JP3841295B2 - Thermometer installation method - Google Patents

Thermometer installation method Download PDF

Info

Publication number
JP3841295B2
JP3841295B2 JP2003007014A JP2003007014A JP3841295B2 JP 3841295 B2 JP3841295 B2 JP 3841295B2 JP 2003007014 A JP2003007014 A JP 2003007014A JP 2003007014 A JP2003007014 A JP 2003007014A JP 3841295 B2 JP3841295 B2 JP 3841295B2
Authority
JP
Japan
Prior art keywords
hole
thermometer
refractory
filling
amorphous refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007014A
Other languages
Japanese (ja)
Other versions
JP2004218006A (en
Inventor
敬朋 片岸
典央 門田
誠一郎 林田
彌一 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003007014A priority Critical patent/JP3841295B2/en
Publication of JP2004218006A publication Critical patent/JP2004218006A/en
Application granted granted Critical
Publication of JP3841295B2 publication Critical patent/JP3841295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度計の設置方法に関し、特に、高炉炉底に設置される温度計の設置方法に関するものである。
【0002】
【従来の技術】
高炉の炉底煉瓦は、長期間の連続操業中に化学的または熱応力等の機械的な力によって損傷等が生ずるため、従来から、炉底煉瓦損傷状況の監視、あるいは操業状況の管理を行うことが必要であった。かかる監視あるいは管理等を行う方法として従来広く用いられている方法は、高炉炉底部に温度計(熱電対等)を埋め込んで、高炉炉底部の温度測定を行い、この温度測定の結果から炉底煉瓦の損傷状況等を推定するものである。
【0003】
上記のような高炉炉底部の温度測定を行う場合における、温度計の設置方法としては、例えば、鉄皮から耐火煉瓦に開孔する孔部を設け、この孔部中に熱電対等の温度計を入れ、さらに圧入管等を孔部に装入し、圧入管等から不定形耐火物を充填することにより、温度計を固定する方法がある(例えば、特許文献1参照)。
【0004】
しかし、このような方法で温度計の固定を行うと、温度計を入れてから不定形耐火物を充填しているので、温度計の周りに空隙が発生しやすく、この空隙部分が断熱材となって、正確な測温が困難であった。
【0005】
そこで、従来技術においては、上記空隙部分の発生を防止するため、不定形耐火物の粘度を下げて流動性を高め、孔部における不定形耐火物の充填率を高める技術が実施されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開昭58−55511号公報
【特許文献2】
特開平9−41012号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来技術のように流動性の高い不定形耐火物が用いられる場合においては、高炉内の温度が高くなると、不定形耐火物の液比が高いことに起因して、充填物(不定形耐火物)のガス化が起こり、充填物中に測温上問題となる空隙が発生しやすくなるという発泡に伴う問題が生ずる。
【0008】
また、このような問題は、高炉炉底部の測温を行う場合に限定されない。すなわち、測温対象物は高炉に限定されず、高温状態となりやすい測温対象物およびその近傍に開孔された孔部に温度計を装入し、温度計を固定するために耐火物を充填するという温度計の設置方法を採用する場合には、如何なる測温対象物であっても、上記と同様の問題が生ずる。
【0009】
そこで、本発明は、上記従来技術にかかる問題を解決するためになされたものであって、開孔された孔部についての温度計設置時および測定時(高温時)において、温度計の周りに空隙部を生じ難く、適切な測温を実施することが可能な温度計の設置方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであって、開孔された孔部に流動性の低い不定形耐火物を充填する充填工程と、前記不定形耐火物が充填された前記孔部内に温度計を装入する装入工程とを備えたことを特徴としている。
【0011】
このような構成においては、充填工程後の前記孔部に前記温度計が装入されることにより、装入された前記温度計部分の体積に相当する前記不定形耐火物が押し出されながら、前記温度計の先端部(いわゆる測温部)が前記孔部内における測温位置に到達する。
【0012】
したがって、このような構成によれば、まずは、前記孔部内に流動性の低い前記不定形耐火物が充填され、十分に前記孔部内の空隙部が排除された後に、前記温度計が装入されるため、前記孔部内および前記温度計周囲における空隙部の発生を効果的に防止することができる。
【0013】
また、このような構成においては、流動性の低い前記不定形耐火物が充填された孔部に前記温度計が装入される。つまり、従来のように、温度計装入後に不定形耐火物の充填が開始されるわけではない。したがって、この構成によれば、温度計の位置が不定形耐火物の充填作業により動くことなく、精度よく温度計を設置することができる。
【0014】
さらに、このような構成によれば、不定形耐火物として流動性の低いものが用いられており、従来と比較して不定形耐火物の液比が低いため、高炉内の温度が高くなっても従来のような発泡現象が生じにくくなり、不定形耐火物(充填物)中には測温上問題となる空隙等は発生し難い。
【0015】
また、本発明にかかる温度計の設置方法においては、前記温度計の測温部付近における前記孔部の孔径が、前記測温部付近以外の孔径よりも小さい構成が好ましい。
【0016】
この好ましい構成によれば、前記温度計の測温部付近を小径にすることによって、前記不定形耐火物の充填量を少なくすることが可能となり、前記不定形耐火物の充填時間も含めて、前記温度計の装入時間を短縮することができる。なお、前記孔部の全体にわたって小径とすると、温度計(熱電対)を装入すること自体が困難となるため、本発明に示すべく、前記孔部の先端部、すなわち前記温度計先端の測温部付近の孔部のみを小径にし、その他の部分は大径にすることが望ましい。
【0017】
さらに、本発明は、上記課題を解決するためになされたものであって、開孔された孔部に流動性の低い不定形耐火物を充填する第一充填工程と、前記第一充填工程後に前記孔部内に温度計を装入する装入工程と、前記装入工程後に前記孔部に前記第一充填工程で充填した不定形耐火物よりも流動性の高い不定形耐火物を充填する第二充填工程とを備えたことを特徴としている。
【0018】
このような構成においては、前記第一充填工程後に前記装入工程が行われる。すなわち、従来のように、温度計装入後に不定形耐火物の充填が開始されるわけではない。したがって、この構成によれば、温度計の位置が不定形耐火物の充填作業により動くことなく、精度よく温度計を設置することができる。
【0019】
また、この構成においては、前記第一充填工程時に流動性の低い不定形耐火物が充填され、前記装入工程後の前記第二充填工程時に流動性の高い不定形耐火物が充填される。すなわち、前記温度計先端部(測温部)周囲には流動性の低い(液比が低い)不定形耐火物が充填されているため、発泡現象を防止し空隙部の発生を抑えることができる。
【0020】
また、測温に直接関係のない温度計部分は、その周辺に空隙部が発生したとしても測温精度上の問題が少ない。したがって、上記の構成のように、前記装入工程後の前記第二充填工程時においては、ハンドリング性および装入性が良好な液比の高い(流動性の高い)不定形耐火物を充填して、前記温度計の固定を行うことが好ましい。このような構成によれば、液比の高い不定形耐火物を併用することによって、圧入管等の大がかりな設備が不要となり、系外に設置した単なる不定形耐火物圧送設備を活用可能という効果を得ることができる。
【0021】
また、本発明にかかる温度計の設置方法においては、前記孔部として、前記第二充填工程時に前記流動性の高い不定形耐火物の充填が行われる第一孔部と、前記第一充填工程時に前記流動性の低い不定形耐火物の充填が行われるべく前記第一孔部の奥部に、前記第一孔部よりも小径の第二孔部とが形成される構成が好ましい。
【0022】
この好ましい構成によれば、前記第二孔部に充填される流動性の低い不定形耐火物の充填量を低減することができる。また、前記第二孔部を前記第一孔部よりも小径とすることにより、前記温度計の測温部付近を小径とすることとなるため、前記不定形耐火物の充填時間も含めて、前記温度計の装入時間を短縮することができる。
【0023】
また、本発明にかかる温度計の設置方法においては、前記第一孔部および前記第二孔部の下方辺部が段差無く形成されている構成が好ましい。
【0024】
この好ましい構成によれば、前記第一孔部および前記第二孔部の下方辺部が段差無く形成されているため、前記第一孔部の奥部に形成されている前記第二孔部に対して、容易に不定形耐火物を充填することができる。
【0025】
また、本発明にかかる温度計の設置方法においては、前記第二充填工程が圧入管を用いて行われ、前記圧入管が、前記第一孔部の奥部に位置する端部と、前記第一孔部の外部に位置し前記不定形耐火物を充填する圧入口とを有する構成が好ましい。
【0026】
この好ましい構成によれば、前記圧入管を用いることによって、前記不定形耐火物を前記第一孔部の奥部から順に充填することができる。つまり、記第一孔部の奥の方から前記不定形耐火物の充填作業を行うことが可能となるため、前記第一孔部内における空隙部の発生を低減させることができる。
【0027】
また、本発明にかかる温度計の設置方法においては、測温対象物が高炉である場合には、前記孔部が、高炉炉底壁より鉄皮および煉瓦を開孔して形成されることが好ましい。
【0028】
本発明にかかる温度計の設置方法によれば、測温対象が高温状態となる高炉であっても、開孔された孔部についての温度計設置時および測定時(高温時)において、温度計の周りに空隙部を生じ難く、適切な測温を実施することが可能となる。
【0029】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の実施形態について説明する。
【0030】
〈第一実施形態〉
図1は、本発明の第一実施形態にかかる温度計の設置方法の概略工程図を示したものである。なお、この図1に示された各工程図は、高炉炉底部の拡大図を示したものである。
【0031】
この図1に示すように、本実施形態にかかる温度計の設置方法においては、煉瓦1等の耐火物を鉄皮2にて覆って形成された高炉本体の炉底部(図1(a)参照)に対して、鉄皮2および煉瓦1を開孔して所定深さの第一孔部3が形成される(図1(b)参照)。ここで、第一孔部3は、例えば、コアーボーリング、ドリル等の開孔手段を用いて形成される。
【0032】
次いで、この第一孔部3からさらに煉瓦1を開孔して、第二孔部4が形成される(図1(c)参照)。この第二孔部4には、温度計が装入されるため、第二孔部4は、その端部が所望の測温箇所となるように開孔される。ここで、第二孔部4は、例えば、ドリル、レーザ等の開孔手段を用いて形成される。
【0033】
また、この第二孔部4は、後述すべく、流動性の低い不定形耐火物が充填され、さらに上記のように温度計が装入される「孔部」である。したがって、この第二孔部4は、流動性の低い不定形耐火物が充填され、その中に温度計が装入された際に、温度計装入分(温度計装入体積分)の不定形耐火物が押し出される大きさであればよく、具体的には、装入される温度計の直径よりも僅かに大きい程度の孔部とすることが好ましい。このような構成とすれば、後述する不定形耐火物の充填量を少なくすることが可能となり、加えて、充填量が少なくなった分だけ、作業性が向上する。また、孔部の入口側に対する不定形耐火物の流れ出しも減少するため、不定形耐火物の選定範囲も広がる。
【0034】
次いで、この第二孔部4に、流動性の低い不定形耐火物5が充填される(図1(d)参照)。より具体的には、第二孔部4の奥部から順に、すなわち第二孔部4内の測温部となる高炉炉内側から、液比が低く流動性の低い不定形耐火物5が充填される。この工程が、本発明の「充填工程」および「第一充填工程」に相当する。
【0035】
なお、この際、高炉の炉底煉瓦1は、炉心に位置する程高温となっているため、不定形耐火物5を充填する前に、第二孔部4内の温度を測定して、不定形耐火物の液比を決定することが望ましい。このようにすれば、事前に(不定形耐火物5を充填する前に)、第二孔部4の温度状況を把握し、あらかじめ発泡等を行わない液比の不定形耐火物を選定可能となって、適切に第二孔部4等内における空隙部の発生を防止することができる。温度測定は、一般的な熱電対、あるいは放射温度計等を用いて行うことが可能である。
【0036】
ここで、「流動性の低い不定形耐火物」とは、「稠度」で表現される程度の流動性を有する不定形耐火物であって、例えば、稠度が300〜100程度の不定形耐火物をいう。なお、本実施形態における「流動性の低い不定形耐火物」は、上記稠度の所定範囲程度であれば、温度測定等の結果を踏まえた上で、適宜選択可能である。
【0037】
次いで、不定形耐火物5が充填された第二孔部4内に、温度計6(熱電対)が装入される(図1(e)参照)。なお、この工程が、本発明における「装入工程」に相当する。
【0038】
この装入工程においては、流動性の低い不定形耐火物5が充填された第二孔部4中に温度計6を装入することにより、上述したように、装入された温度計部分の体積に相当する不定形耐火物5が第二孔部4の入口側に押し出されながら、温度計6の先端部(測温部)が第二孔部4の奥の測温位置に到達する。
【0039】
本実施形態においては、このように、流動性の低い不定形耐火物5中に温度計6が装入され、従来のように、温度計装入後に不定形耐火物が充填されない。したがって、温度計6の位置が不定形耐火物の充填作業により動くことがなくなり、精度よく温度計6を設置することができる。
【0040】
次いで、鉄皮2外部に外套7が取り付けられる(図1(f)参照)。本実施形態にて使用される外套7には、すでに孔部3,4内に設置されている温度計6端部を外套7外部に表出させるための開口部7a、この外套7を介して第一孔部3内に後述する不定形耐火物を圧入するための圧入口7b、および第一孔部3内のガス(空気等)を外部に排出等するための排気口7cが設けられている。
【0041】
次いで、外套7に設けられた圧入口7bを介して第一孔部3内に第二孔部4内に充填した不定形耐火物5よりも流動性の高い不定形耐火物8が充填される(本発明の「第二充填工程」に相当)。圧入口7bから流動性の高い不定形耐火物8が圧入されると、排気口7cから第一孔部3内のガスが排出され、この排気口7cから不定形耐火物8が流出した段階で、第一孔部3内に対する不定形耐火物8の充填工程が終了する(図1(g)参照)。
【0042】
本実施形態に示すべく、第二孔部4(測温位置を有する炉内側)には流動性の低い不定形耐火物5を充填し、第一孔部3(入口側)には流動性の高い不定形耐火物8を充填するように、それぞれの孔部3,4に充填する不定形耐火物の性状を変更する場合には、先の第一充填工程と同様、この第二充填工程を行う際においても、第一孔部3内の温度を測定することが望ましい。このように、あらかじめ第一孔部3内の温度を測定すれば、発泡等を行わない液比の不定形耐火物を選定可能となって、適切に第一孔部3内における空隙部の発生を防止することができる。ただし、この第一孔部3は第二孔部4と異なり、温度計6の測温部が位置するわけではないので(測温位置ではないので)、温度測定は必須ではなく、必要に応じて実施すればよい。なお、温度測定は、一般的な熱電対、あるいは放射温度計等を用いて行うことが可能である。
【0043】
ここで、「流動性の高い不定形耐火物」とは、圧送装置、耐火物によって若干異なるが、「フロー値」で表現される程度の流動性を有する不定形耐火物であって、例えば、フロー値が140mm〜240mm程度の不定形耐火物をいう。
【0044】
本実施形態においては、以上の各工程(図1(a)〜図1(g))に従い、温度計の設置が行われるため、次のような効果を得ることができる。
【0045】
まず、本実施形態によれば、流動性の低い不定形耐火物5が充填された第二孔部4内に温度計6が装入されるため、精度よく温度計6を設置することができる。このような設置方法によれば、不定形耐火物5内に温度計6測温部が装入されるため、周辺の空隙部に影響されやすい測温部周囲に、空隙部を発生させることなく、温度計6を設置することができる。
【0046】
また、温度計6の測温部の周囲には、液比が低い不定形耐火物5が設けられることとなるため、高炉内の温度が上昇しても不定形耐火物5のガス化(液の蒸発による発泡現象)が起こりにくく、温度計6の測温部周囲における空隙部の発生を適切に抑えることができる。したがって、温度計6によって、精度よく高炉炉底部における温度測定を行うことが可能となる。
【0047】
さらに、本実施形態によれば、第二孔部4に流動性の低い不定形耐火物5が充填されているため、温度計6が装入されても、不定形耐火物5の孔部入口方向への流れ出しを適切に抑制することができる。
【0048】
また、本実施形態においては、測温位置を有する第二孔部4と、入口側の第一孔部3とに対して、それぞれ異なる性状の不定形耐火物(流動性の低い不定形耐火物5、流動性の高い不定形耐火物8)が充填されているが、その充填の際においては、それぞれの孔部3,4内の温度測定が行われている。したがって、本実施形態によれば、その温度測定の結果に応じて、各不定形耐火物の充填範囲を定めることができる。例えば、上記図1においては、第一充填工程にて、第二孔部4内を満たすべく、流動性の低い不定形耐火物5が充填される場合について説明しているが、本発明はこの構成に限定されず、孔部3,4内の温度測定の結果に応じて、第一充填工程における流動性の低い不定形耐火物5の充填範囲を定めてもよい。この充填範囲の定め方としては、例えば、加熱試験にて流動性の高い耐火物の発泡が発生する温度を確認し、その温度以上となる範囲については流動性の低い耐火物を充填する範囲とする等の方法があげられる。
【0049】
さらに、本実施形態においては、流動性の低い不定形耐火物5が充填され、温度計6の測温部が装入される第二孔部4が、この測温部以外が位置する第一孔部3よりも小さい径を有すべく構成されている。したがって、本実施形態によれば、不定形耐火物5の充填量を少なくすることが可能となり、この不定形耐火物5の充填工程、温度計6の装入工程等の作業時間を短縮することができる。すなわち、第二孔部4が小径であるため、流動性の低い不定形耐火物5をグリスガン等の簡単な装置で比較的短時間で、第二孔部4内に充填することができる。
【0050】
また、本実施形態によれば、入口側の温度の低い第一孔部3には流動性の高い不定形耐火物8が充填可能であるため、比較的容易に不定形耐火物8の圧送ができ、高炉の周辺に大きな作業スペースを確保する必要がなくなる。すなわち、流動の高い不定形耐火物8を使用可能であるため、高圧の圧送装置等を設ける必要がない。
【0051】
〈第二実施形態〉
図2は、本発明の第二実施形態にかかる温度計の設置方法の概略工程図を示したものである。この図2に示された各工程図は、図1と同様に、高炉炉底部の拡大図を示したものである。
【0052】
本実施形態にかかる温度計の設置方法は、基本的には、上述した第一実施形態と同様であるが、第二孔部の形成位置、および第二充填工程等が異なる。以下においては、第一実施形態と異なる部分について主に説明する。なお、第一実施形態と同様の構成要素については、同様の符号を付して説明する。
【0053】
この図2に示すように、本実施形態においては、高炉本体の炉底部に(図2(a)参照)、鉄皮2および煉瓦1を開孔して所定深さの第一孔部3が形成され(図2(b)参照)、この第一孔部3の下方辺部3aに沿って第二孔部4が形成されている(図2(c)参照)。すなわち、この図2(c)に示すように、第一孔部3の下方辺部3aと、第二孔部4の下方辺部4aとが略直線状となるべく、第二孔部4が形成されている。また、第一実施形態と同様に、この第二孔部4には温度計が装入されるため、第二孔部4は、その端部が所望の測温箇所となるように開孔される。
【0054】
次いで、この第二孔部4内には、流動性の低い不定形耐火物5が充填され(図2(d)参照)(本発明の「充填工程」「第一充填工程」に相当)、不定形耐火物5が充填された第二孔部4内に、温度計6(熱電対)が装入される(本発明の「装入工程」に相当)。
【0055】
次いで、鉄皮2外部に外套70が取り付けられる。本実施形態にて使用される外套70には、温度計6端部外套70外部に表出されるための開口部70a、圧入管71を取り付けるための取付口70b、および第一孔部3内のガス(空気等)を外部に排出等するための排気口70cが設けられている。本実施形態においては、外套70が鉄皮2外部に取り付けられた後に、取付口70bに、第一孔部3内部に圧入管71の端部71bが差し込まれる状態で、圧入管71が取り付けられる(図2(g)参照)。
【0056】
次いで、圧入管71に設けられた圧入口71aから、第一孔部3内に流動性の高い不定形耐火物8が充填される(本発明の「第二充填工程」に相当)。
【0057】
圧入管71の端部71bは、第一孔部3の奥部にまで達しているため、本実施形態に示すべく、圧入管71を用いて不定形耐火物8の充填を行えば、第一孔部3の奥部から順に不定形耐火物8の充填処理を行うことができる。圧入口71aから流動性の高い不定形耐火物8が圧入されると、不定形耐火物8は、圧入管71の内部および端部71bを経て、第一孔部3の奥部で折り返し、圧入管71の外側を通って、外套70に設けられた排気口70cまで充填される(図2(g)参照)。この図2(g)に示すように、排気口70cから不定形耐火物8が流出した段階で、第一孔部3内に対する不定形耐火物8の充填工程(第二充填工程)が終了する。
【0058】
なお、本実施形態にて使用される圧入管71は、第一孔部3内に残してもよいが、周辺の煉瓦1との熱の授受に影響を与えないように、液比の高い不定形耐火物8を充填しながら(いわゆる第二充填工程中に)、抜き取りを行うことが好ましい。
【0059】
本実施形態においては、以上の各工程(図2(a)〜図2(g))に従い、温度計の設置が行われるため、第一実施形態にて説明した効果と同様の効果に加えて、次のような効果を得ることができる。
【0060】
本実施形態によれば、第一孔部3と第二孔部4との下方辺部3a,4aにおける段差を無くしているため、容易に、第二孔部4に対して不定形耐火物5を充填することができる。
【0061】
また、本実施形態によれば、第一孔部3に不定形耐火物8を充填する際に、第一孔部3内の奥部にその端部71bが差し込まれる圧入管71が用いられるため、液比が高く流動性の高い不定形耐火物8を第一孔部3の奥部から順に充填することができる。すなわち、本実施形態によれば、入口側の第一孔部3についても、奥の方から不定形耐火物8の充填作業を行うことが可能となるため、第一孔部3の内部に空隙部を発生させる可能性を低減させることができる。
【0062】
なお、本発明は上記各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上述したもの以外に種々の変更を行うことが可能である。
【0063】
例えば、上記実施形態においては、不定形耐火物を圧入する際の補助機材については、第二実施形態における圧入管71以外、特に説明しなかったが、必要に応じて、種々の補助機材を用いてもよい。
【0064】
また、上記各実施形態においては、測温対象物が高炉であって、高炉炉底壁より鉄皮および煉瓦を開孔して形成された孔部に、温度計を設置する際の設置方法について説明したが、本発明はこの構成に限定されない。すなわち、本発明にかかる温度計の設置方法は、高温状態となりやすい測温対象物およびその近傍に開孔された孔部に温度計を装入し、温度計を固定するために耐火物を充填するという温度計の設置方法を採用する場合には、如何なる測温対象物に対しても適用可能である。
【0065】
【発明の効果】
以上説明したように、本発明によれば、開孔された孔部についての温度計設置時および測定時(高温時)において、温度計の周りに空隙部を生ずることなく、適切な測温を実施することが可能な温度計の設置方法を得ることができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態にかかる温度計の設置方法の概略工程図である。
【図2】本発明の第二実施形態にかかる温度計の設置方法の概略工程図である。
【符号の説明】
1…煉瓦
2…鉄皮
3…第一孔部
4…第二孔部
5…流動性の低い不定形耐火物
6…温度計
7,70…外套
8…流動性の高い不定形耐火物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermometer installation method, and more particularly, to a thermometer installation method installed at the bottom of a blast furnace furnace.
[0002]
[Prior art]
Blast furnace bottom bricks are damaged by chemical forces such as chemical or thermal stress during long-term continuous operation. Conventionally, monitoring of the bottom brick damage status or management of the operation status is performed. It was necessary. As a method for performing such monitoring or management, a method that has been widely used in the past is that a thermometer (thermocouple, etc.) is embedded in the bottom of the blast furnace, and the temperature of the bottom of the blast furnace is measured. It is intended to estimate the damage situation of the.
[0003]
In the case of measuring the temperature at the bottom of the blast furnace as described above, for example, a thermometer is installed by providing a hole that opens from the iron skin to the refractory brick, and a thermometer such as a thermocouple is provided in the hole. Further, there is a method of fixing a thermometer by inserting a press-fit pipe or the like into the hole and filling an indeterminate refractory through the press-fit pipe or the like (see, for example, Patent Document 1).
[0004]
However, if the thermometer is fixed in such a way, since the amorphous refractory is filled after the thermometer is inserted, voids are likely to occur around the thermometer, and these void portions are insulated from the heat insulating material. Therefore, accurate temperature measurement was difficult.
[0005]
Therefore, in the prior art, in order to prevent the generation of the void portion, a technique has been implemented in which the viscosity of the irregular refractory is lowered to increase the fluidity, and the filling ratio of the irregular refractory in the hole is increased ( For example, see Patent Document 2).
[0006]
[Patent Document 1]
JP 58-55511 A [Patent Document 2]
Japanese Patent Laid-Open No. 9-41012
[Problems to be solved by the invention]
However, in the case where an amorphous refractory having high fluidity is used as in the above-described prior art, when the temperature in the blast furnace increases, the liquid ratio of the amorphous refractory increases, resulting in a filling (undefined Gasification of the regular refractory) occurs, and there is a problem with foaming that voids that cause problems in temperature measurement are likely to occur in the filling.
[0008]
Moreover, such a problem is not limited to the case of measuring the temperature of the blast furnace bottom. In other words, the temperature measurement object is not limited to a blast furnace, a thermometer is inserted into the temperature measurement object that tends to be in a high temperature state and a hole opened in the vicinity thereof, and a refractory is filled to fix the thermometer. In the case of adopting the thermometer installation method, the same problem as described above occurs regardless of the temperature measurement object.
[0009]
Therefore, the present invention has been made to solve the above-described problems of the prior art, and the thermometer around the thermometer when the thermometer is installed and measured (at a high temperature) with respect to the hole that has been opened. It is an object of the present invention to provide a thermometer installation method that is less likely to generate a gap and that can perform appropriate temperature measurement.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems, and includes a filling step of filling a holed hole with an amorphous refractory having low fluidity, and the filling with the amorphous refractory. And a charging step of charging a thermometer into the hole.
[0011]
In such a configuration, by inserting the thermometer into the hole after the filling step, the unshaped refractory corresponding to the volume of the inserted thermometer portion is pushed out, The tip of the thermometer (so-called temperature measuring unit) reaches the temperature measuring position in the hole.
[0012]
Therefore, according to such a configuration, first, the hole is filled with the irregular refractory having low fluidity, and after the void in the hole is sufficiently removed, the thermometer is inserted. Therefore, it is possible to effectively prevent the generation of voids in the hole and around the thermometer.
[0013]
In such a configuration, the thermometer is inserted into the hole filled with the irregular refractory having low fluidity. In other words, the conventional refractory filling is not started after the thermometer is inserted. Therefore, according to this configuration, the thermometer can be accurately installed without moving the position of the thermometer due to the filling work of the irregular refractory.
[0014]
Furthermore, according to such a configuration, a low-fluidity refractory is used as an amorphous refractory, and since the liquid ratio of the amorphous refractory is lower than the conventional one, the temperature in the blast furnace is increased. However, the conventional foaming phenomenon is less likely to occur, and voids or the like that cause a problem in temperature measurement are unlikely to occur in the amorphous refractory (filler).
[0015]
In the thermometer installation method according to the present invention, it is preferable that the hole diameter of the hole portion in the vicinity of the temperature measuring portion of the thermometer is smaller than the hole diameter other than in the vicinity of the temperature measuring portion.
[0016]
According to this preferred configuration, it is possible to reduce the filling amount of the irregular refractory by reducing the diameter of the temperature measuring part of the thermometer, including the filling time of the irregular refractory, The charging time of the thermometer can be shortened. If the diameter of the whole hole is small, it is difficult to insert a thermometer (thermocouple) itself. Therefore, as shown in the present invention, the tip of the hole, that is, the tip of the thermometer is measured. It is desirable that only the hole near the warm part has a small diameter and the other part has a large diameter.
[0017]
Furthermore, the present invention has been made to solve the above-described problems, and includes a first filling step of filling the opened hole with an amorphous refractory having low fluidity, and after the first filling step. A charging step of inserting a thermometer into the hole, and a charging of an amorphous refractory having a higher fluidity than the amorphous refractory filled in the first filling step in the hole after the charging step. And two filling steps.
[0018]
In such a configuration, the charging step is performed after the first filling step. In other words, the conventional refractory filling is not started after the thermometer is inserted as in the prior art. Therefore, according to this configuration, the thermometer can be accurately installed without moving the position of the thermometer due to the filling work of the irregular refractory.
[0019]
Further, in this configuration, the amorphous refractory having low fluidity is filled during the first filling step, and the amorphous refractory having high fluidity is filled during the second filling step after the charging step. That is, since the periphery of the thermometer tip portion (temperature measuring portion) is filled with an amorphous refractory having low fluidity (low liquid ratio), the foaming phenomenon can be prevented and the generation of voids can be suppressed. .
[0020]
In addition, the thermometer portion that is not directly related to the temperature measurement has few problems on the temperature measurement accuracy even if a gap portion is generated around the thermometer portion. Therefore, as in the above configuration, in the second filling step after the charging step, an amorphous refractory having a high liquid ratio (high fluidity) with good handling properties and charging properties is filled. It is preferable to fix the thermometer. According to such a configuration, by using an irregular refractory with a high liquid ratio, a large-scale facility such as a press-fitting pipe is not required, and it is possible to use a simple irregular refractory pumping facility installed outside the system. Can be obtained.
[0021]
Moreover, in the thermometer installation method according to the present invention, as the hole portion, a first hole portion in which the high-fluid amorphous refractory is filled during the second filling step, and the first filling step. A configuration in which a second hole having a smaller diameter than that of the first hole is formed in the inner part of the first hole so that the irregular refractory having low fluidity is sometimes filled is preferable.
[0022]
According to this preferable configuration, it is possible to reduce the filling amount of the amorphous refractory material with low fluidity filled in the second hole portion. In addition, by making the second hole part smaller than the first hole part, the vicinity of the temperature measuring part of the thermometer will be a small diameter, including the filling time of the amorphous refractory, The charging time of the thermometer can be shortened.
[0023]
In the thermometer installation method according to the present invention, it is preferable that the first hole and the lower side of the second hole are formed without a step.
[0024]
According to this preferable configuration, since the lower side portion of the first hole portion and the second hole portion is formed without a step, the second hole portion formed in the back portion of the first hole portion. On the other hand, the amorphous refractory can be easily filled.
[0025]
Moreover, in the thermometer installation method according to the present invention, the second filling step is performed using a press-fit pipe, and the press-fit pipe is located at the end of the first hole, and the first A configuration having a pressure inlet located outside the one hole and filling the irregular refractory is preferable.
[0026]
According to this preferable configuration, by using the press-fit pipe, the irregular refractory can be sequentially filled from the back of the first hole. That is, since it becomes possible to perform the filling operation of the irregular refractory from the back of the first hole portion, it is possible to reduce the generation of voids in the first hole portion.
[0027]
Further, in the thermometer installation method according to the present invention, when the temperature measurement object is a blast furnace, the hole may be formed by opening an iron skin and a brick from the blast furnace bottom wall. preferable.
[0028]
According to the thermometer installation method of the present invention, even when the temperature measurement target is a blast furnace that is in a high temperature state, the thermometer at the time of thermometer installation and measurement (at high temperature) for the opened hole portion. Therefore, it is difficult to form a gap around the surface, and appropriate temperature measurement can be performed.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0030]
<First embodiment>
FIG. 1: shows the schematic process drawing of the installation method of the thermometer concerning 1st embodiment of this invention. 1 is an enlarged view of the bottom of the blast furnace furnace.
[0031]
As shown in FIG. 1, in the thermometer installation method according to this embodiment, the bottom of the blast furnace body formed by covering a refractory such as a brick 1 with an iron shell 2 (see FIG. 1A). ), The iron skin 2 and the brick 1 are opened to form the first hole 3 having a predetermined depth (see FIG. 1B). Here, the 1st hole part 3 is formed using opening means, such as a core boring and a drill, for example.
[0032]
Next, the brick 1 is further opened from the first hole 3 to form the second hole 4 (see FIG. 1C). Since a thermometer is inserted into the second hole 4, the second hole 4 is opened so that the end thereof becomes a desired temperature measurement location. Here, the 2nd hole 4 is formed using opening means, such as a drill and a laser, for example.
[0033]
The second hole 4 is a “hole” in which an amorphous refractory having low fluidity is filled and a thermometer is inserted as described above, as will be described later. Therefore, the second hole 4 is filled with an irregular refractory material having low fluidity, and when a thermometer is inserted therein, the amount of the thermometer charging (thermometer charging volume integral) is not fixed. The size may be any size as long as the regular refractory is pushed out. Specifically, it is preferable that the hole is slightly larger than the diameter of the thermometer to be inserted. With such a configuration, it becomes possible to reduce the filling amount of the amorphous refractory to be described later, and in addition, the workability is improved by the reduced filling amount. Moreover, since the flow of the irregular refractory to the inlet side of the hole is reduced, the selection range of the irregular refractory is expanded.
[0034]
Next, the second hole 4 is filled with an amorphous refractory 5 having low fluidity (see FIG. 1D). More specifically, in order from the back of the second hole 4, that is, from the inside of the blast furnace serving as the temperature measuring part in the second hole 4, the amorphous refractory 5 having a low liquid ratio and low fluidity is filled. Is done. This step corresponds to the “filling step” and the “first filling step” of the present invention.
[0035]
At this time, since the bottom brick 1 of the blast furnace is so hot that it is located in the core, the temperature in the second hole portion 4 is measured before filling the irregular refractory 5, It is desirable to determine the liquid ratio of the regular refractory. In this way, it is possible to grasp the temperature state of the second hole 4 in advance (before filling the amorphous refractory 5) and select an amorphous refractory with a liquid ratio that does not foam in advance. Thus, it is possible to appropriately prevent the generation of voids in the second hole 4 and the like. The temperature measurement can be performed using a general thermocouple or a radiation thermometer.
[0036]
Here, “amorphous refractory having low fluidity” is an amorphous refractory having fluidity of a degree expressed by “consistency”, for example, an amorphous refractory having a consistency of about 300 to 100 Say. In addition, “the amorphous refractory having low fluidity” in the present embodiment can be appropriately selected in consideration of the result of temperature measurement or the like as long as the consistency is in a predetermined range.
[0037]
Next, a thermometer 6 (thermocouple) is charged into the second hole 4 filled with the irregular refractory 5 (see FIG. 1 (e)). This step corresponds to the “charging step” in the present invention.
[0038]
In this charging step, by inserting the thermometer 6 into the second hole portion 4 filled with the irregular refractory material 5 having low fluidity, as described above, While the unshaped refractory 5 corresponding to the volume is pushed out to the inlet side of the second hole portion 4, the tip portion (temperature measuring portion) of the thermometer 6 reaches the temperature measuring position at the back of the second hole portion 4.
[0039]
In the present embodiment, the thermometer 6 is inserted into the amorphous refractory 5 having low fluidity as described above, and the amorphous refractory is not filled after the thermometer is inserted as in the prior art. Therefore, the position of the thermometer 6 is not moved by the filling work of the irregular refractory, and the thermometer 6 can be installed with high accuracy.
[0040]
Next, a mantle 7 is attached to the outside of the iron shell 2 (see FIG. 1 (f)). The outer jacket 7 used in the present embodiment has an opening 7 a for exposing the end of the thermometer 6 already installed in the holes 3 and 4 to the outside of the outer jacket 7. There are provided a pressure inlet 7b for press-fitting an irregular refractory, which will be described later, into the first hole 3, and an exhaust port 7c for discharging gas (air, etc.) in the first hole 3 to the outside. Yes.
[0041]
Next, the amorphous refractory 8 having higher fluidity than the amorphous refractory 5 filled in the second hole 4 is filled in the first hole 3 through the pressure inlet 7 b provided in the outer jacket 7. (Corresponds to the “second filling step” of the present invention). When the amorphous refractory 8 having high fluidity is press-fitted from the pressure inlet 7b, the gas in the first hole 3 is discharged from the exhaust port 7c, and the amorphous refractory 8 flows out from the exhaust port 7c. Then, the filling process of the irregular refractory 8 into the first hole 3 is completed (see FIG. 1 (g)).
[0042]
As shown in the present embodiment, the second hole 4 (inside the furnace having a temperature measuring position) is filled with an amorphous refractory 5 having low fluidity, and the first hole 3 (inlet side) is fluid. When the properties of the amorphous refractory filled in the holes 3 and 4 are changed so as to fill the high amorphous refractory 8, the second filling step is performed in the same manner as the first filling step. Even when performing, it is desirable to measure the temperature in the first hole 3. Thus, if the temperature in the first hole 3 is measured in advance, it is possible to select a liquid refractory refractory that does not perform foaming or the like, and appropriately generate voids in the first hole 3. Can be prevented. However, the first hole 3 is different from the second hole 4 in that the temperature measuring part of the thermometer 6 is not located (because it is not the temperature measuring position), so temperature measurement is not essential, and if necessary To do. The temperature measurement can be performed using a general thermocouple or a radiation thermometer.
[0043]
Here, “amorphous refractory with high fluidity” is slightly different depending on the pumping device and the refractory, but is an amorphous refractory having fluidity of the degree expressed by “flow value”, for example, It refers to an irregular refractory having a flow value of about 140 mm to 240 mm.
[0044]
In the present embodiment, the thermometer is installed according to the above steps (FIG. 1A to FIG. 1G), and therefore the following effects can be obtained.
[0045]
First, according to the present embodiment, since the thermometer 6 is inserted into the second hole portion 4 filled with the amorphous refractory 5 having low fluidity, the thermometer 6 can be installed with high accuracy. . According to such an installation method, since the thermometer 6 temperature measuring section is inserted into the irregular refractory 5, without generating a gap around the temperature measuring section that is easily affected by the surrounding gap. A thermometer 6 can be installed.
[0046]
In addition, since the amorphous refractory 5 having a low liquid ratio is provided around the temperature measuring portion of the thermometer 6, the gasification (liquid) of the amorphous refractory 5 is achieved even if the temperature in the blast furnace rises. (Foaming phenomenon due to evaporation) is less likely to occur, and the generation of voids around the temperature measuring portion of the thermometer 6 can be appropriately suppressed. Therefore, the thermometer 6 can accurately measure the temperature at the bottom of the blast furnace furnace.
[0047]
Furthermore, according to this embodiment, since the second hole 4 is filled with the irregular refractory 5 having low fluidity, even if the thermometer 6 is inserted, the inlet of the hole of the irregular refractory 5 is provided. The outflow in the direction can be appropriately suppressed.
[0048]
In the present embodiment, the second hole 4 having the temperature measuring position and the first hole 3 on the inlet side have different properties of the amorphous refractory (the amorphous refractory having low fluidity). 5. An amorphous refractory 8) having a high fluidity is filled, and at the time of filling, the temperature in each of the holes 3 and 4 is measured. Therefore, according to this embodiment, the filling range of each irregular refractory can be determined according to the result of the temperature measurement. For example, in FIG. 1 described above, the case where the amorphous refractory 5 having low fluidity is filled to fill the second hole 4 in the first filling step is described. It is not limited to a structure, According to the result of the temperature measurement in the hole parts 3 and 4, you may determine the filling range of the amorphous refractory 5 with low fluidity | liquidity in a 1st filling process. As a method for determining the filling range, for example, a temperature at which foaming of a refractory material having high fluidity occurs in a heating test is confirmed, and a range in which a refractory material having low fluidity is filled is used for a range that exceeds the temperature. And the like.
[0049]
Furthermore, in this embodiment, the 2nd hole part 4 where the non-shaped refractory material 5 with low fluidity | liquidity is filled and the temperature measuring part of the thermometer 6 is inserted is located in 1st other than this temperature measuring part. The diameter is smaller than that of the hole 3. Therefore, according to the present embodiment, it is possible to reduce the filling amount of the irregular refractory 5 and shorten the working time of the filling process of the irregular refractory 5 and the charging process of the thermometer 6. Can do. That is, since the second hole 4 has a small diameter, the amorphous refractory 5 having low fluidity can be filled in the second hole 4 in a relatively short time with a simple device such as a grease gun.
[0050]
Further, according to the present embodiment, the first hole 3 having a low temperature on the inlet side can be filled with the amorphous refractory 8 having high fluidity, so that the amorphous refractory 8 can be pumped relatively easily. This eliminates the need to secure a large working space around the blast furnace. That is, since the amorphous refractory 8 having a high flow can be used, it is not necessary to provide a high-pressure pumping device or the like.
[0051]
<Second embodiment>
FIG. 2 is a schematic process diagram of a thermometer installation method according to the second embodiment of the present invention. Each process diagram shown in FIG. 2 is an enlarged view of the bottom of the blast furnace furnace, as in FIG.
[0052]
The thermometer installation method according to this embodiment is basically the same as that of the first embodiment described above, but the formation position of the second hole, the second filling step, and the like are different. In the following, different parts from the first embodiment will be mainly described. In addition, about the component similar to 1st embodiment, the same code | symbol is attached | subjected and demonstrated.
[0053]
As shown in FIG. 2, in this embodiment, the first hole 3 having a predetermined depth is formed by opening the iron skin 2 and the brick 1 at the bottom of the blast furnace body (see FIG. 2A). The second hole 4 is formed along the lower side 3a of the first hole 3 (see FIG. 2C). That is, as shown in FIG. 2C, the second hole 4 is formed so that the lower side 3a of the first hole 3 and the lower side 4a of the second hole 4 are substantially linear. Has been. Further, as in the first embodiment, since a thermometer is inserted into the second hole 4, the second hole 4 is opened so that the end thereof becomes a desired temperature measuring point. The
[0054]
Next, the second hole 4 is filled with an amorphous refractory 5 having low fluidity (see FIG. 2D) (corresponding to “filling step” and “first filling step” of the present invention), A thermometer 6 (thermocouple) is charged into the second hole 4 filled with the irregular refractory 5 (corresponding to the “charging step” of the present invention).
[0055]
Next, the outer jacket 70 is attached to the outside of the iron skin 2. In the mantle 70 used in the present embodiment, an opening 70 a for exposing to the outside of the thermometer 6 end mantle 70, an attachment port 70 b for attaching the press-fit pipe 71, and the inside of the first hole 3 are provided. An exhaust port 70c for discharging gas (air or the like) to the outside is provided. In the present embodiment, after the outer sleeve 70 is attached to the outside of the iron skin 2, the press-fit pipe 71 is attached in a state where the end 71b of the press-fit pipe 71 is inserted into the first opening 3 into the attachment port 70b. (See FIG. 2 (g)).
[0056]
Next, the amorphous refractory 8 having high fluidity is filled into the first hole 3 from the pressure inlet 71a provided in the press-fit pipe 71 (corresponding to the “second filling step” of the present invention).
[0057]
Since the end portion 71b of the press-fit pipe 71 reaches the inner part of the first hole portion 3, as shown in the present embodiment, the first refractory 8 is filled by using the press-fit pipe 71. The filling treatment of the irregular refractory 8 can be performed in order from the back of the hole 3. When the amorphous refractory 8 having high fluidity is press-fitted from the pressure inlet 71a, the amorphous refractory 8 is folded back inside the press-fit pipe 71 and the end portion 71b at the back of the first hole portion 3 and press-fitted. Through the outside of the pipe 71, it is filled up to an exhaust port 70c provided in the mantle 70 (see FIG. 2 (g)). As shown in FIG. 2G, when the amorphous refractory 8 flows out from the exhaust port 70c, the filling process (second filling process) of the amorphous refractory 8 into the first hole 3 is completed. .
[0058]
Note that the press-fit pipe 71 used in the present embodiment may remain in the first hole 3, but the liquid ratio is high so as not to affect the transfer of heat with the surrounding bricks 1. It is preferable to perform extraction while filling the regular refractory 8 (during the so-called second filling step).
[0059]
In the present embodiment, since the thermometer is installed according to the above steps (FIGS. 2A to 2G), in addition to the same effects as those described in the first embodiment. The following effects can be obtained.
[0060]
According to the present embodiment, since the steps in the lower side portions 3a and 4a between the first hole portion 3 and the second hole portion 4 are eliminated, the irregular refractory 5 is easily formed with respect to the second hole portion 4. Can be filled.
[0061]
In addition, according to the present embodiment, when the first hole 3 is filled with the irregular refractory 8, the press-fit pipe 71 into which the end 71 b is inserted into the inner part of the first hole 3 is used. The amorphous refractory 8 having a high liquid ratio and high fluidity can be sequentially filled from the back of the first hole 3. That is, according to the present embodiment, the first hole 3 on the inlet side can be filled with the indefinite refractory 8 from the back, so that a void is formed inside the first hole 3. The possibility of generating a part can be reduced.
[0062]
The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the present invention.
[0063]
For example, in the above embodiment, the auxiliary equipment for press-fitting the amorphous refractory is not particularly described except for the press-fit pipe 71 in the second embodiment, but various auxiliary equipment is used as necessary. May be.
[0064]
Further, in each of the above embodiments, the temperature measurement object is a blast furnace, and the installation method when installing a thermometer in a hole formed by opening an iron skin and a brick from the bottom wall of the blast furnace furnace Although described, the present invention is not limited to this configuration. In other words, the thermometer installation method according to the present invention is such that a thermometer is inserted into a temperature measuring object that tends to be in a high temperature state and a hole opened in the vicinity thereof, and a refractory is filled in order to fix the thermometer. In the case of adopting the thermometer installation method of performing, it can be applied to any temperature measurement object.
[0065]
【The invention's effect】
As described above, according to the present invention, an appropriate temperature measurement can be performed without generating a void around the thermometer at the time of thermometer installation and measurement (at a high temperature) with respect to the opened hole. A thermometer installation method that can be implemented can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic process diagram of a thermometer installation method according to a first embodiment of the present invention.
FIG. 2 is a schematic process diagram of a thermometer installation method according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Brick 2 ... Iron skin 3 ... 1st hole 4 ... 2nd hole 5 ... Low flowability amorphous refractory 6 ... Thermometer 7, 70 ... Jacket 8 ... High fluidity amorphous refractory

Claims (7)

測温対象物およびその近傍に開孔された孔部に流動性の低い不定形耐火物を充填する充填工程と、前記不定形耐火物が充填された前記孔部内に温度計を装入する装入工程とを備えたことを特徴とする温度計の設置方法。A filling step of filling a temperature measuring object and a hole opened in the vicinity thereof with an amorphous refractory having low fluidity, and a device for inserting a thermometer into the hole filled with the amorphous refractory. A thermometer installation method characterized by comprising an inlet process. 前記温度計の測温部付近における前記孔部の孔径が、前記測温部付近以外の孔径よりも小さい請求項1に記載の温度計の設置方法。The thermometer installation method according to claim 1, wherein a hole diameter of the hole portion in the vicinity of the temperature measuring portion of the thermometer is smaller than a hole diameter other than in the vicinity of the temperature measuring portion. 測温対象物およびその近傍に開孔された孔部に流動性の低い不定形耐火物を充填する第一充填工程と、前記第一充填工程後に前記孔部内に温度計を装入する装入工程と、前記装入工程後に前記孔部に前記第一充填工程で充填した不定形耐火物よりも流動性の高い不定形耐火物を充填する第二充填工程とを備えたことを特徴とする温度計の設置方法。 A first filling step of filling a temperature measuring object and a hole opened in the vicinity thereof with an amorphous refractory having low fluidity, and a charging for inserting a thermometer into the hole after the first filling step And a second filling step of filling the hole with an amorphous refractory having a higher fluidity than the amorphous refractory filled in the first filling step after the charging step. How to install a thermometer. 前記孔部として、前記第二充填工程時に前記流動性の高い不定形耐火物の充填が行われる第一孔部と、前記第一充填工程時に前記流動性の低い不定形耐火物の充填が行われるべく、前記第一孔部の奥部に前記第一孔部よりも小径の第二孔部とが形成される請求項3に記載の温度計の設置方法。As the hole portion, a first hole portion that is filled with the amorphous refractory material having high fluidity at the time of the second filling step, and an amorphous refractory material having low fluidity at the time of the first filling step are filled. The thermometer installation method according to claim 3, wherein a second hole portion having a smaller diameter than the first hole portion is formed in the inner portion of the first hole portion. 前記第一孔部および前記第二孔部の下方辺部が段差無く形成されている請求項4に記載の温度計の設置方法。The thermometer installation method according to claim 4, wherein lower side portions of the first hole portion and the second hole portion are formed without a step. 前記第二充填工程が圧入管を用いて行われ、前記圧入管が、前記第一孔部の奥部に位置する端部と、前記第一孔部の外部に位置し前記不定形耐火物を充填する圧入口とを有する請求項4または5に記載の温度計の設置方法。The second filling step is performed using a press-fit pipe, and the press-fit pipe is located at the back of the first hole, and the irregular refractory is located outside the first hole. The thermometer installation method according to claim 4 or 5, further comprising a pressure inlet for filling. 前記孔部が、高炉炉底壁より鉄皮および煉瓦を開孔して形成される請求項1から6のいずれか1項に記載の温度計の設置方法。The thermometer installation method according to any one of claims 1 to 6, wherein the hole is formed by opening an iron skin and a brick from a blast furnace bottom wall.
JP2003007014A 2003-01-15 2003-01-15 Thermometer installation method Expired - Fee Related JP3841295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007014A JP3841295B2 (en) 2003-01-15 2003-01-15 Thermometer installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007014A JP3841295B2 (en) 2003-01-15 2003-01-15 Thermometer installation method

Publications (2)

Publication Number Publication Date
JP2004218006A JP2004218006A (en) 2004-08-05
JP3841295B2 true JP3841295B2 (en) 2006-11-01

Family

ID=32897233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007014A Expired - Fee Related JP3841295B2 (en) 2003-01-15 2003-01-15 Thermometer installation method

Country Status (1)

Country Link
JP (1) JP3841295B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748380B2 (en) * 2004-12-22 2011-08-17 住友金属工業株式会社 Blast furnace bottom thermometer installation method
CN105624353B (en) * 2016-04-06 2017-11-14 安徽工业大学 A kind of online erecting device of thermocouple for blast furnace temperature-measuring
CN107586907B (en) * 2017-10-31 2019-04-05 马鞍山钢铁股份有限公司 A kind of temp measuring method after blast furnace air temperature galvanic couple damage

Also Published As

Publication number Publication date
JP2004218006A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US20220136884A1 (en) Pitot tube heater assembly
CA1104725A (en) Tube skin thermocouples and method of making same
JP3841295B2 (en) Thermometer installation method
US4023411A (en) Temperature measuring device
CN113668898B (en) Filling and renovation method for defect of air pocket type grouting in middle of sleeve
CN105671232A (en) Online installation process of iron-smelting blast furnace thermocouple
EP2495082A1 (en) Method to manufacture a sensor
CN202482340U (en) Thermocouple for online installation of blast furnace
Pedersen et al. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment
CN110108378A (en) Component and temp measuring method for the fine thermometric of extrusion casint process mould inside multiple spot
JP6134543B2 (en) Pressure tap assembly for turbine system and assembly method of pressure tap assembly
JP2020180863A (en) Manufacturing method of temperature sensor for metal mold
JP6630601B2 (en) Arrangement method of thermocouple
JP2009222652A (en) Expansive property evaluation testing device and expansive property evaluation testing method
EP2949864A1 (en) Component with sensor and sensor installation method
JP4748380B2 (en) Blast furnace bottom thermometer installation method
CN111663938B (en) High-temperature drilling temperature measurement method
CN108317303B (en) The encapsulating method of engine water channel and thermocouple junctions position
CN109114350A (en) Repair the construction method of glass reinforced plastic pipe
JP4194895B2 (en) Thermometer for measuring the temperature of furnace refractories
JPH0762967A (en) Reaming excavator
JPH06281506A (en) Method for embedding optical fiber sensor
JP2003171709A (en) Temperature measurement sensor for filled layer at high-temperature and highly corrosive atmosphere, and temperature measurement sensor installing method
JPH06265415A (en) Measuring method for unsteady heat conducting heat flux
CN2669157Y (en) Top-insertion type hot-rod (tube) measuring-temp. device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Ref document number: 3841295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees