JP3841340B2 - Electromagnetic coil and manufacturing method thereof - Google Patents

Electromagnetic coil and manufacturing method thereof Download PDF

Info

Publication number
JP3841340B2
JP3841340B2 JP2001391491A JP2001391491A JP3841340B2 JP 3841340 B2 JP3841340 B2 JP 3841340B2 JP 2001391491 A JP2001391491 A JP 2001391491A JP 2001391491 A JP2001391491 A JP 2001391491A JP 3841340 B2 JP3841340 B2 JP 3841340B2
Authority
JP
Japan
Prior art keywords
electromagnetic coil
mic
conductor
melting point
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001391491A
Other languages
Japanese (ja)
Other versions
JP2003197417A (en
Inventor
喜之 斎藤
秀之 田中
一夫 嘉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001391491A priority Critical patent/JP3841340B2/en
Publication of JP2003197417A publication Critical patent/JP2003197417A/en
Application granted granted Critical
Publication of JP3841340B2 publication Critical patent/JP3841340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放射線に曝される場所などに用いられる、無機物絶縁金属被覆ケーブル(Mineral Insulated Cable:以下MICと称する)を用いた電磁コイルに関し、特に冷却水を通水するための水路と、MICを巻き回したコイルを固着する構造に関するものである。
【0002】
【従来の技術】
電荷を帯びた素粒子やイオンを高いエネルギー状態に加速し標的に衝突させて、原子核の構造などの研究を行なうために、各種の加速器が用いられている。この装置では、素粒子もしくはイオンの加速や、方向の制御にローレンツ力を用いるので、高磁場を発生させるための電磁石を多数設置する必要がある。そして、加速器においては、粒子の加速に伴う各種放射線の発生が避けられず、用いる電磁石についても、放射線に対する対策が必要となる。
【0003】
従来、加速器に用いる電磁石の電磁コイルは、放射線量が106Gy(グレイ)ないし108Gyの環境で使用され、放射線による電磁コイルの絶縁劣化の対策として、放射線量が108Gy以下のレベルでは、耐放射線特性の高い有機物の絶縁体が用いられ、放射線量が108Gy以上のレベルでは、無機物の絶縁体が用いられている。放射線量が108Gy以上で、特に高いレベルでは、絶縁体を無機物だけで構成することが必要となる。
【0004】
また、一般に、このような電磁コイルにおいては、通電に伴う発熱による障害を防止するために、巻線に中空の導体を用いたり、別途に通水用パイプを導体に沿わせたりすることで、中空部に冷却水を通水しながら運転する必要がある。
【0005】
この場合、前記のMICに中空形状の導体を用いると、中空導体の内周などに絶縁を施す必要が生じ、冷却水の漏れによる事故やコイルの絶縁劣化を防止するために、構造が複雑になり、高価となる。また、通水用パイプをMICに沿わせる構造では、導体を無機物の絶縁体で被覆していることから、冷却効率の低下が避けられないなどの問題が生じる。
【0006】
この対策のため、導体を被覆する無機物の絶縁体として、無機物の中では熱伝導率が比較的大きい酸化マグネシウムを用い、MICと通水用パイプの間に非磁性低融点金属を介在させて両者を固着させる技術が開示されている。この構成を具備した電磁コイルは、通水パイプとMICの間に熱伝導率が大きい金属が充填されているので、導体への通電に伴って生じる熱を極めて速やかに除くことができる。
【0007】
図4は、MICの一例の断面を示す図であり、401は無酸素銅からなる導体、402は酸化マグネシウムからなる絶縁体、403は銅からなるシースを示す。また、図5は、MICと通水用パイプを非磁性低融点金属で固着した電磁コイルの一例の断面を示した図であり、501はMIC、502はステンレスからなる通水用パイプ、503はスズを主成分とする非磁性低融点金属、504はステンレスからなるケースを示す。
【0008】
【発明が解決しようとする課題】
MICを用いた電磁コイルでは、図5に示したような構造の採用により、前記のように冷却効率を大きくすることができるが、ここで問題となるのは、電磁コイルの製造工程における非磁性低融点金属を充填する際の、MICのシースや通水用パイプなどの非磁性低融点金属への溶出による肉厚の減少である。この現象は、相平衡の関係からある程度は避けられないものであり、特にMICを屈曲させる際に、内側のシース部に生じる皺の部分への影響が大きく、電磁コイルの信頼性低下に繋がるものである。
【0009】
従って、本発明の技術的な課題は、MICの巻線と通水用パイプの間に非磁性低融点金属を充填した構造を採用することで冷却効率を改善し、かつ10Gy以上のレベルの放射線に耐える電磁コイルにおいて、MICのシースや通水用パイプを構成する材料の非磁性低融点金属への溶出を防止した電磁コイルと、その製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、前記の問題を解決するために、MICと通水用パイプの間に介在させる、非磁性低融点金属の組成を検討した結果なされたものである。
【0012】
即ち、本発明は、導体、導体を被覆する無機物の絶縁体、絶縁体を被覆する銅のシースからなる無機物絶縁金属被覆ケーブル、及び前記無機物絶縁金属被覆ケーブルに近接した冷却水のニッケルを含むステンレスからなる通水用パイプを巻き回してなる電磁コイルにおいて、前記無機物絶縁金属被覆ケーブルと冷却水通水用パイプが、スズ100重量部に対し、0.3〜1.95重量部の銅、0.05〜0.15重量部のニッケルを、合計で2.0重量部以下加えた合金からなる非磁性低融点金属で固着されてなることを特徴とする電磁コイルである
【0013】
また、本発明は、前記の電磁コイルにおいて、前記非磁性低融点金属は、融点が300℃以下であることを特徴とする電磁コイルである。
【0014】
また、本発明は、前記の電磁コイルにおいて、前記無機物の絶縁体は、酸化マグネシウムを含むことを特徴とする電磁コイルである。
【0015】
また、本発明は、前記の電磁コイルにおいて、前記無機物の絶縁体は、窒化アルミニウムを含むことを特徴とする電磁コイルである。
【0016】
また、本発明は、導体、導体を被覆する無機質の絶縁体、絶縁体を被覆するシースからなる無機物絶縁金属被覆ケーブルを巻き回してコイルを形成し、前記コイルの形状に合わせて冷却水の通水用パイプを成形し、前記コイルと前記成形された通水用パイプを、非磁性低融点金属で固着することを特徴とする、前記の電磁コイルの製造方法である。
【0017】
【作用】
前記のように、MICと通水用パイプの間隙に充填して用いられる非磁性低融点金属としては、インジウム(融点:157℃)、スズ(融点;231℃)、鉛(327℃)、亜鉛(融点;420℃)、スズと鉛の合金であるハンダなどが挙げられる。これらの中では、毒性、価格などを考慮すると、スズが好適である。
【0018】
しかし、これらの溶湯を他の金属と接触させると、溶湯の温度における飽和濃度まで、接触している金属が、溶湯に溶出するのは避けられない。図1は、スズと銅からなる2成分系の状態図の一部を示したものである。この図によれば、スズを溶解してMICと通水用パイプの間隙に充填するのに必要な温度である300℃近傍では、銅が3重量%程度溶解することが分かる。
【0019】
このことから、銅を前記の範囲でスズに加えておくことで、溶湯を充填する際に、MICの銅シースの溶出を防止し得ることが期待できる。また、通水用のパイプにはステンレスを用いることがあり、この場合もニッケルの溶出を、同様の方法で防止し得ることが期待できる。図2は、スズとニッケルからなる2成分系の状態図の一部を示したものであり、ニッケルを0.2重量%以内の範囲で、スズに加えることが前記の問題解決に寄与し得ることを示唆している。
【0020】
このような観点から、スズに加える金属の濃度を検討した結果、銅の溶出を防止するのに加える銅の濃度は、スズ100重量部に対して、2重量部以下であることが最適であった。また、さらに望ましい適正範囲は、銅の溶出を防止するのに加える銅の濃度が、0.3〜1.2重量部である。また、ニッケルの溶出を防止するのに加えるニッケルの濃度は、スズ100重量部に対して、0 . 1重量部以下であることが最適であった。また、さらに望ましい適正範囲は、銅の溶出を防止するのに加えるニッケルの濃度が、0.05〜0.15重量部である。
【0021】
また、本発明に用いるMICは、導体を被覆する無機物の絶縁体として、酸化マグネシウムや窒化アルミニウムを使用する。無機物を酸化マグネシウムに限定した理由は、酸化マグネシウムや窒化アルミニウムが絶縁体と使用できる酸化物の中で、酸化ベリリウムと同等、または酸化ベリリウムに次いで高い熱伝導率を有し、導体への通電に伴って発生する熱を、速やかに移動することができるからである。
【0022】
ちなみに、200°K及び300°Kにおける熱伝導率の数値(単位;Wm−1K−1)を示すと、石英ガラスが1.14、1.38、多結晶アルミナが55、36であるの対し、酸化マグネシウムは、94、60である。なお、酸化ベリリウムの熱伝導率は、200°Kで424、300°Kで272と前記無機物に比較して、非常に大きいが、毒性などの取り扱い性を考慮すると用途が限定され、酸化マグネシウムの方が優れている。また、窒化アルミニウムも、70〜270という高い熱伝導率を具備しているが、価格や供給性の面で、酸化マグネシウムの方が優れている。
【0023】
また、酸化マグネシウムは、空気中に放置すると水蒸気や炭酸ガスと化学反応を起こし、特性が変化する。また、絶縁体として一般的な高分子化合物などに比較すると、機械的な強度が不十分で、巻線などの作業で支障が生じる可能性がある。しかし、本発明では、絶縁体を金属のシースで保護しているので、このような現象が生じない。従って本発明に用いるMICは、高い絶縁性と熱伝導性を兼備している。
【0024】
【発明の実施の形態】
次に、具体的な例を挙げ、図を参照しながら、本発明の実施の形態について説明する。
【0025】
ここでは、まず、銅及びニッケルの濃度を変えたスズの溶湯への、銅の溶解速度を検討した一例を示す。図3は、前記溶湯への銅の溶解速度の検討結果を示したものである。検討方法は、1辺が25mmで厚さ1.5mmの銅板を所要温度に保持した溶湯に、所要時間浸漬した後、銅板の厚さを測定するというものである。
【0026】
図3において、301は、スズが99.3重量%、銅が0.6重量%、ニッケルが0.1重量%という組成の非磁性低融点金属を、240±5℃に保持した状態で、前記銅板を浸漬した結果を示す。302は、スズが100%という組成の非磁性低融点金属の溶湯を、235±5℃に保持して、前記銅板を浸漬した結果、302は、同じくスズが100%という組成の非磁性低融点金属の溶湯を240±5℃に保持して、前記銅板を浸漬した結果を示す。
【0027】
この結果から、明らかなように、銅とニッケルを含む非磁性低融点金属を用いることで、MICのシースを構成する銅、及び通水用パイプなどを構成するステンレスの、溶湯への溶出を抑制し得ることが推定できる。従って、MICのシースの厚さや通水用パイプの厚さの減少を極めて少なくすることができ、MICを巻き回した電磁コイルの信頼性を向上することができる。そして、このような組成の非磁性低融点金属は、図5に示した電磁コイルにも適用できる。
【0028】
また、図6は、本発明に係る電磁コイルの第1の例における、MICと通水用パイプを巻き回した部分の断面である。図6の例では、MIC601の、図における上下の部分に、ステンレスからなる通水用パイプ602を沿わせた形で配置してある。曲げ加工によって巻き回されたMICは、隣接するMICのそれぞれの間をロー付けし、コイルとする。同様に、通水用パイプ602も曲げ加工とロー付けを施され、コイル形状となる。
【0029】
そして、MIC601と通水用パイプ602との間隙には、スズが99.3重量%、銅が0.6重量%、ニッケルが0.1重量%なる組成の非磁性低融点金属が充填してあり、MIC601と通水用パイプ602を固着している。このように、MIC601と通水用パイプ602の間には、熱伝導率の高い金属が介在しているので、MIC601で発生したジュール熱を、速やかに外部に移動することができる。また、604はステンレスで構成されるケースで、電磁コイル全体を保護している。
【0030】
図7は、本発明に係る電磁コイルの第2の例における、MICと銅からなる通水用パイプを巻き回した部分の断面である。図7の例でも、MIC701に曲げ加工を施して巻き回し、隣接するMIC701のそれぞれの間をロー付けし、コイルとする、ここでは、コイルを、スズが99.3重量%、銅が0.6重量%、ニッケルが0.1重量%なる組成の非磁性低融点金属703で覆ってから、ステンレスのケース704を設ける。通水用パイプ702は、ケース704の外側に、ロー付けにより固着される。
【0031】
この場合は、図6に示した第1の例よりも、製造工程を更に簡略化するのが可能で、ロー付けしたケース704と通水用パイプ702の間に、十分な量の非磁性低融点金属を介在させることにより、冷却効率を低下させることがない。ただし、通水パイプ302がケースの外側に露出しているので、図6示した第1の例よりも、取り扱いに注意が必要となる。
【0032】
図8は、本発明に係る電磁コイルの第3の例における、MICと銅からなる通水用パイプを巻き回した部分の図である。図8の例でも、MIC801に曲げ加工を施して巻き回し。隣接するMIC801のそれぞれの間をロー付けし、コイルとする。そして図8における上下のMICの間には、銅プレート805を介在させ、銅プレート805の両端には、通水パイプ802を取り付ける。
【0033】
なお、MIC801及び通水用パイプ802と、銅プレート805との接合はハンダ806を用いている。ハンダは銅に対する濡れが良好であり、MIC801、銅プレート805、通水パイプ802が熱の流路として一体化されるので、これまでに説明した例のように、非磁性低融点金属を必ずしも充填する必要がない。
【0034】
図8の例では、全体の固着を、スズが99.3重量%、銅が0.6重量%、ニッケルが0.1重量%なる組成の低融点金属803を用いて行なっているが、これまで説明した例に示した非磁性低融点金属の他にアルミナセメントを用いることもできる。
【0035】
また、図9は、これまでに説明した電磁コイルの外観を示す斜視図である。図9において、901はMIC、902は通水用パイプ、903は非磁性低融点金属、904はステンレス製のケース、905はブスバーを示す。また、906は絶縁端末であり、MICのシース、ハンダ903、ケース904への電流の漏洩を防止する機能を有する。
【0036】
次に、本発明に係る電磁コイルの冷却性能を評価するために、図6に示した構造で、通水用パイプをMICの上下両側に配置した電磁コイルと、MICの片側だけに通水用パイプを配置した電磁コイルに通電し、冷却水を通水した際の温度上昇を測定した。その際に、比較として、中空の導体で構成した電磁コイル、図6に示した構造で、ハンダの替わりにアルミナセメントを用いて、MICと通水用パイプを固着した電磁コイルについても、同一条件で温度上昇を測定した。なお、アルミナセメントを用いた場合も、通水用パイプの配置は、MICの両側及び片側の2種類とした。
【0037】
図10は、これらの電磁コイルの冷却性能の評価結果をまとめて示したものである。図10の中で、1001はアルミナセメントを用い通水用パイプをMICの片側のみに配置した電磁コイル、1002はアルミナセメントを用い通水用パイプをMICの上下に配置した電磁コイル、1003は本発明の電磁コイルで通水用パイプをMICの片側のみに配置した場合、1004は本発明の電磁コイルで通水用パイプをMICの上下に配置した場合、1005は中空導体を用いた電磁コイルで、導体の中空部に通水した場合である。
【0038】
これらの結果から、中空導体を用いた直接冷却による電磁コイルの温度上昇が最も少ないが、通水用パイプをMIC導体に沿わせた間接冷却であっても、本発明の電磁コイルは高い冷却効率を発現し、温度上昇による支障が生じない状態で運転することが可能であることが分かる。
【0039】
【発明の効果】
以上に説明したように、本発明によれば、MICを用いた電磁コイルに、十分な冷却効率を発現し得る構造を付与するために、MICと通水用パイプとの間隙に、非磁性低融点金属を充填する工程において、非磁性低融点金属への溶出による障害を未然に防止することが可能となる。これによって、放射線に曝される環境で用いる電磁コイルの信頼性を、大幅に向上することができる。
【図面の簡単な説明】
【図1】スズと銅からなる2成分系の状態図の一部を示す図。
【図2】スズとニッケルからなる2成分系の状態図の一部を示す図。
【図3】溶湯への溶解速度の検討結果を示す図。
【図4】MICの一例の断面を示す図。
【図5】MICと通水用パイプを非磁性低融点金属で固着した電磁コイルの一例の断面を示す図。
【図6】本発明に係る電磁コイルの第1の例におけるMICと通水用パイプを巻き回した部分の断面を示す図。
【図7】本発明に係る電磁コイルの第2の例におけるMICと通水用パイプを巻き回した部分の断面を示す図。
【図8】本発明に係る電磁コイルの第3の例におけるMICと通水用パイプを巻き回した部分の断面を示す。
【図9】本発明の電磁コイルの外観を示す斜視図。
【図10】電磁コイルの冷却性能の評価結果を示す図。
【符号の説明】
301 スズが99.3重量%,銅が0.6重量%,ニッケルが0.1重量%の組成での結果
MIC302 スズが100%の組成,温度が235±5℃での結果
303 スズが100%の組成,温度が240±5℃での結果
400,501,601,701,801,901 MIC
401 導体
402 絶縁体
403 シース
502,602,702,802,902 通水用パイプ
503,603,703,803,903 非磁性低融点金属
504,604,704,804,904 ケース
805 銅プレート
806,903 ハンダ
905 ブスバー
906 絶縁端末
1001 通水用パイプをMICの片側のみに配置した電磁コイル
1002 通水用パイプをMICの上下に配置した電磁コイル
1003 通水用パイプをMICの片側のみに配置した電磁コイル
1004 通水用パイプをMICの上下に配置した電磁コイル
1005 中空導体を用いた電磁コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic coil using an inorganic insulated metal-coated cable (Mineral Insulated Cable: hereinafter referred to as MIC) used in places exposed to radiation, and more particularly, a water channel for passing cooling water, and an MIC. The present invention relates to a structure for fixing a coil wound around a wire.
[0002]
[Prior art]
Various accelerators are used to accelerate charged elementary particles and ions to a high energy state and collide with the target to study the structure of the nucleus. In this apparatus, Lorentz force is used for acceleration of elementary particles or ions and direction control, so it is necessary to install a large number of electromagnets for generating a high magnetic field. And in an accelerator, generation | occurrence | production of the various radiation accompanying particle acceleration is unavoidable, and the countermeasure with respect to a radiation is needed also about the electromagnet to be used.
[0003]
Conventionally, an electromagnetic coil of an electromagnet used for an accelerator is used in an environment where the radiation dose is 10 6 Gy (gray) to 10 8 Gy, and the radiation dose level is 10 8 Gy or less as a countermeasure against insulation deterioration of the electromagnetic coil due to radiation. Then, an organic insulator having high radiation resistance is used, and an inorganic insulator is used at a radiation dose level of 10 8 Gy or more. In the case where the radiation dose is 10 8 Gy or higher and the level is particularly high, it is necessary to configure the insulator only with an inorganic substance.
[0004]
Moreover, in general, in such an electromagnetic coil, in order to prevent a failure due to heat generation due to energization, a hollow conductor is used for the winding, or a water pipe is separately provided along the conductor, It is necessary to operate while passing cooling water through the hollow portion.
[0005]
In this case, if a hollow conductor is used for the MIC, it is necessary to insulate the inner periphery of the hollow conductor, and the structure is complicated in order to prevent accidents due to leakage of cooling water and deterioration of insulation of the coil. It becomes expensive. Further, in the structure in which the water pipe is provided along the MIC, since the conductor is covered with an inorganic insulator, there arises a problem that a reduction in cooling efficiency cannot be avoided.
[0006]
For this measure, magnesium oxide, which has a relatively high thermal conductivity, is used as the inorganic insulator covering the conductor, and a non-magnetic low melting point metal is interposed between the MIC and the water pipe. A technique for fixing the material is disclosed. Since the electromagnetic coil having this configuration is filled with a metal having high thermal conductivity between the water flow pipe and the MIC, heat generated by energization of the conductor can be removed very quickly.
[0007]
FIG. 4 is a diagram showing a cross section of an example of an MIC, where 401 is a conductor made of oxygen-free copper, 402 is an insulator made of magnesium oxide, and 403 is a sheath made of copper. FIG. 5 is a cross-sectional view showing an example of an electromagnetic coil in which the MIC and the water flow pipe are fixed with a non-magnetic low melting point metal. 501 is the MIC, 502 is the water flow pipe made of stainless steel, and 503 is the water flow pipe. A nonmagnetic low-melting-point metal mainly composed of tin, 504 indicates a case made of stainless steel.
[0008]
[Problems to be solved by the invention]
In the electromagnetic coil using the MIC, the cooling efficiency can be increased as described above by adopting the structure as shown in FIG. 5, but the problem here is that the nonmagnetic property in the manufacturing process of the electromagnetic coil This is a reduction in wall thickness due to elution into a non-magnetic low-melting point metal such as a sheath of MIC or a water passage pipe when filling the low-melting point metal. This phenomenon is unavoidable to some extent due to the relationship of phase equilibrium, especially when the MIC is bent, it has a large effect on the wrinkles that occur in the inner sheath, leading to a decrease in the reliability of the electromagnetic coil. It is.
[0009]
Therefore, the technical problem of the present invention is that the cooling efficiency is improved by adopting a structure in which a nonmagnetic low-melting-point metal is filled between the winding of the MIC and the water pipe, and a level of 10 8 Gy or more. It is an object of the present invention to provide an electromagnetic coil that can withstand the radiation of the above, and an electromagnetic coil that prevents elution of the material constituting the sheath of the MIC and the pipe for passing water into the nonmagnetic low-melting-point metal and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The present invention has been made as a result of examining the composition of a nonmagnetic low-melting-point metal interposed between the MIC and the water flow pipe in order to solve the above problems.
[0012]
That is, the present invention relates to a stainless steel containing a conductor, an inorganic insulator covering the conductor, an inorganic insulating metal-coated cable comprising a copper sheath covering the insulator, and nickel of cooling water adjacent to the inorganic insulating metal-coated cable. In the electromagnetic coil formed by winding a water passage pipe made of the above, the inorganic insulating metal-coated cable and the cooling water passage pipe are 0.3 to 1.95 parts by weight of copper, 0 parts per 100 parts by weight of tin. An electromagnetic coil characterized by being fixed by a nonmagnetic low melting point metal made of an alloy to which 0.05 to 0.15 parts by weight of nickel is added in total to 2.0 parts by weight or less.
Moreover, the present invention is the electromagnetic coil according to the above-mentioned electromagnetic coil, wherein the nonmagnetic low melting point metal has a melting point of 300 ° C. or less .
[0014]
The present invention is the electromagnetic coil according to the above-described electromagnetic coil, wherein the inorganic insulator includes magnesium oxide.
[0015]
In the electromagnetic coil according to the present invention, the inorganic insulator includes aluminum nitride.
[0016]
In addition, the present invention forms a coil by winding a conductor, an inorganic insulator covering the conductor, and an inorganic insulated metal-coated cable comprising a sheath covering the conductor, and passing cooling water in accordance with the shape of the coil. The method for producing an electromagnetic coil according to claim 1, wherein a water pipe is formed, and the coil and the formed water flow pipe are fixed with a nonmagnetic low melting point metal.
[0017]
[Action]
As described above, the nonmagnetic low melting point metal used by filling the gap between the MIC and the water pipe is indium (melting point: 157 ° C.), tin (melting point: 231 ° C.), lead (327 ° C.), zinc. (Melting point: 420 ° C.), solder which is an alloy of tin and lead. Among these, tin is preferable in consideration of toxicity, price, and the like.
[0018]
However, when these molten metals are brought into contact with other metals, it is inevitable that the metals in contact with the molten metal are eluted up to the saturation concentration at the temperature of the molten metal. FIG. 1 shows a part of a two-component phase diagram composed of tin and copper. According to this figure, it can be seen that about 3% by weight of copper dissolves at around 300 ° C., which is a temperature necessary to dissolve tin and fill the gap between the MIC and the water flow pipe.
[0019]
From this, it can be expected that by adding copper to tin within the above range, elution of the copper sheath of the MIC can be prevented when filling the molten metal. Further, stainless steel may be used for the water passage pipe, and in this case, it can be expected that nickel elution can be prevented by the same method. FIG. 2 shows a part of a phase diagram of a two-component system composed of tin and nickel, and adding nickel to tin within a range of 0.2% by weight or less can contribute to solving the above problem. Suggests that.
[0020]
From this point of view, the result of examining the concentration of the metal added to the tin, the concentration of copper added to prevent the elution of copper, relative to the tin 100 parts by weight, and optimally it is under 2 parts by weight or less there were. A more desirable appropriate range is that the concentration of copper added to prevent elution of copper is 0.3 to 1.2 parts by weight . The concentration of nickel added to prevent the elution of nickel, relative to the tin 100 parts by weight, 0. It was optimal at most 1 part by weight. A more desirable appropriate range is that the concentration of nickel added to prevent elution of copper is 0.05 to 0.15 parts by weight.
[0021]
The MIC used in the present invention uses magnesium oxide or aluminum nitride as an inorganic insulator covering the conductor. The reason for limiting the inorganic material to magnesium oxide is that magnesium oxide and aluminum nitride have the same thermal conductivity as beryllium oxide, or the highest thermal conductivity after beryllium oxide, among the oxides that can be used as insulators. This is because the heat generated therewith can be quickly moved.
[0022]
By the way, the numerical values (unit: Wm-1K-1) of the thermal conductivity at 200 ° K and 300 ° K are 1.14 and 1.38 for quartz glass and 55 and 36 for polycrystalline alumina. Magnesium oxide is 94,60. The thermal conductivity of beryllium oxide is 424 at 200 ° K and 272 at 300 ° K, which is very large compared to the inorganic material. However, the use is limited in consideration of handling properties such as toxicity. Is better. Aluminum nitride also has a high thermal conductivity of 70 to 270, but magnesium oxide is superior in terms of price and availability.
[0023]
Further, when magnesium oxide is left in the air, it undergoes a chemical reaction with water vapor or carbon dioxide gas, and its characteristics change. In addition, compared with a general polymer compound as an insulator, mechanical strength is insufficient, and there is a possibility that troubles may occur in operations such as winding. However, in the present invention, since the insulator is protected by the metal sheath, such a phenomenon does not occur. Therefore, the MIC used in the present invention has both high insulation and thermal conductivity.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings with specific examples.
[0025]
Here, an example in which the dissolution rate of copper in a tin melt with varying concentrations of copper and nickel is first examined. FIG. 3 shows the examination result of the dissolution rate of copper in the molten metal. The examination method is to immerse a copper plate having a side of 25 mm and a thickness of 1.5 mm at a required temperature and then measure the thickness of the copper plate after being immersed for a required time.
[0026]
In FIG. 3, 301 is a state in which a nonmagnetic low melting point metal having a composition of 99.3% by weight of tin, 0.6% by weight of copper, and 0.1% by weight of nickel is maintained at 240 ± 5 ° C. The result of immersing the copper plate is shown. 302 is a nonmagnetic low melting point metal having a composition of 100% tin, held at 235 ± 5 ° C. and dipped in the copper plate. As a result, 302 is a nonmagnetic low melting point having a composition of 100% tin. The result of immersing the copper plate while maintaining the molten metal at 240 ± 5 ° C. is shown.
[0027]
As is clear from this result, by using a non-magnetic low-melting-point metal containing copper and nickel, the elution of copper constituting the MIC sheath and stainless steel constituting the water flow pipe into the molten metal is suppressed. Can be estimated. Therefore, the decrease in the thickness of the sheath of the MIC and the thickness of the water flow pipe can be extremely reduced, and the reliability of the electromagnetic coil wound with the MIC can be improved. And the nonmagnetic low melting-point metal of such a composition is applicable also to the electromagnetic coil shown in FIG.
[0028]
FIG. 6 is a cross-sectional view of a portion where the MIC and the water flow pipe are wound in the first example of the electromagnetic coil according to the present invention. In the example of FIG. 6, a water passage pipe 602 made of stainless steel is arranged along the upper and lower portions of the MIC 601 in the drawing. The MIC wound by bending is brazed between each adjacent MIC to form a coil. Similarly, the water flow pipe 602 is also bent and brazed to form a coil shape.
[0029]
The gap between the MIC 601 and the water pipe 602 is filled with a nonmagnetic low melting point metal having a composition of 99.3% by weight of tin, 0.6% by weight of copper, and 0.1% by weight of nickel. Yes, the MIC 601 and the water flow pipe 602 are fixed. As described above, since the metal having high thermal conductivity is interposed between the MIC 601 and the water flow pipe 602, the Joule heat generated in the MIC 601 can be quickly transferred to the outside. Reference numeral 604 denotes a case made of stainless steel that protects the entire electromagnetic coil.
[0030]
FIG. 7 is a cross-sectional view of a portion around which a water flow pipe made of MIC and copper is wound in a second example of the electromagnetic coil according to the present invention. Also in the example of FIG. 7, the MIC 701 is bent and wound, and brazed between each of the adjacent MICs 701 to form a coil. Here, the coil is 99.3% by weight of tin and 0.3% of copper. A stainless steel case 704 is provided after covering with a nonmagnetic low melting point metal 703 having a composition of 6% by weight and nickel of 0.1% by weight. The water passage pipe 702 is fixed to the outside of the case 704 by brazing.
[0031]
In this case, the manufacturing process can be further simplified as compared with the first example shown in FIG. 6, and a sufficient amount of nonmagnetic low resistance is provided between the brazed case 704 and the water flow pipe 702. By interposing a melting point metal, the cooling efficiency is not lowered. However, since the water pipe 302 is exposed to the outside of the case, it is necessary to handle it more carefully than in the first example shown in FIG.
[0032]
FIG. 8 is a diagram of a portion in which a water flow pipe made of MIC and copper is wound in a third example of the electromagnetic coil according to the present invention. Also in the example of FIG. 8, the MIC 801 is bent and wound. The adjacent MIC 801 is brazed to form a coil. A copper plate 805 is interposed between the upper and lower MICs in FIG. 8, and water pipes 802 are attached to both ends of the copper plate 805.
[0033]
Note that solder 806 is used to join the MIC 801 and the water flow pipe 802 to the copper plate 805. Solder has good wettability to copper, and MIC801, copper plate 805, and water flow pipe 802 are integrated as a heat flow path, so it is not always filled with non-magnetic low melting point metal as in the examples described so far There is no need to do.
[0034]
In the example of FIG. 8, the entire fixing is performed using a low melting point metal 803 having a composition of 99.3% by weight of tin, 0.6% by weight of copper, and 0.1% by weight of nickel. Alumina cement can be used in addition to the nonmagnetic low melting point metal shown in the examples described above.
[0035]
FIG. 9 is a perspective view showing the appearance of the electromagnetic coil described so far. In FIG. 9, 901 is a MIC, 902 is a water flow pipe, 903 is a non-magnetic low melting point metal, 904 is a stainless steel case, and 905 is a bus bar. Reference numeral 906 denotes an insulating terminal having a function of preventing current leakage to the sheath of the MIC, the solder 903, and the case 904.
[0036]
Next, in order to evaluate the cooling performance of the electromagnetic coil according to the present invention, with the structure shown in FIG. 6, the electromagnetic coil in which the pipes for water flow are arranged on both the upper and lower sides of the MIC, The temperature rise was measured when the electromagnetic coil in which the pipe was arranged was energized and the cooling water was passed. At that time, for comparison, an electromagnetic coil composed of a hollow conductor, and an electromagnetic coil having the structure shown in FIG. 6 and using an alumina cement instead of solder to which the MIC and the water flow pipe are fixed, have the same conditions. The temperature rise was measured at In addition, also when alumina cement was used, the arrangement | positioning of the water flow pipe was made into two types of the both sides of a MIC, and one side.
[0037]
FIG. 10 collectively shows the evaluation results of the cooling performance of these electromagnetic coils. In FIG. 10, 1001 is an electromagnetic coil in which alumina cement is used and a water passage pipe is disposed only on one side of the MIC, 1002 is an electromagnetic coil in which alumina cement is used and water passage pipes are disposed above and below the MIC, and 1003 is a main coil. 1004 is an electromagnetic coil using hollow conductors when 1004 is an electromagnetic coil according to the present invention, and 1005 is an electromagnetic coil using a hollow conductor. In this case, water is passed through the hollow portion of the conductor.
[0038]
From these results, the temperature rise of the electromagnetic coil by direct cooling using the hollow conductor is the smallest, but the electromagnetic coil of the present invention has high cooling efficiency even with indirect cooling with the water pipe along the MIC conductor. It can be seen that it is possible to operate in a state where no trouble is caused by the temperature rise.
[0039]
【The invention's effect】
As described above, according to the present invention, in order to give the electromagnetic coil using the MIC a structure capable of expressing sufficient cooling efficiency, a non-magnetic low gap is provided in the gap between the MIC and the water flow pipe. In the step of filling the melting point metal, it is possible to prevent obstruction due to elution into the nonmagnetic low melting point metal. Thereby, the reliability of the electromagnetic coil used in the environment exposed to radiation can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a part of a phase diagram of a two-component system composed of tin and copper.
FIG. 2 is a diagram showing a part of a two-component phase diagram composed of tin and nickel.
FIG. 3 is a diagram showing a result of examining a dissolution rate in molten metal.
FIG. 4 is a diagram showing a cross section of an example of an MIC.
FIG. 5 is a view showing a cross section of an example of an electromagnetic coil in which a MIC and a water flow pipe are fixed with a nonmagnetic low melting point metal.
FIG. 6 is a cross-sectional view of a portion where an MIC and a water flow pipe are wound in a first example of an electromagnetic coil according to the present invention.
FIG. 7 is a view showing a cross section of a portion where an MIC and a water flow pipe are wound in a second example of an electromagnetic coil according to the present invention.
FIG. 8 shows a cross section of a portion where an MIC and a water flow pipe are wound in a third example of an electromagnetic coil according to the present invention.
FIG. 9 is a perspective view showing the appearance of the electromagnetic coil of the present invention.
FIG. 10 is a view showing an evaluation result of cooling performance of an electromagnetic coil.
[Explanation of symbols]
301 Result of composition with 99.3% by weight of tin, 0.6% by weight of copper and 0.1% by weight of nickel MIC302 Result of composition with 100% of tin, temperature of 235 ± 5 ° C. Result of 303 with 100 of tin % Composition, results at a temperature of 240 ± 5 ° C. 400, 501, 601, 701, 801, 901 MIC
401 Conductor 402 Insulator 403 Sheath 502, 602, 702, 802, 902 Water pipe 503, 603, 703, 803, 903 Non-magnetic low melting point metal 504, 604, 704, 804, 904 Case 805 Copper plate 806, 903 Solder 905 Busbar 906 Insulation terminal 1001 Electromagnetic coil 1002 with water flow pipe disposed only on one side of MIC Electromagnetic coil 1003 with water flow pipe disposed above and below MIC Electromagnetic coil with water flow pipe disposed on only one side of MIC 1004 Electromagnetic coil in which pipes for water flow are arranged above and below the MIC 1005 Electromagnetic coil using a hollow conductor

Claims (5)

導体、導体を被覆する無機物の絶縁体、絶縁体を被覆する銅のシースからなる無機物絶縁金属被覆ケーブル、及び前記無機物絶縁金属被覆ケーブルに近接した冷却水の通水用パイプを巻き回してなる電磁コイルにおいて、前記通水用パイプがニッケルを含むステンレスからなり、前記無機物絶縁金属被覆ケーブルと前記冷却水通水用パイプが、スズ100重量部に対し、0.3〜1.95重量部の銅、0.05〜0 . 15重量部のニッケルを、合計で2 . 0重量部以下加えた合金からなる非磁性低融点金属で固着されてなることを特徴とする電磁コイル。An electromagnetic formed by winding a conductor, an inorganic insulator covering the conductor, an inorganic insulating metal-coated cable made of a copper sheath covering the insulator, and a cooling water passage pipe adjacent to the inorganic insulating metal-coated cable in the coil, wherein the water passage pipe is made of stainless steel containing nickel, it said inorganic insulating metal sheathed cable and the cooling water passage for water pipes, with respect to tin 100 parts by weight, 0.3 to 1.95 parts by weight of copper , 0.05 to 0.2 to 15 parts by weight of nickel, in total. 0 electromagnetic coil, characterized by comprising fixed in a non-magnetic low melting point metal consisting of parts by weight was added alloy. 請求項1に記載の電磁コイルにおいて、前記非磁性低融点金属は、融点が300℃以下であることを特徴とする電磁コイル。The electromagnetic coil according to claim 1 , wherein the nonmagnetic low melting point metal has a melting point of 300 ° C. or less. 請求項1又は2に記載の電磁コイルにおいて、前記無機物の絶縁体は、酸化マグネシウムを含むことを特徴とする電磁コイル。 3. The electromagnetic coil according to claim 1 , wherein the inorganic insulator includes magnesium oxide. 4. 請求項1又は2に記載の電磁コイルにおいて、前記無機物の絶縁体は、窒化アルミニウムを含むことを特徴とする電磁コイル。 3. The electromagnetic coil according to claim 1 , wherein the inorganic insulator includes aluminum nitride. 導体、導体を被覆する無機質の絶縁体、絶縁体を被覆するシースからなる無機物絶縁金属被覆ケーブルを巻き回してコイルを形成し、前記コイルの形状に合わせて冷却水の通水用パイプを成形し、前記コイルと前記成形された通水用パイプを、非磁性低融点金属で固着することを特徴とする請求項1ないし請求項のいずれかに記載の電磁コイルの製造方法。A coil is formed by winding a conductor, an inorganic insulator covering the conductor, and an inorganic insulating metal-coated cable comprising a sheath covering the conductor, and forming a cooling water flow pipe in accordance with the shape of the coil. the method of the electromagnetic coil according to any one of claims 1 to 4, characterized in that the coil and the molded passing water pipe, fixed in a non-magnetic low melting point metal.
JP2001391491A 2001-12-25 2001-12-25 Electromagnetic coil and manufacturing method thereof Expired - Lifetime JP3841340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391491A JP3841340B2 (en) 2001-12-25 2001-12-25 Electromagnetic coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391491A JP3841340B2 (en) 2001-12-25 2001-12-25 Electromagnetic coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003197417A JP2003197417A (en) 2003-07-11
JP3841340B2 true JP3841340B2 (en) 2006-11-01

Family

ID=27599067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391491A Expired - Lifetime JP3841340B2 (en) 2001-12-25 2001-12-25 Electromagnetic coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3841340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087029A1 (en) 2014-12-03 2016-06-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Arrangement of electrical conductors and method for manufacturing an arrangement of electrical conductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087029A1 (en) 2014-12-03 2016-06-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Arrangement of electrical conductors and method for manufacturing an arrangement of electrical conductors

Also Published As

Publication number Publication date
JP2003197417A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
RU2684901C2 (en) Metallic assembly containing superconductor
JP5476242B2 (en) Superconducting wire connection structure and manufacturing method thereof
US4980964A (en) Superconducting wire
CN107910107A (en) Aerospace high-temperature resistant super-soft electric wire and preparation method thereof
KR20100069602A (en) Arrangement having a superconducting cable
JP2015153497A (en) Shield cable
JP2008508677A (en) Superconducting composite wire made from magnesium diboride
JP3841340B2 (en) Electromagnetic coil and manufacturing method thereof
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
US20100279874A1 (en) Arrangement having a superconductive cable
US2960618A (en) Getter for electron tubes
JP3553031B2 (en) Electromagnetic coil and method of manufacturing the same
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
JP5204548B2 (en) Superconducting magnet device
JP2018502448A (en) Conductor arrangement and method of manufacturing the conductor arrangement
JPWO2020067335A1 (en) Oxide superconducting coil and its manufacturing method
WO1991002364A1 (en) Superconductive wire
JPS6074307A (en) Superconductive twisted wire
US20220312554A1 (en) Heater for melting glass
JP3308101B2 (en) Induction melting furnace
EP2873919B1 (en) Glow plug
US11985737B2 (en) Mineral-insulated shielded cable for ultra high temperatures, heating element and transmission cable, application and manufacturing method
CN113346259B (en) Connection part of superconducting wire rod and connection method of superconducting wire rod
WO2015133204A1 (en) Superconducting cable line and heat insulated pipeline
JPS62118737A (en) Preparation of heat-proof insulating coil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Ref document number: 3841340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060811

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term