on the inner diameter side of the wrap portion 3 is larger than the outer diameter side, the inner diameter side of the seal member 6 is compared with the outer diameter side. Therefore, it is necessary to bend greatly.
[0046]
However, in the sealing member 6 according to the present embodiment, a large number of cutting grooves 7 are formed on the inner peripheral surface 16B, and the cutting depth of each cutting groove 7 formed on the inner diameter side of the sealing member 6 is the outer diameter side. It is larger than the cutting depth of each cutting groove 7 formed in the above. For this reason, when an external force is applied to the seal member 6 and the seal member 6 is bent, the portions where the respective cut grooves 7 are formed are displaced from each other, so that the seal member 6 is easily bent. In particular, on the inner diameter side of the seal member 6, the cutting depth of each cutting groove 7 is large, so that the inner diameter side of the seal member 6 is more easily bent than the outer diameter side.
[0047]
Thereby, the inner diameter side of the seal member 6 can be easily bent so as to follow a spiral shape having a large curvature on the inner diameter side of the wrap portion 3.
[0048]
On the other hand, since the curvature of the wrap portion 3 is small on the outer diameter side of the seal member 6, the seal member 6 may be gently curved when the seal member 6 is attached to the wrap portion 3. Therefore, on the outer diameter side of the seal member 6, the outer diameter side of the seal member 6 is gently curved by making the depth of each cut groove 7 smaller than the inner diameter side. Thereby, the frictional resistance of the seal member 6 can be reduced, and the floatability of the seal member 6 can be ensured even at the periphery of the scroll where the pressure of the compressed air during the compression operation is relatively small.
[0049]
Furthermore, the sealing member 6 according to the present embodiment has the following operational effects by making the depth of cut of each cut groove 7 formed on the inner diameter side larger than that on the outer diameter side.
[0050]
That is, in the conventional seal member, when the seal member is greatly curved so as to follow a spiral shape having a large curvature on the inner diameter side of the wrap portion, the outer peripheral surface side of the seal member is elastically deformed and the inner side of the seal member The peripheral surface side is elastically compressed and deformed. For this reason, the cross-sectional shape of the seal member is trapezoidal. As a result, in the prior art, the height dimension (dimension between the upper surface and the lower surface) increases on the outer peripheral surface side of the seal member, and the upper surface of the seal member hits the other tooth bottom surface, resulting in poor sealing performance. there were. Further, in the prior art, since the upper surface of the seal member may come into contact with the other tooth bottom surface as described above, the seal member is familiar and until the upper surface of the seal member is in full sliding contact with the other tooth bottom surface, There was a problem of having to run for a long time.
[0051]
However, the sealing member 6 according to the present embodiment can solve this problem. That is, since the cut depth of each cut groove 7 of the seal member 6 according to the present embodiment is large on the inner diameter side, each cut groove 7 is formed when the seal member 6 is bent along the spiral shape of the wrap portion 3. The parts are shifted from each other. Thereby, the cross-sectional shape of the seal member 6 does not deform into a trapezoidal shape.
[0052]
Therefore, in the seal member 6 according to the present embodiment, it is possible to prevent the upper surface 6A of the seal member 6 from coming into contact with the other tooth bottom surface 10A, and to improve the sealing performance during the compression operation. In particular, from the beginning of installation of the seal member 6, the upper surface 6A of the seal member 6 can be brought into full sliding contact with the other tooth bottom surface 10A to exhibit the sealing performance, and the familiar operation can be greatly shortened.
[0053]
The same applies to the seal member 6 attached to the lap portion 11 of the orbiting scroll 9.
[0054]
Thus, according to the present embodiment, the depth of cut of each cut groove 7 formed in the inner peripheral surface 6B of the seal member 6 is increased on the inner diameter side of the seal member 6 and decreased on the outer diameter side. Therefore, the inner diameter side of the seal member 6 can be bent more easily than the outer diameter side.
[0055]
Therefore, when the seal member 6 is mounted on the lap portion 3 (11), the mounting operation can be facilitated and speeded up, and the efficiency of the mounting operation can be improved. Thereby, productivity of a scroll type air compressor can be improved and a yield can be improved.
[0056]
Moreover, even if the sealing member 6 is greatly curved to be attached to the wrap portion 3 (11), the cross-sectional shape of the sealing member 6 can be prevented from being deformed into a trapezoidal shape. Thereby, while being able to fully exhibit the sealing performance of the sealing member 6 from a mounting place, it becomes possible to shorten familiar operation.
[0057]
Further, when the cut groove 7 is formed in the seal member 6 in the production of the seal member 6, it is only necessary to change the cut depth without changing the shape of the tooth of the cutter, and each cut groove 7 can be easily processed. And inexpensively.
[0058]
Next, a case where the scroll fluid machine according to the second embodiment of the present invention is applied to a scroll air compressor will be described as an example. The feature of this embodiment is provided on the inner peripheral surface of the seal member. Further, the depth of cut of each cut groove is increased on the inner diameter side of the seal member and decreased on the outer diameter side, and the depth of cut of each cut groove is two steps on the inner diameter side and the outer diameter side of the seal member. It is in having been set to.
[0059]
Here, FIG. 6 shows a state in which the seal member mounted in the concave groove provided in the wrap portion of the scroll is developed in the length direction in the scroll type air compressor according to the present embodiment.
[0060]
In the figure, reference numeral 21 denotes a sealing member according to the present embodiment, and the sealing member 21 is an elastic resin excellent in wear resistance and sliding property, similar to the sealing member 6 described in the first embodiment. It is formed as a long tip seal having a rectangular cross section depending on the material, and is composed of an upper surface 21A, an inner peripheral surface 21B, an outer peripheral surface 21C, an inner diameter side end surface 21D, an outer diameter side end surface 21E, and a lower surface. .. Are formed on the inner peripheral surface 21B of the seal member 21. During the compression operation, the respective cut grooves 22 are expanded by the compressed air, and each of the inner peripheral surfaces 21B. The portion where the cut groove 22 is formed becomes lip portions 23, 23,... And is pressed against the inner surface of the groove.
[0061]
Further, the cut depth of each cut groove 22 provided in the seal member 21 increases on the inner diameter side of the seal member 21 and decreases on the outer diameter side of the seal member 21, and the cut depth dimension is the seal depth. The inner diameter side and the outer diameter side of the member 21 are set in two stages.
[0062]
The scroll type air compressor according to the present embodiment configured as described above also exhibits the same operational effects as those of the first embodiment described above.
[0063]
In this embodiment, the cut depth dimension of each cut groove 22 provided in the seal member 21 is set in two stages on the inner diameter side and the outer diameter side of the seal member 21, but the present invention is not limited to this. The depth of cut of each cut groove 22 may be set so as to increase in multiple steps from the outer diameter side to the inner diameter side of the seal member 21, and in accordance with the required performance of the scroll type air compressor. You may set so that the cutting depth of each cutting groove 22 may be changed suitably.
[0064]
Next, the case where the scroll type fluid machine according to the third embodiment of the present invention is applied to a scroll type air compressor will be described as an example. The feature of this embodiment is provided on the inner peripheral surface of the seal member. Further, the spacing between the cut grooves is reduced on the inner diameter side located on the radially inner side and increased on the outer diameter side located on the radially outer side.
[0065]
Here, FIG. 7 shows a state in which the seal member mounted in the concave groove provided in the wrap portion of the scroll is developed in the length direction in the scroll type air compressor according to the present embodiment.
[0066]
In the figure, reference numeral 31 denotes a sealing member according to the present embodiment, and the sealing member 31 is an elastic resin excellent in wear resistance and slidability, similar to the sealing member 6 described in the first embodiment. It is formed as a long tip seal having a quadrangular cross section depending on the material, and includes an upper surface 31A, an inner peripheral surface 31B, an outer peripheral surface 31C, an inner diameter side end surface 31D, an outer diameter side end surface 31E, and a lower surface.
[0067]
Further, a large number of cut grooves 32, 32,... Are formed on the inner peripheral surface 31B of the seal member 31. During the compression operation, the cut grooves 32 are expanded by the compressed air, and the portions of the inner peripheral surface 31B where the cut grooves 32 are formed become fin-shaped lip portions 33, 33,. It is pressed against the inner surface.
[0068]
Further, each of the cut grooves 32 is formed such that the separation interval is small on the inner diameter side located on the radially inner side of the seal member 31 and larger on the outer diameter side located on the radially outer side. That is, the cut grooves 32 are formed on the inner diameter side of the seal member 31 at a narrower interval than the outer diameter side of the seal member 31, and the cut grooves 32 are formed on the outer diameter side of the seal member 31. The seal member 31 is formed at a wider interval than the inner diameter side. The spacing between the cut grooves 32 is gradually and continuously narrowed from the outer diameter side to the inner diameter side of the seal member 31.
[0069]
The scroll type air compressor according to this embodiment has the above-described configuration, and the basic operation and effect thereof are not particularly different from those of the first embodiment described above.
[0070]
That is, since the spacing between the cut grooves 32 formed on the inner peripheral surface 31B of the seal member 31 is reduced on the inner diameter side of the seal member 31 and increased on the outer diameter side, the inner diameter side of the seal member 31 is increased. Can be bent more easily than the outer diameter side, and the seal member 31 can be easily mounted in the concave groove of the wrap portion.
[0071]
On the other hand, since the seal member 31 can be gently curved on the outer diameter side of the seal member 31, the frictional resistance of the seal member 31 can be reduced, and the seal member 31 can also be provided on the scroll peripheral side where the pressure is relatively low during the compression operation. Floatability can be secured.
[0072]
In addition, since a large number of each cut groove 32 is formed on the inner diameter side of the seal member 31 with a small separation interval, each cut is made when the seal member 31 is greatly curved to be mounted in the concave groove of the wrap portion. Since the portions where the grooves 32 are formed are shifted from each other, the upper surface 31A of the seal member 31 does not rise. Therefore, the sealing performance of the sealing member 31 can be sufficiently exhibited from the mounting place, and the familiar operation can be shortened.
[0073]
Further, when forming the cut grooves 32 in the seal member 31 in the manufacture of the seal member 31, it is only necessary to change the interval for making the cuts without changing the shape of the tooth tips of the cutter. Can be easily and inexpensively performed.
[0074]
Next, the case where the scroll type fluid machine according to the fourth embodiment of the present invention is applied to a scroll type air compressor will be described as an example. The feature of this embodiment is provided on the inner peripheral surface of the seal member. In addition, the spacing between the slits is reduced on the inner diameter side of the seal member and increased on the outer diameter side, and the spacing between the slit grooves is set in two stages on the inner diameter side and the outer diameter side of the seal member. There is.
[0075]
Here, FIG. 8 shows the scroll-type air compressor according to the present embodiment in a state in which the seal member mounted in the concave groove provided in the wrap portion of the scroll is developed in the length direction.
[0076]
In the figure, reference numeral 41 denotes a sealing member according to the present embodiment, and the sealing member 41 is an elastic resin excellent in wear resistance and slidability, similar to the sealing member 31 described in the third embodiment. It is formed as a long tip seal having a rectangular cross section depending on the material, and is composed of an upper surface 41A, an inner peripheral surface 41B, an outer peripheral surface 41C, an inner diameter side end surface 41D, an outer diameter side end surface 41E, and a lower surface. .. Are formed on the inner peripheral surface 41B of the seal member 41. During the compression operation, each of the cut grooves 42 is expanded by compressed air, and each of the inner peripheral surfaces 41B. The portion where the cut groove 42 is formed becomes lip portions 43, 43,... And is pressed against the inner surface of the groove.
[0077]
In addition, the separation interval of each cut groove 42 provided in the seal member 41 is reduced on the inner diameter side of the seal member 41, is increased on the outer diameter side of the seal member 41, and the separation interval of each cut groove 42 is increased. The inner diameter side and the outer diameter side of the seal member 41 are set in two stages.
[0078]
The scroll type air compressor according to the present embodiment configured as described above also exhibits the same operational effects as those of the third embodiment described above.
[0079]
In this embodiment, the depth of cut of each cut groove 42 provided in the seal member 41 is set in two stages on the inner diameter side and the outer diameter side of the seal member 41. However, the present invention is not limited to this. The spacing between the cut grooves 42 may be set so as to decrease in a multi-step manner from the outer diameter side to the inner diameter side of the seal member 41, and each cut may be made in accordance with the required performance of the scroll type air compressor. You may set so that the space | interval spacing of the groove | channel 42 may be changed suitably.
[0080]
Further, as described in the first embodiment or the second embodiment, the cut depth of each cut groove of the seal member is increased on the inner diameter side located on the radially inner side, and the outer depth located on the radially outer side is increased. As described in the third embodiment or the fourth embodiment, the spacing between the cut grooves of the seal member is reduced on the inner diameter side located on the inner side in the radial direction, and on the outer side in the radial direction. You may combine with the structure enlarged on the outer-diameter side located.
[0081]
That is, on the inner diameter side of the seal member, the cut depth of each cut groove is increased and the spacing between the cut grooves is decreased, and on the outer diameter side, the cut depth of each cut groove is decreased and each cut depth is reduced. It is good also as a structure which enlarges the space | interval of a groove | channel.
[0082]
Further, in each of the above-described embodiments, the scroll type air compressor has been described as an example of the scroll type fluid machine. However, the present invention can be widely applied to, for example, a vacuum pump, a refrigerant compressor, and the like.
[0083]
【The invention's effect】
As detailed above, according to the invention of claim 1, Two Scroll Le The seal member mounted in the groove formed in at least one of the wrap portions is spaced apart in the length direction of the seal member on the inner peripheral surface facing the inner surface of the groove. Cut diagonally A large number of slits Providing a lip portion that seals between the inner surface of the groove. Forming, Said The depth of each cut groove is increased on the inner diameter side located radially inward and decreased on the outer diameter side positioned radially outer, so that the seal member can be easily mounted in the concave groove of the wrap portion. It is possible to increase the efficiency of the mounting operation of the seal member and eliminate the mounting failure of the seal member.
[0084]
In addition, when the inner diameter side of the seal member is greatly curved so as to follow the inner diameter side of the wrap portion, the seal member is displaced from each other at the portion where the cut groove is formed, and the compression deformation of the inner peripheral surface of the seal member is cut. Can be absorbed by the groove. Thereby, it can prevent that the internal diameter part of a sealing member deform | transforms into a trapezoid shape, the familiarity of a sealing member can be improved, and a sealing performance can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a fixed scroll, a turning scroll, a seal member and the like of a scroll type air compressor according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view in the direction of arrows II-II in FIG.
3 is an enlarged sectional view in the direction of arrows III-III in FIG.
4 is a perspective view showing an inner diameter side of the seal member in FIG. 1. FIG.
FIG. 5 is a plan view showing the seal member in FIG. 1 in a developed state in the length direction.
FIG. 6 is a plan view showing a seal member according to a second embodiment of the present invention in a developed state in the length direction.
FIG. 7 is a plan view showing a seal member according to a third embodiment of the present invention in a developed state in the length direction.
FIG. 8 is a plan view showing a seal member according to a fourth embodiment of the present invention in a developed state in the length direction.
[Explanation of symbols]
1 Fixed scroll
2,10 End plate
2A, 10A tooth bottom
3,11 Lap section
3A, 11A tooth tip
5,13 Groove
5A, 13A Bottom
5B, 13B side
6, 21, 31, 41 Seal member
6B, 21B, 31B, 41B Inner peripheral surface
7, 22, 32, 42 slot
8, 23, 33, 43 Lip part
9 Orbiting scroll
16 Compression chamber

Claims (1)

鏡板の歯底面に渦巻状のラップ部が立設された2つのスクロールを対向して設け、該2つのスクロールのラップ部の間で複数の圧縮室を画成し、前記2つのスクロールのラップ部のうち少なくとも一方のラップ部には、該ラップ部の歯先に沿って延びる凹溝を形成し、該凹溝内には相手方の歯底面に摺接するシール部材を装着してなるスクロール式流体機械において、
前記シール部材には、前記凹溝の内側面と対向する内周面に該シール部材の長さ方向に離間して斜めに切込んだ多数の切込み溝を設けて、前記凹溝の内側面との間をシールするリップ部を形成し、前記各切込み溝の深さを径方向内側に位置する内径側で大きくし、径方向外側に位置する外径側で小さくしたことを特徴とするスクロール式流体機械。
Two scrolls each having a spiral wrap portion standing on the tooth bottom surface of the end plate are opposed to each other, and a plurality of compression chambers are defined between the two scroll wrap portions. A scroll type fluid machine in which a concave groove extending along the tooth tip of the wrap portion is formed in at least one of the lap portions, and a seal member slidably contacting the other tooth bottom surface is mounted in the concave groove. In
The seal member is provided with a large number of cut grooves that are obliquely cut away in the length direction of the seal member on the inner peripheral surface facing the inner surface of the groove, and the inner surface of the groove A scroll type characterized by forming a lip portion that seals between the gaps, and increasing the depth of each of the cut grooves on the inner diameter side located radially inward and decreasing the outer diameter side located radially outward Fluid machinery.
JP23253396A 1996-08-14 1996-08-14 Scroll type fluid machine Expired - Fee Related JP3842343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23253396A JP3842343B2 (en) 1996-08-14 1996-08-14 Scroll type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23253396A JP3842343B2 (en) 1996-08-14 1996-08-14 Scroll type fluid machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006159995A Division JP2006291968A (en) 2006-06-08 2006-06-08 Scroll type fluid machine

Publications (2)

Publication Number Publication Date
JPH1061570A JPH1061570A (en) 1998-03-03
JP3842343B2 true JP3842343B2 (en) 2006-11-08

Family

ID=16940832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23253396A Expired - Fee Related JP3842343B2 (en) 1996-08-14 1996-08-14 Scroll type fluid machine

Country Status (1)

Country Link
JP (1) JP3842343B2 (en)

Also Published As

Publication number Publication date
JPH1061570A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
JP5352384B2 (en) Scroll type fluid machine
US20080159894A1 (en) Scroll fluid machine
JP6459740B2 (en) Fluid pump
KR100319011B1 (en) 2-stage vacuum pumping device
US6808373B2 (en) Scroll fluid machine having projections on a wrap peripheral surface
JP4499606B2 (en) Scroll type fluid machine
JP3842343B2 (en) Scroll type fluid machine
JPH1047266A (en) Scroll fluid machinery
JP3583546B2 (en) Scroll type fluid machine
JP2006291968A (en) Scroll type fluid machine
JP4303182B2 (en) Scroll type fluid machine
JPH11280676A (en) Scroll type fluid machinery
JP5175497B2 (en) Scroll type fluid machine
JP2004092480A (en) Scroll type fluid machine
JP6130271B2 (en) Scroll compressor
JP2008057465A (en) Scroll type fluid machine
JPH09250467A (en) Scroll type fluid machine
JP2010144522A (en) Scroll compressor
JPH09250466A (en) Scroll type fluid machine
JP3768610B2 (en) Scroll type fluid machine
JP3338560B2 (en) Scroll type fluid machine
JP4847054B2 (en) Scroll type fluid machine
JPH0932757A (en) Scroll-type fluid machine
JPH09256973A (en) Scroll type fluid machinery
JP3338568B2 (en) Scroll type fluid machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees