JP3842090B2 - Phytosphingosine derivative having anticancer activity - Google Patents

Phytosphingosine derivative having anticancer activity Download PDF

Info

Publication number
JP3842090B2
JP3842090B2 JP2001264081A JP2001264081A JP3842090B2 JP 3842090 B2 JP3842090 B2 JP 3842090B2 JP 2001264081 A JP2001264081 A JP 2001264081A JP 2001264081 A JP2001264081 A JP 2001264081A JP 3842090 B2 JP3842090 B2 JP 3842090B2
Authority
JP
Japan
Prior art keywords
tmp
liposomes
metastasis
cancer
liposome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001264081A
Other languages
Japanese (ja)
Other versions
JP2003081819A (en
Inventor
ソンコン ナムゴン
ソンイ パク
Original Assignee
チャームゾーン カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チャームゾーン カンパニー リミテッド filed Critical チャームゾーン カンパニー リミテッド
Priority to JP2001264081A priority Critical patent/JP3842090B2/en
Publication of JP2003081819A publication Critical patent/JP2003081819A/en
Application granted granted Critical
Publication of JP3842090B2 publication Critical patent/JP3842090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、抗癌活性を示すフィトスフィンゴシン誘導体に関し、さらに詳細には、下記一般式(I)で表されるものであって、抗癌活性を示すフィトスフィンゴシン誘導体とそれを有効成分として含む抗癌剤に関する。
化2

Figure 0003842090
(式中、
1、RおよびRは水素またはC〜Cのアルキル基を示し、但しR1、RおよびRが同時に水素原子である場合、及びR 1 、R およびR のいずれか1つがアルキル基であって2つが水素原子である場合を除く;Xはハロゲン、水酸化基、スルホン酸アルキル基、スルホン酸アリール基を含む原子または原子団を示す)。
【0002】
【従来の技術】
一般に、細胞膜を構成する脂質は、リン脂質(Phospholipid)、糖脂質(glycolipid)、スフィンゴリピド(sphingolipid)からなる。これらの分子は、両親媒性(amphipathic)物質であって、水に分散すると自発的に細胞膜と類似した閉鎖型小胞体を形成するが、これをリポソーム(liposomes)という。リポソームは、前述の脂質のいずれかまたは種々の脂質に製造できるが、これを医薬品に適用する場合、水溶性物質は主として内部水相に封入され、脂溶性物質は膜の間に介されて種々の医薬物質を伝達する媒介体として活用されている。また、リポソームは、治療すべき患部に薬物を正確に伝達し、リポソームによる薬物送達は小量でも可能であるため、多重薬剤耐性を克服するのに役立つ。最近は、薬物、抗原、遺伝子の伝達媒体として脚光を浴びており、特にリポソームを用いた薬物伝達媒体として抗癌剤であるドキソルビシン(doxorubicin)と抗真菌剤であるアムホテリシンB(amphotericin B)およびその他医薬品をリポソーム製剤化し、商品として市販している趨勢である。その他に、リポソームは化粧品にも広く用いられている[M. Grunaug et al., Eur. J. Med. Res. 21, 13-19, 1998; D.S. Alberts abd D.J. Garcia, Drugs, 54, 30-35, 1997; F. Braun, et al., Transplant Proc. 30, 1481-1483, 1998; V. Heinemann et al., Antimicrob. Agents Chemother. 41, 1275-1280, 1997; N. Weiner et al., J. Drug. Target 2, 405-410, 1994]。
【0003】
人体に存在するスフィンゴイド塩基(sphingoid base)としては、フィトスフィンゴシン(phytosphingosine, PhytoS)、スフィンゴシン(sphingosine, SPN)、スフィンガニン(sphinganine)がある。これらは、構造的に18個の炭素原子から構成された骨格を有するアミノアルコール(amino alcohol)と特徴づけられる。これらの化合物は、数個の立体中心を有しているが、これらの3番位置にD−配列(D-erythro)が自然から発見されている。SPNとスフィンガニンは体のすべての組織から見出せることに対し、PhytoSは角質層でのみ限定的に存在する。SPNとその誘導体に対する研究は1990年代に始まり、PKC(protein kinase C)活性の強力な抑制剤という事実が明らかになった後活発に進行された。その後、SPNとその誘導体は低い濃度においても数多くの細胞機能(cellular function)に関与するという事実が明らかになった[D.J. Bibel et al., Clin. Exper. Dermatol. 20, 395-400, 1995; D.J. Bibel, J. Invest. Dermatol. 98, 269-273, 1992; Y.A. Hannun, Science, 274, 1855-1859, 1996]。しかし、このような活性は大部分角質層でのみ示されるのでPhytoSに対する関心は増加したが、非常に高値の商品化された試薬であるため、その誘導体合成とこれらの生理活性(biological activity)についてはほとんど知られていない。特に、SPN誘導体であるN,N−ジメチルスフィンゴシン(N,N-dimethyl sphingosine, DMS)とN,N,N−トリメチルスフィンゴシニウムハライド (N,N,N-trimethyl sphingosinium halide, 以下「TMS・hal」)は、SPNよりPKCに対してさらに強力な阻害活性を示し、in vitro、in vivo系で種々の癌細胞の成長を抑制すると知られている。特に、TMS・halは、卵黄ホスファチジルコリン(egg phosphatidylcholine, egg PC):コレステロール(cholesterol, Chol):TMS・hal= 4.5:4.5:1(モル比)のリポソームを用いたB16/BL6黒色腫細胞株(melanoma cell line)において抗癌(antitumor)、転移抑制(antimetastasis)効果が確認された例がある。しかし、TMS・halがこのような効果を示すためには、0.1〜0.3mg/mouse程と相当多量の薬物が要求されるため、溶血現状(hemolysis)、血色素尿症(hemoglobinuria)、炎症反応(inflammatory response)のような副作用が示される。このような毒性を減らすためにリポソーム技術を適用したが、in vivo系でリポソームTMS・halは毒性がなく、リポソームを用いていないTMS・halより癌細胞の成長と転移の防止にさらに強力な抑制効果を示すことを観察することができた [Y.S. Park, S. Hakomori, S. Kawa, F. Ruan, and Y. Igarashi. Cancer Res. 54, 2213-2217, 1994]。
【0004】
SPNとほとんど類似した構造を有するPhytoSに対する研究としては、in vitro系でKK-1、 COS-7、そしてMSC-1細胞における遺伝子伝達(DNA transfection)程度を観察し、補助脂質(helper lipid)のフォームレーションの違いによる効率性を比べて発表した例がある[T. paukku et al., Chem. Phys. Lipids, 87, 23-29, 1997]。また、PhytoSは種々の微細物(microorganism)において強力な抗菌活性(anti-microbial activity)を示し、PKC抑制剤としてインターロイキン(interleukin)分泌を増加させて皮膚刺激を減らすと知られている。phytoS誘導体であるN,N,N−トリメチルフィトスフィンゴシニウムハライド(N,N,N-trimethyl phytosphingosinium halide, 以下「TMP・hal」)は、国内外では最初に皮膚保護のための用途に限定して化粧品に添加する組成物の一つとして特許出願、公開[韓国特許公開番号第1999−0078610号]されている状態であるが、TMPを抗癌剤として用いた例は国内・外的にまだない。
【0005】
【発明が解決しようとする課題】
そこで、本発明者らは、前記一般式(I)で表されるフィトスフィンゴシン誘導体を種々の組成のリポソームに製造し、その癌転移および癌成長抑制効果を確認することによって、本発明を完成するに至った。
【0006】
したがって、本発明は、前記一般式(I)で表される抗癌活性を有するフィトスフィンゴシン誘導体およびそれを有効成分として含む抗癌剤を提供することにその目的がある。
【0007】
【課題を解決するための手段】
本発明は、抗癌活性を有し、下記一般式(I)で表されるフィトスフィンゴシン誘導体およびそれを有効成分として含む抗癌剤をその特徴とする:
【0008】
【化3】
Figure 0003842090
【0009】
式中、R1、RおよびRは水素またはC〜Cのアルキル基を示し、但しR1、RおよびRが同時に水素原子である場合、及びR 1 、R およびR のいずれか1つがアルキル基であって2つが水素原子である場合を除く;Xはハロゲン、水酸化基、スルホン酸アルキル基、スルホン酸アリール基を含む原子または原子団を示す。
【0010】
また、前記フィトスフィンゴシン誘導体をリポソームまたはエマルジョンの形態で含む抗癌剤および、前記フィトスフィンゴシン誘導体とともに血管新生抑制剤または既存の細胞毒性活性を有する抗癌剤であるドキソルビシンを含む抗癌剤を含む。
【0011】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明は、抗癌活性を有する前記一般式(I)で表されるフィトスフィンゴシン誘導体(以下、「TMP」)をリポソームまたはエマルジョンの形態に製剤化した抗癌剤に関する。本発明によるフィトスフィンゴシン誘導体において、N,N,N−トリメチルフィトスフィンゴシニウムハライド(TMP・hal)が好ましく、N,N,N−トリメチルフィトスフィンゴシニウムヨージド(N,N,N-trimethyl phytosphingosinium iodide、以下「TMP・I」)が特に好ましい。
【0012】
本発明においては、種々の組成の転移抑制リポソームを製造したが、DPPC/Chol/TMPまたはDPPC/Chol/PEG-PE/TMP組成は癌の転移抑制能に優れると判断され、新生血管抑制剤とともに使用する場合相乗効果があることが分かった。DPPC/Chol/TMPリポソームは癌の転移を抑制するだけでなく、LLC肺癌細胞の成長を著く抑制することが分かった。
【0013】
本発明においては、既存の細胞毒性活性を有する抗癌剤(ドキソルビシン)とともに転移抑制を比べたとき、ドキソルビシン単独で使用した場合より、TMPリポソームとともに投与した場合その効能はさらに増加することが分かった。
【0014】
本発明においては、TMPリポソームの細胞毒性効果をヒトの肝癌細胞株とマウス黒色腫細胞株を用いて観察した結果、ヒトの肝癌細胞株は細胞毒性効果を示すが、黒色腫細胞株は細胞毒性効果を示さない。また、マウスにおいて簡易急性毒性を測定したときに何らかの毒性が観察されなかった。
【0015】
本発明による抗癌剤は、前記一般式(I)で表されるフィトスフィンゴシン誘導体を有効成分として含み、薬剤学的に許容可能な担体(carrier)、賦形剤(forming agent)、稀釈剤(diluent)などと混合して粉末、顆粒、カプセルまたは注射剤などに製造し得る。また、経口投与および非経口投与が可能であり、特にリポソームとエマルジョンの形態に製剤化して投与する場合、生体利用率においてさらに効果的である。本発明による抗癌剤の投与量は、体内吸収度、体重、患者の年齢、性別、健康状態、食餌、投与時間、投与方法、排泄率、疾患の重症度などによって異なり得る。前記抗癌剤は、体重1kg当り約0.5〜1mgを投与することが好ましい。したがって、本発明による抗癌剤は有効量の範囲を考慮して製造し、このように剤形化された単位投与型製剤は必要に応じて薬剤の投与を監視するか、観察する専門家の判断と個人の要求に応じて専門化された投薬法を用いるか、一定時間間隔で数回投与することができる。
【0016】
【実施例】
以下、本発明を下記実施例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されない。
実施例1:N,N,N−トリメチルフィトスフィンゴシニウムヨージド(TMP・I)の合成
【0017】
フィトスフィンゴシン(phytosphingosine, 0.30 g, 0.946 mmol)とKCO(0.523 g, 3.79 mmol)をメタノール3mlに溶かし、攪拌しながらヨードメタン(iodomethane, 0.298 ml, 4.73 mmol)を加えた後、50℃で4時間攪拌した。溶媒を減圧蒸留し、反応混合物に蒸留水4mlを加えた後、酢酸エチル8mlで抽出してNaSOで乾燥、濾過した。溶媒を減圧乾燥して白色の固体生成物0.26gを得た。
収率:76%
融点:210〜213℃
IR(KBr)υmax : 3309 (OH), 2918, 2850 (C-H) cm-1
1H NMR (600MHz, DMSO-d6) :δ 3.95 (dd, 1H, CHO, J = 14.4 Hz), 3.89 (dd, 1H, CHO, J = 14.4 Hz), 3.76 (d, 1H, J = 8.7 Hz), 3.6 (dd, 1H), 3.11 (s, 9H, N+CH), 1.68 (m, 1H, CH), 1.48 (m, 1H, CH), 1.23 (s, 24H, CH), 0.84 (t, 3H, CH3) ppm
13C NMR (600MHz, DMSO-d6) : δ 76.80, 71.01, 55.69, 52.18, 33.21, 31.21, 30.60, 29.15, 29.03, 28.99, 28.93, 28.62, 24.87, 22.00, 13.84 ppm
MS (FAB, Glycerol, m/z) : 361 (M+).
実施例2:N,N,N−トリメチルフィトスフィンゴシニウムパラトルエンスルホネート(N,N,N-trimethylphytosphingosinium p-toluenesulfonate)の合成
【0018】
フィトスフィンゴシン(phytosphingosine, 0.5 g, 1.575 mmol) とKCO(1.612 g, 9.449 mmol)をメタノール5mlに溶かし、攪拌しながらメチルパラトルエンスルホネート(methyl p-toluenesulfonate, 1.188 ml, 7.874 mmol)を加えた後、50℃で3時間攪拌した。溶媒を減圧蒸留し、反応混合物に蒸留水5mlを加えた後、酢酸エチル10mlで抽出してNaSOで乾燥、濾過した。溶媒を減圧乾燥して白色の固体生成物0.460を得た。
収率:55%
融点:185〜186℃
IR (KBr) υmax : 3326 (OH), 2920, 2852 (C-H) cm-1
1H NMR (500MHz, CD3OD) : δ 7.70 (d, 2H, arom H, J = 8.2 Hz), 7.23 (d, 2H, arom H, J = 8.0 Hz), 4.16 (dd, 1H, CH2O, J = 14.4 Hz), 4.09 (dd, 1H, CH2O, J = 14.4 Hz), 3.89 (d, 1H, J = 8.7 Hz), 3.73 (dd, 1H), 3.44 (t, 1H), 3.21 (s, 9H, N+CH3), 2.37 (s, 3H, Ph-CH3), 1.81 (m, 1H, CH2), 1.58 (m, 1H, CH2), 1.29 (s, 24H, CH2), 0.90 (t, 3H, CH3) ppm
13C NMR (500MHz, CD3OD) : δ 142.07, 140.16, 128.31, 125.45, 76.73, 71.56, 56.09, 52.21, 33.25, 31.56, 29.28, 29.26, 28.96, 25.03, 22.22, 19.81,
12.93 ppm.
実施例3:リポソームの製造方法
(1)MLV(multilamellar vesicles)とSUV(small unilamellar vesicles)の製造
【0019】
リン脂質をガラス瓶(glass vial)に入れて有機溶媒(クロロホルム、CHCl3)に溶解した後、窒素ガスまたは減圧蒸留器(rotary evaporator)を用いて有機溶媒を完全に取除きながらガラス瓶中に薄膜を形成させ、リン酸緩衝溶液(PBS)を加えて常温で弱く振りながら十分水和させた後、強く攪拌してリン脂質の膜を分散させて多層ラメラリポソーム(MLV)を製造した。
【0020】
製造されたMLVを超音波粉砕機(sonicator)を用いて単層ラメラリポソーム(SUV)を製造した。この他にもSUVを製造するために押出機(extruder)を用いて高圧で適切なメンブラン・フィルタ(memebrane filter)に通すことにより、所望するサイズのリポソームを得て実験に用いた。
(2) 転移抑制リポソームの製造
【0021】
転移抑制物質であるTMPと種々のリン脂質から構成されたリポソームを製造した。TMPと中性脂質であるDOPEを適切に混合(1:1重さ比)して20mlガラス瓶に入れ、有機溶媒に溶かした後、窒素の存在下に減圧蒸留した。この際、薄い脂質膜が形成すると完全に乾燥した後、蒸留水または5%デキストロース(dextrose)で水和させてボルテキシング(vortexing)、超音波粉砕(sonication)などの方法でカチオン性リポソームを製造した。鶏卵由来の70%ホスファチジルコリン(phosphtidylcholine, PC)、100%鶏卵PCとコレステロール(cholesterol, Chol)の1:1モル比、ジパルミトイルホスファチジルコリン(dipalmitoyl phosphatidylcholine, DPPC)とCholの1:1モル比、DPPC:Chol:ポリエチレングリコールが結合したホスファチジルエタノールアミン(phosphatidyl ethanolamine-polyethylene glycol, PE-PEG)の5:5:1モル比の組成にTMPを加え、有機溶媒に溶かした後、減圧蒸留機を用いて有機溶媒を完全に取除きながらガラス瓶の内部に薄膜を形成させた。PBS緩衝溶液を加えて常温で十分水和させ、リン脂質の薄膜を分散させた後、強くボルテキシングまたは超音波粉砕することによって転移抑制リポソームを製造した。
実施例4:転移抑制活性を有するエマルジョンの製造および物理的性質測定
(1)エマルジョンの製造
【0022】
70%鶏卵PCとTMPをオリーブ油に分散し、グリセロールと小量のツイーン20を添加し、蒸留水を加えた後、強く超音波粉砕してエマルジョンを製造した。製造したエマルジョンを0.2μm膜(membrane)に通して用いた。
(2)リポソームとエマルジョンの安定性測定
【0023】
TMPを含む種々の組成のリポソームとTMPを含むエマルジョンを製造し、4℃で保管しながらリポソームのサイズ変化をジェタサイザー(zetasizer)を用いて測定し、リン脂質の組成によるリポソームの安定性とエマルジョンの安定性を測定した。
実施例5:In vivo癌転移抑制分析
【0024】
In vivo系における直接的な肺転移(direct lung metastasis)を観察するためにB16F10黒色腫細胞を用いてC57/BL6マウスで実験した。まず、投与すべき黒色腫細胞の濃度を決定するために種々の濃度(PBS, 2 ×104, 2 ×105, 2 ×106)の癌細胞を尻尾静脈に注射し、15日後マウスを麻酔した状態で肺を切取り、肺に発生した癌細胞のコロニー数を観察した。
【0025】
また、TMPを含む転移抑制リポソームとエマルジョンの転移抑制効果を観察するために前記実験で得られた適切な癌細胞濃度をC57/BL6マウスの尻尾静脈に注射した。60〜90分後誘導体で作られた転移抑制リポソーム250μgずつを投与し、2、3番目の薬物の投与は癌細胞を注射してから各々3日と6日後に行い、4番目の薬物を投与する場合9日後投与した。15日目にマウスの肺を切取った後、コロニー数を観察した。
実施例6:細胞毒性およびIn vivo 毒性測定
【0026】
癌細胞に対する細胞毒性効果を測定するために、癌細胞株として肝癌細胞株であるSNU398と黒色腫細胞株であるB16F10を用いた。癌細胞株(SNU 398またはB16F10)をトリプシン化(trypsinization)した後、serum-free media[RPMI-1640]で洗浄した。トリプトパンブルーで染色して細胞をカウンティングした後、1x105cell/mlで48ウェルプレートにプレーティングし、TMPで作られたカチオン性リポソームを種々の濃度で癌細胞に処理した。3日後、トリプトパンブルーで染色し、細胞をカウンティングして細胞減少程度を観察した。
【0027】
In vivo 毒性を観察するためにTMPリポソームをマウスに静脈注射または腹腔内注射してマウスの致死率を測定することによってin vivo 毒性を測定した。
実施例7:In vivo 癌成長抑制分析
【0028】
In vivo 系における癌の成長抑制を観察するために、ルイス肺癌細胞株(Lewis Lung Carcinoma, LLC)を用いてBDF1マウスで実験した。LLC細胞濃度は、マウス一匹当り百万個の細胞として皮下注射して癌を形成させた。癌細胞投与後1日、3日、6日、9日にTMPリポソームを100μl(TMP100μg)ずつ腹腔および静脈注射した。陽性対照群としては、MMP−2(matrix metaloproteinase-2)抑制剤として知られているAG3340(Agouron Pharmaceuticals)を0.2%ツイーン/0.5%カルボキシメチルセルロースで懸濁して一日一回2mgずつを腹腔注射した。21日後マウスを頸椎脱骨して致死させた後、癌の体積変化を測定し、写真撮影した。
実施例8:錠剤の製造
【0029】
Figure 0003842090
前記成分を細かく粉砕して混合した後、直打法(direct tableting method)によって錠剤を製造した。各錠剤の総量は500mgであり、そのうち有効成分の含量は50mgである。
実施例9:粉末剤の製造
【0030】
Figure 0003842090
前記成分を細かく粉砕し、混合して粉末を製造した。硬質カプセルに粉末500mgを充填してカプセル剤を製造した。
実験例1
【0031】
まず、in vivo 系におけるTMP・Iの転移抑制効果を観察した。まず、転移が観察できる癌細胞数を決定するためにマウスにB16F10黒色腫細胞を2x104、2x10、2x10およびPBSの四つの群に分けて癌の転移を測定した。癌細胞を尻尾静脈に注射してから15日後マウスの肺を切取って観察した結果、2x10濃度においては肺のサイズが非常に大きくなり、数えられないほど数多くのコロニーが形成された。これに対し、PBSと1x104を処理した場合は何らかの変化も示されず、2x10の場合は小量のコロニーが観察され、21日後までその数が増加した。
【0032】
したがって、TMP・Iの転移抑制実験においては、癌細胞濃度を2x10として固定して行った。B16F10黒色腫細胞を接種してから1日、3日、そして6日後各々の誘導体300μgを投与した。15日後マウスの肺を観察した結果、対照群に比べて肺の大きさが小さくなり、癌細胞のコロニー数も相当減少したことが確認できた[表1]。
【0033】
【表1】
Figure 0003842090
実験例2
【0034】
リポソームの組成を異にしてTMP・Iの転移抑制活性を測定した。70%鶏卵PCと100%鶏卵PC/chol(1:1モル比)の組成にTMP・Iを加え、リポソームを製造して転移抑制を行った。C57BL/6マウスにB16F10黒色腫細胞を2x10濃度で尻尾静脈を通じて注射した。注射してから1時間後TMP・I 250μgが含有されたリポソームを処理した。第二に、黒色腫細胞を注射してから3日後尻尾静脈にさらに250μgを処理した。最後に、7日後同様な方法で黒色腫細胞を処理してから15日後マウスを頸椎脱骨し、肺を切取ってコロニー数を比べた[表2]。
【0035】
【表2】
Figure 0003842090
実験例3
【0036】
TMP・I濃度による転移抑制効果を観察するために70%鶏卵PCを適用したリポソームを製造して実験に用いた。リポソームの安定性を高めるために70%鶏卵PCにコレステロールを添加した。70%鶏卵PCとCHOL、そしてTMP・Iを適切な比率で混合しリポソームを製造して転移抑制実験を行った。TMP・I約50μgを含むリポソームにおいては、癌の転移を60%以上抑制することが分かった[図1、表3]。既存のTMS(trimethylsphingosine)リポソームにおいては、TMS250μgを投与した場合、50%程度の癌転移抑制を示す[Y.S. Park et al., Cancer Res., 54, 2213-2217, 1994]。この結果から、TMP・IリポソームはTMSリポソームより癌転移抑制効果が格段に優れることが分かる。
【0037】
【表3】
Figure 0003842090
実験例4
【0038】
転移抑制リポソームの組成による転移抑制活性と、リポソーム中への血管新生抑制剤(AG3340, Agouron Pharmaceuticals)の添加による転移抑制活性を測定した。種々の群にリポソームを製造して実験を行った。リポソームを種々の組成に製造し、リポソーム中の血管新生抑制剤を採取してリポソームと薬物の効果を比べた[表4]。対照リポソーム(control liposomes)は、70%鶏卵PC/Chol/フィトスフィンゴシン(4:4:1重さ比)の組成に製造した。脂質と薬物の比は20:1の重さ比にした。各々のリポソームの組成と効果を次の表4に示す。投与するTMP・Iと薬物の濃度は各々100μgずつと一定にし、薬物がある場合や薬物のない場合のいずれも投与されるTMP・Iの濃度は一定であった。前記実施例5と同様な方法で実験を行ったが、リポソームの投与回数は、黒色腫細胞を投与してから1時間、3日、6日、9日の4回にした。
【0039】
フィトスフィンゴシンからなる対照リポソームにおいてコロニー数が少しずつ減少する傾向がみられたが明らかな効果は認められず、薬物とDPPCリポソームから構成された場合は転移抑制効果がほとんど認められなかった。しかし、薬物とTMP・Iがともに含まれているTMP・Iリポソームの場合は、15個未満のコロニー数を観察できるほど転移抑制効果が非常に優れた。リポソームの血中残留時間を高めるためにTMP・Iリポソームの組成に10%PEG-PEを加えたTMP・I+PEGリポソームにおいても同様な効果が認められた[図2]。
【0040】
【表4】
Figure 0003842090
【0041】
転移抑制活性を有するTMP・Iを用いて油エマルジョン製剤を製造し、転移抑制活性を測定した。転移抑制エマルジョンを腹腔に投与したことを除いては、前記実験例4と同様な方法で実験を行った。何も処理していない群とTMP・Iエマルジョンを投与した群の肺を観察した結果、無処理対照群におけるコロニー数は250個程であり、TMP・Iエマルジョンを腹腔に投与した群においては70±20個程のコロニー数が観察されたが、この数値は癌の転移が70%以上抑制されたことを意味する[図2]。
実験例6
【0042】
BDF1マウスのルイス(Lewis Lung Carcinoma, LLC)肺癌細胞に投与して癌を誘発させた後、転移抑制活性を有するTMP・Iリポソーム(DPPC/Chol/TMP・I、5:5:1モル比)を投与して癌の成長抑制に関する効能を観察した。LLC癌細胞の濃度をマウス一匹当り百万個として皮下注射して腫瘍を形成させた。癌細胞を皮下注射してから1日後TMP・Iリポソームを静脈注射と皮下注射した(TMP含量:100μg)。3日、6日、9日後も同様な方法で投与し、21日目にマウスを頸椎脱骨して致死させた後、 癌の体積を次の数学式1で測定し、その結果を次の表5に示す。
【0043】
【数1】
Figure 0003842090
【0044】
【表5】
Figure 0003842090
【0045】
前記表5から分かるように、対照群においては癌の体積が非常に大きく成長し、癌の周囲に血管が旺盛に形成された。TMP・Iリポソームを腹腔注射した群においては腫瘍体積が顕著に減少し、癌の周囲に新生血管の形成が著しく減少した。これに対し、MMP-2抑制剤であるAG3340をツイーン/カルボキシメチルセルロースに懸濁して一日一回ずつ20日間2000μgを投与した群においては、腫瘍体積の変化が僅かに減少した。癌の体積変化を測定した結果、陽性対照群であるAG3340を腹腔に投与した場合は、体積が約30%減少し、TMPリポソームを腹腔に投与した場合は、約85%減少し、TMPリポソームを静脈に注射した場合は約60%減少した。
実験例7
【0046】
TMP・I転移抑制リポソームと既存の細胞毒性活性を有する抗癌剤であるドキソルビシンとの効能を観察するために、B16F10黒色腫細胞を用いてマウスにおける癌転移抑制を測定した。マウス当り2x10個の細胞数を静脈注射し、注射してから1時間後と3日、6日、9日に各々33μgのドキソルビシンを投与し、他の群にはTMP・Iリポソームに25μgドキソルビシンを入れてともに投与した。その結果、ドキソルビシンを単独で投与した場合より、TMP・Iリポソームを用いた場合において、小量のドキソルビシンをもってさらに優れた転移抑制効果を示すことが分かった[図3]。
実験例8
【0047】
TMP・Iリポソームの細胞毒性とin vivo 毒性を観察するために二種類のリポソームを製造した。細胞毒性を観察するためにTMP・Iを含むカチオン性リポソームを用いて癌細胞に対する細胞毒性効果を観察した。ヒトの肝癌細胞株であるSNU398細胞とマウス黒色腫細胞株であるB16F10細胞を培養した後、カチオン性リポソーム[TMP・I : DOPE = 1 : 1 (重さ比)]を種々の濃度で処理して細胞毒性効果を測定した[図4]。その結果、マウス黒色腫細胞株においては全く細胞毒性効果が認められなかったが、ヒトの肝癌細胞においては約12.5μgで細胞死滅が認められ、約100μgではほとんど大部分の細胞が死んでいることが観察できた。SNU癌細胞の場合、LD50は約25μgであった[図4]。
【0048】
マウス腹腔に TMP・I含有カチオン性リポソーム2000μgを投与し、3日および6日後も同様な方法で投与し、15日後マウスを観察した結果、TMP・Iリポソームの投与によるマウスの死亡は観察されず、マウス静脈にDPPC/Chol/TMP・Iリポソーム1000μgを投与し、3日および6日後同様な方法で投与した場合にもマウスの死亡が観察されなかった[表6]。
【0049】
【表6】
Figure 0003842090
実施例9
【0050】
転移抑制リポソームとエマルジョンの安定性は、ジェタサイザー3000を用いて試料を4℃で保管しながらリポソームとエマルジョンのサイズ変化から測定した。その結果、カチオン性リポソームであるTMP・Iは安定であり、蒸留水と5%デキストロース溶液においても変化なく安定であった。PC basedリポソームの場合、DPPCとPEG-PEを含むリポソームが最も安定な状態を保っており、エマルジョンも2ヶ月間非常に安定な状態を保った[図5]。
【0051】
【発明の効果】
以上述べたように、本発明では、種々のリン脂質組成において癌の転移および成長を抑制し、他の種類の抗癌剤とともに使用する場合その効果を極大化させる、前記一般式(I)で表されるフィトスフィンゴシン誘導体(TMP)を含む多機能性リポソームを製剤化した。このような転移抑制活性を有するリポソームは、既存のリポソームとは異なりその自体のみで転移抑制を示すので、抗癌活性を示す遺伝子の体内への導入または抗癌剤の伝達において効用性の側面で非常に有用に活用でき、また既存の抗癌物質の投与量を減らすことができる好適なモデルになり得ることと期待される。
【図面の簡単な説明】
【図1】TMP・Iをリポソーム製剤化してTMP・I含量による黒色腫(melanoma cell)の転移抑制能を示す図である。
【図2】新生血管抑制薬物を含むTMP・IリポソームおよびTMP・Iエマルジョンの転移抑制能を比べた図である。
【図3】TMP・Iリポソームと抗癌剤であるドキソルビシンとの相互作用を示す図である。
【図4】TMP・Iを含むカチオン性リポソームの細胞毒性を示すグラフである。
【図5】TMP・I誘導体を含む種々のリポソームとエマルジョンを4℃で保管した場合の安定性を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a phytosphingosine derivative exhibiting anticancer activity, and more specifically, a phytosphingosine derivative exhibiting anticancer activity and an anticancer agent comprising the same as an active ingredient, which is represented by the following general formula (I) About.
[2]
Figure 0003842090
(Where
R1, R2And R3Is hydrogen or C1~ C8Represents an alkyl group of1, R2And R3Are hydrogen atoms at the same timeCase and R 1 , R 2 And R 3 Except when any one of is an alkyl group and two are hydrogen atomsAnd X represents an atom or an atomic group containing a halogen, a hydroxyl group, an alkyl sulfonate group, or an aryl sulfonate group).
[0002]
[Prior art]
In general, lipids constituting cell membranes are composed of phospholipids, glycolipids, and sphingolipids. These molecules are amphipathic substances, and when dispersed in water, spontaneously form closed endoplasmic reticulums similar to cell membranes, which are called liposomes. Liposomes can be produced into any of the aforementioned lipids or various lipids. When this is applied to pharmaceutical products, water-soluble substances are mainly encapsulated in the internal aqueous phase, and fat-soluble substances are variously interposed between membranes. It is used as a mediator for transmitting pharmaceutical substances. Liposomes also deliver drugs accurately to the affected area to be treated, and drug delivery by liposomes is possible in small amounts, thus helping to overcome multiple drug resistance. Recently, it has been in the limelight as a drug, antigen, and gene delivery medium. In particular, as a drug delivery medium using liposomes, the anticancer drug doxorubicin (doxorubicin), the antifungal drug amphotericin B (amphotericin B), and other drugs are used. It is a trend to make a liposome formulation and market it as a commercial product. In addition, liposomes are widely used in cosmetics [M. Grunaug et al., Eur. J. Med. Res. 21, 13-19, 1998; DS Alberts abd DJ Garcia, Drugs, 54, 30-35. , 1997; F. Braun, et al., Transplant Proc. 30, 1481-1483, 1998; V. Heinemann et al., Antimicrob. Agents Chemother. 41, 1275-1280, 1997; N. Weiner et al., J Drug. Target 2, 405-410, 1994].
[0003]
Examples of sphingoid bases present in the human body include phytosphingosine (phytosphingosine, PhytoS), sphingosine (SPN), and sphinganine. These are characterized as amino alcohols having a skeleton structurally composed of 18 carbon atoms. These compounds have several stereocenters, but a D-sequence (D-erythro) has been found in nature at the 3rd position. SPN and sphinganine can be found in all tissues of the body, whereas PhytoS exists only in the stratum corneum. Research on SPN and its derivatives began in the 1990s and progressed actively after the fact that it was a potent inhibitor of PKC (protein kinase C) activity. Later, it was revealed that SPN and its derivatives are involved in numerous cellular functions even at low concentrations [DJ Bibel et al., Clin. Exper. Dermatol. 20, 395-400, 1995; DJ Bibel, J. Invest. Dermatol. 98, 269-273, 1992; YA Hannun, Science, 274, 1855-1859, 1996]. However, since this activity is mostly shown only in the stratum corneum, interest in PhytoS has increased, but since it is a very high value commercialized reagent, its derivative synthesis and biological activity (biological activity) Is hardly known. In particular, N, N-dimethyl sphingosine (N, N-dimethyl sphingosine, DMS) and N, N, N-trimethyl sphingosinium halide (N, N, N-trimethyl sphingosinium halide) )) Has a stronger inhibitory activity against PKC than SPN, and is known to suppress the growth of various cancer cells in vitro and in vivo. In particular, TMS · hal is B16 / BL6 black using liposomes of egg phosphatidylcholine (egg phosphatidylcholine, egg PC): cholesterol, Chol: TMS · hal = 4.5: 4.5: 1 (molar ratio). In some cases, antitumor and antimetastasis effects have been confirmed in melanoma cell lines. However, in order for TMS · hal to show such an effect, since a considerably large amount of drug is required as about 0.1 to 0.3 mg / mouse, hemolysis status (hemolysis), hemoglobinuria (hemoglobinuria), Side effects such as inflammatory response are indicated. Liposome technology was applied to reduce such toxicity, but liposome TMS · hal is not toxic in vivo, and it is more potent in inhibiting cancer cell growth and metastasis than TMS · hal without liposomes. It was possible to observe the effect [YS Park, S. Hakomori, S. Kawa, F. Ruan, and Y. Igarashi. Cancer Res. 54, 2213-2217, 1994].
[0004]
Research on PhytoS, which has a structure almost similar to SPN, was conducted in vitro to observe the level of gene transfection (DNA transfection) in KK-1, COS-7, and MSC-1 cells. There are examples published comparing efficiency due to differences in formation [T. paukku et al., Chem. Phys. Lipids, 87, 23-29, 1997]. In addition, PhytoS is known to exhibit strong anti-microbial activity in various microorganisms and to increase interleukin secretion as a PKC inhibitor to reduce skin irritation. N, N, N-trimethylphytosphingosinium halide (hereinafter referred to as “TMP-hal”), a phytoS derivative, is limited to skin protection applications at home and abroad. As a composition to be added to cosmetics, a patent application has been published [Korean Patent Publication No. 1999-0078610], but there are no examples of using TMP as an anticancer agent both domestically and externally.
[0005]
[Problems to be solved by the invention]
Therefore, the present inventors have completed the present invention by producing phytosphingosine derivatives represented by the above general formula (I) into liposomes having various compositions and confirming their cancer metastasis and cancer growth inhibitory effects. It came to.
[0006]
Accordingly, an object of the present invention is to provide a phytosphingosine derivative having an anticancer activity represented by the general formula (I) and an anticancer agent comprising the same as an active ingredient.
[0007]
[Means for Solving the Problems]
The present invention is characterized by a phytosphingosine derivative represented by the following general formula (I) and an anticancer agent comprising the same as an active ingredient:
[0008]
[Chemical Formula 3]
Figure 0003842090
[0009]
  Where R1, R2And R3Is hydrogen or C1~ C8Represents an alkyl group of1, R2And R3Are hydrogen atoms at the same timeCase and R 1 , R 2 And R 3 Except when any one of is an alkyl group and two are hydrogen atomsX represents an atom or an atomic group containing a halogen, a hydroxyl group, an alkyl sulfonate group, or an aryl sulfonate group.
[0010]
In addition, an anticancer agent comprising the phytosphingosine derivative in the form of a liposome or an emulsion, and the phytosphingosine derivativeAngiogenesis inhibitorOr the anticancer agent containing doxorubicin which is an anticancer agent which has the existing cytotoxic activity is included.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The present invention relates to an anticancer agent in which a phytosphingosine derivative (hereinafter referred to as “TMP”) represented by the above general formula (I) having anticancer activity is formulated in the form of a liposome or an emulsion. In the phytosphingosine derivative according to the present invention, N, N, N-trimethylphytosphingosinium halide (TMP · hal) is preferable, and N, N, N-trimethylphytosphingosinium iodide (N, N, N-trimethyl phytosphingosinium) is preferred. Iodide, hereinafter “TMP · I”) is particularly preferred.
[0012]
In the present invention, metastasis-suppressing liposomes having various compositions were produced, but the DPPC / Chol / TMP or DPPC / Chol / PEG-PE / TMP composition was judged to be excellent in the ability to suppress cancer metastasis, and together with a neovascular inhibitor. It has been found that there is a synergistic effect when used. It was found that DPPC / Chol / TMP liposomes not only inhibit cancer metastasis, but also markedly inhibit the growth of LLC lung cancer cells.
[0013]
In the present invention, it was found that when metastasis inhibition was compared with an existing anticancer agent (doxorubicin) having cytotoxic activity, the efficacy was further increased when administered with TMP liposomes than when used with doxorubicin alone.
[0014]
In the present invention, the cytotoxic effect of TMP liposomes was observed using human hepatoma cell lines and mouse melanoma cell lines. As a result, human hepatoma cell lines showed cytotoxic effects, but melanoma cell lines were cytotoxic. Does not show any effect. Also, no toxicity was observed when simple acute toxicity was measured in mice.
[0015]
The anticancer agent according to the present invention contains a phytosphingosine derivative represented by the general formula (I) as an active ingredient, and is a pharmaceutically acceptable carrier, a forming agent, a diluent. Etc. and can be produced into powders, granules, capsules or injections. In addition, oral administration and parenteral administration are possible. Particularly, when the pharmaceutical preparation is administered in the form of liposome and emulsion, it is more effective in bioavailability. The dose of the anticancer agent according to the present invention may vary depending on the degree of absorption in the body, body weight, patient age, sex, health condition, diet, administration time, administration method, excretion rate, disease severity, and the like. The anticancer agent is preferably administered at about 0.5 to 1 mg per kg body weight. Therefore, the anticancer drug according to the present invention is manufactured in consideration of the effective amount range, and the unit dosage form formulated in this way is subject to the judgment of an expert who monitors or observes the administration of the drug as necessary. Depending on the individual requirements, specialized dosing methods can be used or administered several times at regular time intervals.
[0016]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail by the following Example, this invention is not limited to these Examples.
Example 1: Synthesis of N, N, N-trimethylphytosphingosinium iodide (TMP · I)
[0017]
Phytosphingosine (0.30 g, 0.946 mmol) and K2CO3(0.523 g, 3.79 mmol) was dissolved in 3 ml of methanol, and iodomethane (iodomethane, 0.298 ml, 4.73 mmol) was added with stirring, followed by stirring at 50 ° C. for 4 hours. The solvent was distilled under reduced pressure, and 4 ml of distilled water was added to the reaction mixture, followed by extraction with 8 ml of ethyl acetate and Na.2SO4And filtered. The solvent was dried under reduced pressure to obtain 0.26 g of a white solid product.
Yield: 76%
Melting point: 210-213 ° C
IR (KBr) υmax: 3309 (OH), 2918, 2850 (C-H) cm-1
1H NMR (600MHz, DMSO-d6): δ 3.95 (dd, 1H, CH2O, J = 14.4 Hz), 3.89 (dd, 1H, CH2O, J = 14.4 Hz), 3.76 (d, 1H, J = 8.7 Hz), 3.6 (dd, 1H), 3.11 (s, 9H, N+CH3), 1.68 (m, 1H, CH2), 1.48 (m, 1H, CH2), 1.23 (s, 24H, CH2), 0.84 (t, 3H, CHThree) ppm
13C NMR (600MHz, DMSO-d6): δ 76.80, 71.01, 55.69, 52.18, 33.21, 31.21, 30.60, 29.15, 29.03, 28.99, 28.93, 28.62, 24.87, 22.00, 13.84 ppm
MS (FAB, Glycerol, m / z): 361 (M+).
Example 2: Synthesis of N, N, N-trimethylphytosphingosinium p-toluenesulfonate
[0018]
Phytosphingosine (0.5 g, 1.575 mmol) and K2CO3(1.612 g, 9.449 mmol) was dissolved in 5 ml of methanol, methyl para-toluenesulfonate (methyl p-toluenesulfonate, 1.188 ml, 7.874 mmol) was added with stirring, and the mixture was stirred at 50 ° C. for 3 hours. The solvent was distilled under reduced pressure, and 5 ml of distilled water was added to the reaction mixture, followed by extraction with 10 ml of ethyl acetate and Na.2SO4And filtered. The solvent was dried under reduced pressure to give a white solid product 0.460.
Yield: 55%
Melting point: 185-186 ° C
IR (KBr) υmax: 3326 (OH), 2920, 2852 (C-H) cm-1
1H NMR (500MHz, CDThreeOD): δ 7.70 (d, 2H, arom H, J = 8.2 Hz), 7.23 (d, 2H, arom H, J = 8.0 Hz), 4.16 (dd, 1H, CH2O, J = 14.4 Hz), 4.09 (dd, 1H, CH2O, J = 14.4 Hz), 3.89 (d, 1H, J = 8.7 Hz), 3.73 (dd, 1H), 3.44 (t, 1H), 3.21 (s, 9H, N+CHThree), 2.37 (s, 3H, Ph-CHThree), 1.81 (m, 1H, CH2), 1.58 (m, 1H, CH2), 1.29 (s, 24H, CH2), 0.90 (t, 3H, CHThree) ppm
13C NMR (500MHz, CDThreeOD): δ 142.07, 140.16, 128.31, 125.45, 76.73, 71.56, 56.09, 52.21, 33.25, 31.56, 29.28, 29.26, 28.96, 25.03, 22.22, 19.81,
12.93 ppm.
Example 3: Method for producing liposome
(1) Manufacture of MLV (multilamellar vesicles) and SUV (small unilamellar vesicles)
[0019]
Put phospholipids in a glass vial and organic solvent (chloroform, CHClThree), Then form a thin film in the glass bottle while completely removing the organic solvent using nitrogen gas or a rotary evaporator, add phosphate buffer solution (PBS) and shake gently at room temperature. After fully hydrated, the phospholipid membrane was dispersed by vigorous stirring to produce multilamellar liposomes (MLV).
[0020]
Single layer lamellar liposomes (SUV) were produced from the produced MLV using an ultrasonic sonicator. In addition to this, liposomes of a desired size were obtained by passing through a suitable memebrane filter at high pressure using an extruder to produce SUVs and used in experiments.
(2) Production of metastasis-suppressing liposomes
[0021]
Liposomes composed of TMP, which is a metastasis inhibitor, and various phospholipids were produced. TMP and neutral lipid DOPE were appropriately mixed (1: 1 weight ratio), placed in a 20 ml glass bottle, dissolved in an organic solvent, and distilled under reduced pressure in the presence of nitrogen. At this time, when a thin lipid film is formed, it is completely dried and then hydrated with distilled water or 5% dextrose to produce cationic liposomes by a method such as vortexing or ultrasonication. . 70% phosphatidylcholine (phosphtidylcholine, PC) from chicken eggs, 1: 1 molar ratio of 100% chicken egg PC to cholesterol (cholesterol, Chol), 1: 1 molar ratio of dipalmitoyl phosphatidylcholine (DPPC) to Chol, DPPC: Chol: TMP was added to a composition of 5: 5: 1 molar ratio of phosphatidylethanolamine-polyethylene glycol (PE-PEG) to which polyethylene glycol was bound, dissolved in an organic solvent, and then organic by using a vacuum distillation machine. A thin film was formed inside the glass bottle while completely removing the solvent. A PBS buffer solution was added and sufficiently hydrated at room temperature to disperse the phospholipid thin film, followed by strong vortexing or ultrasonic grinding to produce a metastasis-suppressing liposome.
Example 4: Production of emulsion having metastasis-inhibiting activity and measurement of physical properties
(1) Production of emulsion
[0022]
70% chicken egg PC and TMP were dispersed in olive oil, glycerol and a small amount of Tween 20 were added, distilled water was added, and then ultrasonically pulverized to prepare an emulsion. The prepared emulsion was used through a 0.2 μm membrane.
(2) Measurement of liposome and emulsion stability
[0023]
Liposomes with various compositions containing TMP and emulsions containing TMP were prepared, and the size change of the liposomes was measured using a zetasizer while being stored at 4 ° C. Stability was measured.
Example 5: In vivo cancer metastasis inhibition analysis
[0024]
To observe direct lung metastasis in an in vivo system, experiments were performed on C57 / BL6 mice using B16F10 melanoma cells. First, to determine the concentration of melanoma cells to be administered, various concentrations (PBS, 2 × 10Four, 2 × 10Five, 2 × 106) Was injected into the tail vein, and 15 days later, the mouse was anesthetized and the lung was excised, and the number of colonies of cancer cells generated in the lung was observed.
[0025]
In addition, in order to observe the metastasis-suppressing effect of the metastasis-suppressing liposome containing TMP and the emulsion, an appropriate cancer cell concentration obtained in the above experiment was injected into the tail vein of C57 / BL6 mice. 60 to 90 minutes later, 250 μg of metastasis-suppressing liposomes made with the derivative were administered, and the second and third drugs were administered 3 and 6 days after the injection of cancer cells, respectively, and the fourth drug was administered. When administered, it was administered 9 days later. On the 15th day, the lungs of the mice were excised, and the number of colonies was observed.
Example 6: Cytotoxicity and in vivo toxicity measurements
[0026]
In order to measure the cytotoxic effect on cancer cells, SNU398, a hepatoma cell line, and B16F10, a melanoma cell line, were used as cancer cell lines. Cancer cell lines (SNU 398 or B16F10) were trypsinized and then washed with serum-free media [RPMI-1640]. After staining with tryptopan blue and counting cells, 1 × 10FiveCancer cells were treated with various concentrations of cationic liposomes made of TMP by plating into 48-well plates at cell / ml. Three days later, the cells were stained with tryptopan blue, and the cells were counted to observe the degree of cell reduction.
[0027]
To observe in vivo toxicity, in vivo toxicity was measured by measuring the lethality of mice by intravenously or intraperitoneally injecting TMP liposomes into mice.
Example 7: In vivo cancer growth inhibition analysis
[0028]
In order to observe the suppression of cancer growth in the in vivo system, experiments were performed on BDF1 mice using a Lewis lung cancer cell line (Lewis Lung Carcinoma, LLC). LLC cell concentrations were injected subcutaneously as 1 million cells per mouse to form cancer. On the 1st, 3rd, 6th, and 9th days after cancer cell administration, 100 μl (100 μg of TMP) of TMP liposomes were injected intraperitoneally and intravenously. As a positive control group, AG3340 (Agouron Pharmaceuticals), which is known as an MMP-2 (matrix metaloproteinase-2) inhibitor, is suspended in 0.2% Tween / 0.5% carboxymethylcellulose, and 2 mg once a day. Was injected intraperitoneally. Twenty-one days later, the mice were decapitated and killed, and then the change in the volume of the cancer was measured and photographed.
Example 8: Manufacture of tablets
[0029]
Figure 0003842090
After the components were finely pulverized and mixed, tablets were produced by a direct tableting method. The total amount of each tablet is 500 mg, of which the active ingredient content is 50 mg.
Example 9: Production of powder
[0030]
Figure 0003842090
The ingredients were finely pulverized and mixed to produce a powder. Capsules were prepared by filling hard capsules with 500 mg of powder.
Experimental example 1
[0031]
First, the inhibitory effect of TMP • I on metastasis in an in vivo system was observed. First, in order to determine the number of cancer cells in which metastasis can be observed, 2 × 10 B16F10 melanoma cells were given to mice.Four2x1052x106Cancer metastasis was measured by dividing into 4 groups of PBS and PBS. 15 days after injection of cancer cells into the tail vein, the lungs of mice were cut out and observed.6At concentration, the lung size became very large and so many colonies were formed that they could not be counted. In contrast, PBS and 1x10FourDoes not show any change when processing 2x105In the case of, a small amount of colonies were observed, and the number increased until 21 days later.
[0032]
Therefore, in the TMP · I metastasis suppression experiment, the cancer cell concentration was 2 × 105As fixed. One day, three days, and six days after inoculation with B16F10 melanoma cells, 300 μg of each derivative was administered. As a result of observing the lungs of mice 15 days later, it was confirmed that the lung size was smaller than that of the control group, and the number of colonies of cancer cells was considerably reduced [Table 1].
[0033]
[Table 1]
Figure 0003842090
Experimental example 2
[0034]
The metastasis inhibitory activity of TMP · I was measured for different liposome compositions. TMP · I was added to the composition of 70% chicken egg PC and 100% chicken egg PC / chol (1: 1 molar ratio) to produce liposomes to suppress metastasis. 2x10 B16F10 melanoma cells in C57BL / 6 mice5Injection at the concentration through the tail vein. One hour after injection, liposomes containing 250 μg of TMP · I were treated. Second, an additional 250 μg was processed in the tail vein 3 days after melanoma cell injection. Finally, 7 days later, the melanoma cells were treated in the same manner, and 15 days later, the mice were deboned from the cervical vertebrae, and the lungs were excised to compare the number of colonies [Table 2].
[0035]
[Table 2]
Figure 0003842090
Experimental example 3
[0036]
In order to observe the metastasis inhibitory effect by the TMP · I concentration, a liposome to which 70% chicken egg PC was applied was produced and used in the experiment. Cholesterol was added to 70% chicken egg PC to enhance the stability of the liposomes. 70% chicken egg PC, CHOL, and TMP · I were mixed at an appropriate ratio to produce liposomes, and a metastasis inhibition experiment was performed. Liposomes containing about 50 μg of TMP · I were found to suppress cancer metastasis by 60% or more [FIG. 1, Table 3]. Existing TMS (trimethylsphingosine) liposomes show about 50% inhibition of cancer metastasis when administered with 250 μg of TMS [Y.S. Park et al., Cancer Res., 54, 2213-2217, 1994]. From this result, it can be seen that TMP • I liposomes are much more effective in suppressing cancer metastasis than TMS liposomes.
[0037]
[Table 3]
Figure 0003842090
Experimental Example 4
[0038]
  Metastasis-inhibiting activity due to the composition of the metastasis-inhibiting liposome and its incorporation into the liposomeAngiogenesis inhibitorMetastasis inhibitory activity by adding (AG3340, Agouron Pharmaceuticals) was measured. Experiments were carried out with the production of liposomes in various groups. Liposomes are produced in various compositions,Angiogenesis inhibitorWere collected to compare the effects of liposomes and drugs [Table 4]. Control liposomes were prepared with a composition of 70% chicken egg PC / Chol / phytosphingosine (4: 4: 1 weight ratio). The ratio of lipid to drug was a weight ratio of 20: 1. The composition and effect of each liposome are shown in Table 4 below. The concentrations of TMP · I and drug to be administered were kept constant at 100 μg each, and the concentration of TMP · I to be administered was constant both in the presence and absence of the drug. The experiment was performed in the same manner as in Example 5. However, the number of liposome administrations was four times 1 hour, 3 days, 6 days, and 9 days after the administration of melanoma cells.
[0039]
Control liposomes composed of phytosphingosine tended to decrease the number of colonies little by little, but no clear effect was observed, and almost no metastasis-suppressing effect was observed when it was composed of drug and DPPC liposomes. However, in the case of the TMP • I liposome containing both the drug and TMP • I, the effect of inhibiting metastasis was so excellent that less than 15 colonies could be observed. A similar effect was observed in the TMP • I + PEG liposome in which 10% PEG-PE was added to the composition of the TMP • I liposome in order to increase the remaining time of the liposome in the blood [FIG. 2].
[0040]
[Table 4]
Figure 0003842090
[0041]
An oil emulsion preparation was produced using TMP · I having metastasis-inhibiting activity, and metastasis-inhibiting activity was measured. The experiment was performed in the same manner as in Experimental Example 4 except that the metastasis-suppressing emulsion was administered to the abdominal cavity. As a result of observing the lungs of the untreated group and the group to which TMP · I emulsion was administered, the number of colonies in the untreated control group was about 250, and in the group to which TMP · I emulsion was administered intraperitoneally, 70%. A colony number of about ± 20 was observed, which means that cancer metastasis was suppressed by 70% or more [FIG. 2].
Experimental Example 6
[0042]
BDF1 mouse Lewis (Lewis Lung Carcinoma, LLC) TMP · I liposomes (DPPC / Chol / TMP · I, 5: 5: 1 molar ratio) with metastasis-inhibiting activity after induction of lung cancer cells Was administered to observe the effect on cancer growth inhibition. Tumors were formed by subcutaneous injection with a concentration of LLC cancer cells of 1 million per mouse. One day after the subcutaneous injection of cancer cells, TMP · I liposomes were injected intravenously and subcutaneously (TMP content: 100 μg). After 3 days, 6 days and 9 days, the mice were administered in the same manner. On the 21st day, the mice were deboned by cervical vertebrae, and the volume of cancer was measured by the following mathematical formula 1. Table 5 shows.
[0043]
[Expression 1]
Figure 0003842090
[0044]
[Table 5]
Figure 0003842090
[0045]
As can be seen from Table 5, the volume of cancer grew very large in the control group, and blood vessels were vigorously formed around the cancer. In the group injected intraperitoneally with TMP • I liposomes, the tumor volume was significantly reduced and the formation of new blood vessels around the cancer was significantly reduced. In contrast, in the group in which AG3340, an MMP-2 inhibitor, was suspended in Tween / Carboxymethylcellulose and 2000 μg was administered once a day for 20 days, the change in tumor volume was slightly reduced. As a result of measuring the volume change of cancer, when the positive control group AG3340 was administered intraperitoneally, the volume decreased by about 30%, and when TMP liposome was administered intraperitoneally, the volume decreased by about 85%. When injected intravenously, there was a reduction of about 60%.
Experimental Example 7
[0046]
In order to observe the efficacy of TMP • I metastasis-suppressing liposomes and doxorubicin, an existing anticancer agent having cytotoxic activity, inhibition of cancer metastasis in mice was measured using B16F10 melanoma cells. 2x10 per mouse5Intravenous injection of the number of cells, 33 μg of doxorubicin was administered 1 hour, 3 days, 6 days, and 9 days after the injection, and 25 μg doxorubicin was added to the TMP • I liposome for the other groups. Administered. As a result, it was found that a smaller amount of doxorubicin showed a better metastasis-inhibiting effect when TMP · I liposome was used than when doxorubicin was administered alone [FIG. 3].
Experimental Example 8
[0047]
Two types of liposomes were prepared to observe the cytotoxicity and in vivo toxicity of TMP • I liposomes. In order to observe cytotoxicity, the cytotoxic effect with respect to a cancer cell was observed using the cationic liposome containing TMP * I. After culturing human hepatoma cell line SNU398 cell and mouse melanoma cell line B16F10 cell, we treated cationic liposome [TMP · I: DOPE = 1: 1 (weight ratio)] at various concentrations. The cytotoxic effect was measured [Fig. 4]. As a result, no cytotoxic effect was observed in the mouse melanoma cell line, but in human hepatoma cells, cell death was observed at about 12.5 μg, and most cells were dead at about 100 μg. I was able to observe. LD for SNU cancer cells50Was about 25 μg [FIG. 4].
[0048]
TMP • I-containing cationic liposomes (2000 μg) were administered to the abdominal cavity of the mouse, and the mice were administered in the same manner 3 days and 6 days later. The mice were observed 15 days later. In addition, when 1000 μg of DPPC / Chol / TMP · I liposome was administered to the mouse vein and administered in the same manner after 3 and 6 days, no death of the mouse was observed [Table 6].
[0049]
[Table 6]
Figure 0003842090
Example 9
[0050]
The stability of the metastasis-suppressing liposome and the emulsion was measured from the change in the size of the liposome and the emulsion while storing the sample at 4 ° C. using a Jetasizer 3000. As a result, TMP · I, which is a cationic liposome, was stable, and was stable with no change even in distilled water and a 5% dextrose solution. In the case of PC based liposomes, the liposomes containing DPPC and PEG-PE remained in the most stable state, and the emulsion also remained very stable for 2 months [FIG. 5].
[0051]
【The invention's effect】
As described above, the present invention is represented by the general formula (I), which suppresses cancer metastasis and growth in various phospholipid compositions and maximizes the effect when used together with other types of anticancer agents. Multifunctional liposomes containing phytosphingosine derivative (TMP) were formulated. Since liposomes having such metastasis-inhibiting activity exhibit metastasis inhibition only by themselves, unlike existing liposomes, they are very useful in terms of their effectiveness in introducing anti-cancer activity genes into the body or transmitting anti-cancer agents. It is expected to be a useful model that can be used effectively and can reduce the dose of an existing anticancer substance.
[Brief description of the drawings]
FIG. 1 is a graph showing the ability of melanoma cells to suppress metastasis of TMP · I by preparing TMP · I in a liposome formulation.
FIG. 2 is a diagram comparing metastasis-suppressing ability of TMP • I liposomes and TMP • I emulsions containing neovascular inhibitory drugs.
FIG. 3 is a diagram showing the interaction between TMP · I liposomes and doxorubicin, an anticancer agent.
FIG. 4 is a graph showing the cytotoxicity of cationic liposomes containing TMP · I.
FIG. 5 is a graph showing the stability when various liposomes and emulsions containing a TMP • I derivative are stored at 4 ° C.

Claims (4)

下記一般式(I)で表されるフィトスフィンゴシン誘導体を有効成分として含むことを特徴とする抗癌剤:
Figure 0003842090
(式中、
1、RおよびRは水素またはC〜Cのアルキル基を示し、但しR1、RおよびRが同時に水素原子である場合、及びR 1 、R およびR のいずれか1つがアルキル基であって2つが水素原子である場合を除く;Xはハロゲン、水酸化基、スルホン酸アルキル基、スルホン酸アリール基を含む原子または原子団を示す)。
An anticancer agent comprising a phytosphingosine derivative represented by the following general formula (I) as an active ingredient:
Figure 0003842090
(Where
R 1, R 2 and R 3 represents an alkyl group of hydrogen or C 1 -C 8, provided that when R 1, R 2 and R 3 are hydrogen atoms at the same time, and any of R 1, R 2 and R 3 Or one of them is an alkyl group and two are hydrogen atoms ; X represents an atom or atomic group containing a halogen, a hydroxyl group, an alkyl sulfonate group, or an aryl sulfonate group).
前記フィトスフィンゴシン誘導体が、N,N,N−トリメチルフィトスフィンゴシニウムハライド(N,N,N-trimethylphytosphingosinium halide)であることを特徴とする請求項1記載の抗癌剤。2. The anticancer agent according to claim 1, wherein the phytosphingosine derivative is N, N, N-trimethylphytosphingosinium halide. 前記フィトスフィンゴシン誘導体が、リポソームまたはエマルジョンの形態で含まれることを特徴とする請求項1記載の抗癌剤。The anticancer agent according to claim 1, wherein the phytosphingosine derivative is contained in the form of a liposome or an emulsion. 前記フィトスフィンゴシン誘導体に血管新生抑制剤または細胞毒性(cytotoxicity)を示す抗癌剤がともに含まれることを特徴とする請求項1記載の抗癌剤。2. The anticancer agent according to claim 1, wherein the phytosphingosine derivative contains an angiogenesis inhibitor or an anticancer agent exhibiting cytotoxicity.
JP2001264081A 2001-08-31 2001-08-31 Phytosphingosine derivative having anticancer activity Expired - Lifetime JP3842090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264081A JP3842090B2 (en) 2001-08-31 2001-08-31 Phytosphingosine derivative having anticancer activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264081A JP3842090B2 (en) 2001-08-31 2001-08-31 Phytosphingosine derivative having anticancer activity

Publications (2)

Publication Number Publication Date
JP2003081819A JP2003081819A (en) 2003-03-19
JP3842090B2 true JP3842090B2 (en) 2006-11-08

Family

ID=19090741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264081A Expired - Lifetime JP3842090B2 (en) 2001-08-31 2001-08-31 Phytosphingosine derivative having anticancer activity

Country Status (1)

Country Link
JP (1) JP3842090B2 (en)

Also Published As

Publication number Publication date
JP2003081819A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
RU2494729C2 (en) Liposomal pharmaceutical preparation and method for preparing it
EP3239132B1 (en) Cationic lipid
JP2006502233A (en) Platinum aggregate and method for producing the same
JP4833836B2 (en) Liposome preparation
TW200936182A (en) Agent for enhancing anti-tumor effect comprising oxaliplatin liposome preparation, and anti-tumor agent comprising the liposome preparation
JP5295277B2 (en) Glycoside-containing liposome
CN111116622A (en) Borate esters and pharmaceutical formulations thereof
JP6230538B2 (en) Stable oxaliplatin-encapsulated liposome aqueous dispersion and its stabilization method
EP1291340B1 (en) Phytosphingosine derivatives with antitumor activity
KR100423102B1 (en) Phytosphingosine derivatives with antirumor activity
US6538032B1 (en) Phytosphingosine derivatives with antitumor activity
JP3842090B2 (en) Phytosphingosine derivative having anticancer activity
JP6240570B2 (en) Lipid particles and nucleic acid delivery carriers
EP2889302B1 (en) Boron cluster-modified peg lipid derivative, and molecular assembly using same
EP4201945A1 (en) Phospholipid
CN1240669C (en) Phytosphingosine derivate with antitumor activity
JP6495995B2 (en) Lipid particles and nucleic acid delivery carriers
Musheer et al. Formulation, Development and Characterization of Effective Niosomal Drug Delivery System for the Treatment of Diabetes Mellitus
US20230295199A1 (en) Phospholipid
JPH11171772A (en) Liposome preparation of antitumor medicine
CN110496103B (en) Docetaxel palmitate liposome and preparation method thereof
US20160339041A1 (en) Liposome comprising at least one cholesterol derivative
AU2013203682B2 (en) Liposome comprising at least one cholesterol derivative
JP2000302685A (en) Liposome preparation containing anti-tumor agent
CN117430541A (en) Compounds and compositions for delivery to cells

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050516

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060313

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3842090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term