JP3840581B2 - Recycling method of light transmitting material - Google Patents

Recycling method of light transmitting material Download PDF

Info

Publication number
JP3840581B2
JP3840581B2 JP9011095A JP9011095A JP3840581B2 JP 3840581 B2 JP3840581 B2 JP 3840581B2 JP 9011095 A JP9011095 A JP 9011095A JP 9011095 A JP9011095 A JP 9011095A JP 3840581 B2 JP3840581 B2 JP 3840581B2
Authority
JP
Japan
Prior art keywords
light
transmitting material
regenerating
carbon atoms
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9011095A
Other languages
Japanese (ja)
Other versions
JPH08259727A (en
Inventor
竜夫 西山
光夫 車屋
健一 佐藤
Original Assignee
株式会社ジェムコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェムコ filed Critical 株式会社ジェムコ
Priority to JP9011095A priority Critical patent/JP3840581B2/en
Publication of JPH08259727A publication Critical patent/JPH08259727A/en
Application granted granted Critical
Publication of JP3840581B2 publication Critical patent/JP3840581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、フルオロオレフィン重合体を光透過材として用いた光反応装置などにおいて、白濁した上記光透過材を透明化する光透過材の再生方法に関する。
【0002】
【従来の技術】
一般に、光を照射して化学反応を行わせる光反応装置には、反応原料を入れる容器と光反応を行うための光源が設けられている、光源の照射方法は容器内部から光を照射する内部光源型と容器外部から光を照射する外部光源型とがあり、また人工光源を用いずに太陽光を利用するものもあるが、いずれの場合にも容器には光源の光を容器内部に透過させる光透過部分が形成されている。この光透過部分に用いられる光透過材には、光反応に使用する波長を透過する材質のものが用いられ、通常、石英を始めとして各種のガラスが使用されている。
【0003】
ところが、ガラス材は割れ易いため光透過部分を大きく形成できず、光照射部分が限られ光反応の効率が低くなる問題があり、また、衝撃等に対する信頼性にも不安が残る。さらに反応原料や溶媒、生成物によってフッ酸が存在すると、ガラス表面が腐食されて曇りを生じ、透明度が著しく低下し、使用に耐えない状態になる。
【0004】
このようなガラス材料の欠点を解消するために、ポリテトラフルオロエチレン(PTFE)、あるいはテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂化合物を光透過部分のガラス表面にコーテングする方法が知られている(特公平1−33157号)。上記テトラフルオロエチレン−エチレン共重合体およびテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体などは可視〜紫外領域において良好な光透過性を有するので光透過材として用いることができ、しかも耐薬品性および耐熱性に優れているので、フッ酸の腐食に対する防止効果が期待されるが、実際には曇り防止の効果は不十分であり、光反応が進につれて透明度が急激に低下し使用不能になる。
【0005】
一例として、PFA製チューブにフッ酸および芳香族アミンを入れ、外部から光を照射して光反応により芳香族アミンをフッ素化する反応において、0〜30℃の温度で80時間以上反応を継続すると、PFA製チューブの内部に微細な亀裂や線状痕が発生し、白濁を生じる。このためチューブが不明化し、効率的な光反応を継続することができない。
【0006】
【発明の解決課題】
本発明は、フッ素系樹脂を光透過材として用いた場合に生じる上記問題を解決するものであって、白濁した光透過材を透明化する再生方法を提供することを目的とする。
【0007】
本発明によれば、以下の構成からなる光透過材の再生方法が提供される。
(1)フルオロオレフィン重合体からなる光透過材の再生方法であり、フッ酸を含む溶液の使用によって白濁を生じた上記光透過材をフッ素系不活性溶媒の液中で煮沸し、または該溶媒蒸気中で加熱することによって白濁を解消して透明化する光透過材の再生方法であって、上記フッ素系不活性溶媒が、(a)炭素数6〜20のペルフルオロアルカン、(b)炭素数9〜20のペルフオロアルキルアミン、(c)炭素数2〜20のペルフルオロポリエーテル、(d)炭素数5以下の置換基を有するペルフルオロ単環もしくは縮合環化合物であって、150℃以上の沸点を有する化合物であることを特徴とする光透過材の再生方法。
(2)光透過材がテトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン重合体、またはフッ化ビニル重合体である上記(1)に記載する光透過材の再生方法。
(4)上記(1)または上記(2)に記載する再生方法であって、フッ酸を含む溶液の使用によって白濁を生じた光透過材を上記(a)〜(d)のフッ素化合物の液中で、または該化合物の蒸気中で、100〜250℃、0.5〜28時間加熱する光透過材の再生方法。
【0008】
本発明に係る光透過材の再生方法は、テトラフルオロエチレン−エチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン重合体(PVDF)、またはフッ化ビニル重合体(PVF)(本明細書において上記化合物をフルオロオレフィン重合体と言う)からなる光透過材について、フッ酸を含む溶液の使用によって生じた白濁を解消し、透明化する方法である。
【0009】
光透過材の形状は限定されず、反応容器の一部に上記フルオロオレフィン重合体からなる透明板を設けたものでもよく、また上記フルオロオレフィン重合体によって反応容器全体を形成したものでもよい。一例として、上記フルオロオレフィン重合体からなる筒状容器を反応管として用いることができる。さらに、石英ガラスなど各種のガラス材表面に上記フルオロオレフィン重合体をコーティングした光透過材にも適用することができる。
【0010】
フッ酸を含む溶液の使用によって白濁を生じた上記光透過材をフッ素系不活性溶媒に浸漬して煮沸することにより、または該溶媒蒸気中の加熱処理することにより白濁が消え、再び透明化することができる。加熱温度は150℃以上が適当であり、フッ素系不活性溶媒としては沸点が150℃以上であって、オートクレーブ中(加圧下)で150℃以上でも安定な以下のフッ素化合物を用いることができる。
(a) 炭素数6〜20のペルフルオロアルカン
(b) 炭素数9〜20のペルフオロアルキルアミン
(c) 炭素数2〜20のペルフルオロポリエーテル
(d) 炭素数5以下の置換基を有するペルフルオロ単環もしくは縮合環化合物
【0011】
上記フッ素系不活性溶媒として具体的には以下の化合物が用いられる。
炭素数6〜20のペルフルオロアルカンとしてはペルフルオロヘキサン、ペルフルオロヘプタン、ペルフルオロオクタン、ペルフルオロノナンなどが挙げられる。
炭素数9〜20のペルフオロアルキルアミンとしては、次の一般式で示されるペルフルオロトリプロピルアミン、ペルフルオロトリブチルアミン、ペルフルオロトリペンチルアミン、ペルフルオロトリヘキシルアミンなどが挙げられる。
N(C2n+1)(C2k+1)(C2m+1
ここで、n,k,mは整数であり、n+k+m=9〜20
【0012】
炭素数2〜20のペルフルオロポリエーテルとしては、図1、図2の一般式で示される化合物が挙げられる。また、炭素数5以下の置換基を有するペルフルオロ単環もしくは縮合環化合物としては、図1の一般式で示される化合物、すなわちペルフルオロジシクロアルカン、ペルフルオロアダマンタン、ペルフルオロシクロエーテル、ペルフルオロジシクロエーテル、ペルフルオロシクロアミン、ペルフルオロジシクロアミン、ペルフルオロモルホリンおよびこれらの化合物が挙げられる。
【0013】
再生処理時の加熱温度は150℃以上が適当であり、加熱時間は0.5〜18時間が好ましい。100℃以下の加熱温度および0.5時間未満の加熱時間では白濁解消の効果がない。
【0014】
白濁した光透過材を上記再生処理することにより光透過材の白濁が消滅し、再び透明になる。一例として、後述の実施例に示すように、未使用の場合に波長310mμの近紫外線に対して18%の透過率を有するPFA製チューブであって光照射によるフッ素化反応の反応容器として使用した結果、チューブ内部に白濁を生じて透過率が0.1〜4%に低下したものを上記再生処理すると、白濁が消え透過率が15〜16%に回復する。白濁の原因および上記再生処理により白濁が解消する理由は必ずしも明らかではないが、上記光透過材の白濁を生じる部分が反応原料に接触する側の表面に限らないこと、および上記フッ素化合物は光透過材(フッ素樹脂)に浸透しやすいこと、一方、白濁を生じた光透過材を一般的な流動パラフィンなどのフッ素樹脂に浸透し難い溶剤中で煮沸しても白濁は消えないことなどに関係あるものと思われる。
【0015】
【実施例および比較例】
以下に本発明の実施例を比較例と共に示す。
実施例1
外径12mm、肉厚1mmのPFAチューブを反応管として用い、チューブ内部にフッ酸90wt%、芳香族アミン6wt%、精製水4wt%からなる反応原料液を供給する一方、チューブ外周を純水によって冷却し、反応温度を20〜30℃に維持し、波長310mμの光を照射してフッ素化反応を行わせた。反応開始前の該チューブの照射波長に対する透過率は18%であったが、80時間連続使用後にはチューブ肉厚の外表面側部分に白濁が生じ、透過率は0.1〜1%に低下した。この白濁したPFAチューブをペルフルオロトリブチルアミンに浸漬し、175℃に加熱して4時間煮沸した。この再生処理によりPFAチューブの白濁が消え、上記透過率は12〜15%に回復した。煮沸温度および時間を変えて同様に処理した結果を表1に示した。また同様に、白濁した上記PFAチューブをペルフルオロトリブチルアミン蒸気中で上記同一の加熱条件で加熱処理したところ、該溶媒中で煮沸した場合と同様の結果が得られた。この結果を表1に併せて示した。
【0016】
〔実施例2〕
実施例1のPFAチューブに代え、白化したFEP,ETFE,PFAおよびPVDF製チューブを用い、またフッ素系不活性溶媒の種類を代えて、実施例1と同様に再生処理した。この結果を表2に示した。
【0017】
〔比較例〕
実施例1の白濁したPFAチューブを流動パラフィンに浸漬し、215℃で4時間煮沸したところ、チューブの白濁は消えず、処理後の透明度は処理前と変わらなかった。流動パラフィンに代えてプロピレンカーボネイトを用いて同様に煮沸処理した結果を表3に纏めて示した。いずれの試料も白濁は消えず、透明度は回復しなかった。
【0018】
【表1】

Figure 0003840581
【0019】
【表2】
Figure 0003840581
【0020】
【表3】
Figure 0003840581
【0021】
【発明の効果】
本発明の再生処理方法によれば、フルオロオレフィン重合体からなる白化した光透過材の曇りを消し、未使用状態の場合に近い透明度まで回復することができる。しかも処理方法も簡便であり、実施し易く、反応管のように容器全体が光透過材によって形成されているものでも、反応管全体に生じた曇りを容易に除去することができる。
【図面の簡単な説明】
【図1】 本発明の再生方法に使用するフッ素系不活性溶媒の一般式を示す説明図
【図2】 本発明の再生方法に使用するフッ素系不活性溶媒の一般式を示す説明図[0001]
[Industrial application fields]
The present invention relates to a method for regenerating a light transmissive material that makes the above-mentioned light transmissive material transparent in a photoreactor using a fluoroolefin polymer as a light transmissive material.
[0002]
[Prior art]
In general, a photoreaction apparatus that irradiates light to perform a chemical reaction is provided with a container for containing a reaction raw material and a light source for performing a photoreaction. There are two types: a light source type and an external light source type that emits light from the outside of the container, and some use sunlight without using an artificial light source. In either case, the container transmits light from the light source into the container. The light transmission part to be made is formed. The light transmissive material used for the light transmissive portion is made of a material that transmits the wavelength used for the photoreaction, and various types of glass such as quartz are usually used.
[0003]
However, since the glass material is easily broken, there is a problem that the light transmission part cannot be formed large, the light irradiation part is limited and the efficiency of the photoreaction is lowered, and the reliability with respect to impact or the like remains uneasy. Further, when hydrofluoric acid is present due to the reaction raw material, solvent, or product, the glass surface is corroded to cause fogging, the transparency is remarkably lowered, and it becomes unusable.
[0004]
In order to eliminate the disadvantages of such glass materials, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) A method of coating a fluororesin compound such as the above on the glass surface of the light transmitting portion is known (Japanese Patent Publication No. 1-333157). The tetrafluoroethylene-ethylene copolymer and the tetrafluoroethylene-hexafluoropropylene copolymer have good light transmittance in the visible to ultraviolet region, so that they can be used as a light transmissive material, and have chemical resistance and heat resistance. Since it is excellent in properties, it can be expected to prevent hydrofluoric acid from being corroded. However, in fact, the effect of preventing fogging is insufficient, and as the photoreaction progresses, the transparency rapidly decreases and becomes unusable.
[0005]
As an example, in a reaction in which hydrofluoric acid and an aromatic amine are put in a PFA tube, and the aromatic amine is fluorinated by photoreaction by irradiating light from the outside, the reaction is continued at a temperature of 0 to 30 ° C. for 80 hours or more. A fine crack and a linear trace generate | occur | produce in the inside of the tube made from PFA, and white turbidity is produced. For this reason, the tube becomes unclear and an efficient photoreaction cannot be continued.
[0006]
[Problem to be Solved by the Invention]
An object of the present invention is to solve the above-mentioned problem that occurs when a fluorine-based resin is used as a light transmitting material, and an object thereof is to provide a regeneration method for making a cloudy light transmitting material transparent.
[0007]
According to this invention, the reproduction | regenerating method of the light transmissive material which consists of the following structures is provided.
(1) A method for regenerating a light-transmitting material comprising a fluoroolefin polymer, wherein the light-transmitting material that has become clouded by the use of a solution containing hydrofluoric acid is boiled in a fluorine-based inert solvent, or the solvent A method for regenerating a light-transmitting material that is transparent by eliminating cloudiness by heating in steam, wherein the fluorine-based inert solvent is (a) a C6-C20 perfluoroalkane, (b) a carbon number A perfluoroalkylamine having 9 to 20 carbon atoms, (c) a perfluoropolyether having 2 to 20 carbon atoms, and (d) a perfluoromonocyclic or condensed ring compound having a substituent having 5 or less carbon atoms , having a boiling point of 150 ° C. or higher A method for regenerating a light-transmitting material, characterized by comprising:
(2) The light transmitting material is tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride polymer, or vinyl fluoride heavy The method for regenerating a light transmissive material as described in (1) above, which is a coalescence.
(4) The regeneration method described in (1) or (2) above, wherein the light-transmitting material that has become cloudy due to the use of a solution containing hydrofluoric acid is used as a solution of the fluorine compound of (a) to (d) above. A method for regenerating a light-transmitting material, wherein the compound is heated in a vapor of the compound in a vapor at 100 to 250 ° C. for 0.5 to 28 hours.
[0008]
The method for regenerating a light transmissive material according to the present invention includes tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer ( PFA), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride polymer (PVDF), or vinyl fluoride polymer (PVF) (the above compounds in this specification) Is a method of eliminating the cloudiness caused by the use of a solution containing hydrofluoric acid and making it transparent.
[0009]
The shape of the light transmissive material is not limited, and a transparent plate made of the above fluoroolefin polymer may be provided in a part of the reaction vessel, or the entire reaction vessel may be formed from the fluoroolefin polymer. As an example, a cylindrical container made of the above fluoroolefin polymer can be used as a reaction tube. Furthermore, the present invention can also be applied to a light transmissive material in which the surface of various glass materials such as quartz glass is coated with the fluoroolefin polymer.
[0010]
The above light-transmitting material, which has become cloudy due to the use of a solution containing hydrofluoric acid, is immersed in a fluorine-based inert solvent and boiled, or is heat-treated in the solvent vapor so that the cloudiness disappears and becomes transparent again. be able to. The heating temperature is suitably 150 ° C. or higher. As the fluorine-based inert solvent, the following fluorine compounds having a boiling point of 150 ° C. or higher and stable even at 150 ° C. or higher in the autoclave (under pressure) can be used.
(a) C6-C20 perfluoroalkane
(b) Perfluoroalkylamine having 9 to 20 carbon atoms
(c) C2-C20 perfluoropolyether
(d) Perfluoromonocyclic or condensed ring compound having a substituent having 5 or less carbon atoms
Specifically, the following compounds are used as the fluorine-based inert solvent.
Examples of the perfluoroalkane having 6 to 20 carbon atoms include perfluorohexane, perfluoroheptane, perfluorooctane, and perfluorononane.
Examples of the perfluoroalkylamine having 9 to 20 carbon atoms include perfluorotripropylamine, perfluorotributylamine, perfluorotripentylamine, and perfluorotrihexylamine represented by the following general formula.
N (C n F 2n + 1 ) (C k F 2k + 1) (C m F 2m + 1)
Here, n, k, and m are integers, and n + k + m = 9 to 20
[0012]
As a C2-C20 perfluoropolyether, the compound shown by the general formula of FIG. 1, FIG. 2 is mentioned. Further, as the perfluoro monocyclic or condensed ring compound having a substituent having 5 or less carbon atoms, compounds represented by the general formula of FIG. 1, that is, perfluorodicycloalkane, perfluoroadamantane, perfluorocycloether, perfluorodicycloether, perfluoro Examples include cycloamine, perfluorodicycloamine, perfluoromorpholine, and compounds thereof.
[0013]
The heating temperature during the regeneration treatment is suitably 150 ° C. or higher, and the heating time is preferably 0.5 to 18 hours. When the heating temperature is 100 ° C. or less and the heating time is less than 0.5 hours, there is no effect of eliminating cloudiness.
[0014]
By regenerating the light transmissive material that has become cloudy, the white turbidity of the light transmissive material disappears and becomes transparent again. As an example, a PFA tube having a transmittance of 18% with respect to near ultraviolet rays having a wavelength of 310 mμ when not used is used as a reaction vessel for a fluorination reaction by light irradiation, as shown in Examples described later. As a result, when the above-mentioned regeneration treatment is performed on the tube having white turbidity and the transmittance reduced to 0.1 to 4%, the white turbidity disappears and the transmittance is restored to 15 to 16%. The cause of the white turbidity and the reason why the white turbidity is eliminated by the regeneration treatment are not necessarily clear, but the portion of the light transmitting material that causes white turbidity is not limited to the surface on the side in contact with the reaction raw material, and the fluorine compound is light transmissive. It is easy to permeate the material (fluorine resin). On the other hand, it does not disappear even if the light-transmitting material that causes white turbidity is boiled in a solvent that does not easily permeate fluorine resin such as general liquid paraffin. It seems to be.
[0015]
Examples and Comparative Examples
Examples of the present invention are shown below together with comparative examples.
Example 1
A PFA tube with an outer diameter of 12 mm and a wall thickness of 1 mm is used as a reaction tube. While supplying a reaction raw material liquid consisting of 90 wt% hydrofluoric acid, 6 wt% aromatic amine, and 4 wt% purified water, the outer periphery of the tube is made of pure water. After cooling, the reaction temperature was maintained at 20 to 30 ° C., and fluorination reaction was performed by irradiating light with a wavelength of 310 mμ. Before the start of the reaction, the transmittance of the tube with respect to the irradiation wavelength was 18%, but after 80 hours of continuous use, white turbidity occurred on the outer surface portion of the tube thickness , and the transmittance decreased to 0.1 to 1%. did. This cloudy PFA tube was immersed in perfluorotributylamine, heated to 175 ° C. and boiled for 4 hours. By this regeneration treatment, the white turbidity of the PFA tube disappeared, and the transmittance was restored to 12 to 15%. Table 1 shows the results of the same treatment at different boiling temperatures and times. Similarly, when the white turbid PFA tube was heat-treated in perfluorotributylamine vapor under the same heating conditions, the same result as that obtained when boiling in the solvent was obtained. The results are also shown in Table 1.
[0016]
[Example 2]
Instead of the PFA tube of Example 1, whitened FEP, ETFE, PFA, and PVDF tubes were used, and the type of fluorine-based inert solvent was changed, and the regeneration treatment was performed in the same manner as in Example 1. The results are shown in Table 2 .
[0017]
[Comparative Example]
When the white turbid PFA tube of Example 1 was immersed in liquid paraffin and boiled at 215 ° C. for 4 hours, the white turbidity of the tube did not disappear, and the transparency after the treatment did not change. The results of boiling treatment in the same manner using propylene carbonate instead of liquid paraffin are summarized in Table 3 . In all the samples, the cloudiness did not disappear, and the transparency did not recover.
[0018]
[Table 1]
Figure 0003840581
[0019]
[Table 2]
Figure 0003840581
[0020]
[Table 3]
Figure 0003840581
[0021]
【The invention's effect】
According to the regeneration treatment method of the present invention, the whitened light-transmitting material made of a fluoroolefin polymer can be defrosted and recovered to a transparency close to that in an unused state. Moreover, the treatment method is simple and easy to carry out, and even if the entire vessel is formed of a light transmitting material such as a reaction tube, fogging generated in the entire reaction tube can be easily removed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a general formula of a fluorine-based inert solvent used in the regeneration method of the present invention. FIG. 2 is an explanatory diagram showing a general formula of a fluorine-based inert solvent used in the regeneration method of the present invention.

Claims (3)

フルオロオレフィン重合体からなる光透過材の再生方法であり、フッ酸を含む溶液の使用によって白濁を生じた上記光透過材をフッ素系不活性溶媒の液中で煮沸し、または該溶媒蒸気中で加熱することによって白濁を解消して透明化する光透過材の再生方法であって、上記フッ素系不活性溶媒が、(a)炭素数6〜20のペルフルオロアルカン、(b)炭素数9〜20のペルフオロアルキルアミン、(c)炭素数2〜20のペルフルオロポリエーテル、(d)炭素数5以下の置換基を有するペルフルオロ単環もしくは縮合環化合物であって、150℃以上の沸点を有する化合物であることを特徴とする光透過材の再生方法。A method for regenerating a light-transmitting material comprising a fluoroolefin polymer, wherein the light-transmitting material that has become clouded by the use of a solution containing hydrofluoric acid is boiled in a solution of a fluorine-based inert solvent, or in the solvent vapor. A method for regenerating a light-transmitting material that is transparent by eliminating white turbidity by heating, wherein the fluorine-based inert solvent is (a) a perfluoroalkane having 6 to 20 carbon atoms, and (b) 9 to 20 carbon atoms. (C) a perfluoropolyether having 2 to 20 carbon atoms, (d) a perfluoromonocyclic or condensed ring compound having a substituent having 5 or less carbon atoms , and having a boiling point of 150 ° C. or higher A method for regenerating a light transmissive material, characterized in that 光透過材がテトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン重合体、またはフッ化ビニル重合体である請求項1に記載する光透過材の再生方法。The light transmitting material is a tetrafluoroethylene-ethylene copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a vinylidene fluoride polymer, or a vinyl fluoride polymer. The method for regenerating a light transmissive material according to claim 1 . 請求項1または2に記載する再生方法であって、フッ酸を含む溶液の使用によって白濁を生じた光透過材を上記(a)〜(d)のフッ素化合物の液中で、または該化合物の蒸気中で、100〜250℃、0.5〜28時間加熱する光透過材の再生方法。 The regeneration method according to claim 1 or 2 , wherein the light-transmitting material that has become clouded by the use of a solution containing hydrofluoric acid is contained in the liquid of the fluorine compounds (a) to (d) above, or A method for regenerating a light-transmitting material, which is heated in steam at 100 to 250 ° C. for 0.5 to 28 hours.
JP9011095A 1995-03-24 1995-03-24 Recycling method of light transmitting material Expired - Fee Related JP3840581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9011095A JP3840581B2 (en) 1995-03-24 1995-03-24 Recycling method of light transmitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9011095A JP3840581B2 (en) 1995-03-24 1995-03-24 Recycling method of light transmitting material

Publications (2)

Publication Number Publication Date
JPH08259727A JPH08259727A (en) 1996-10-08
JP3840581B2 true JP3840581B2 (en) 2006-11-01

Family

ID=13989388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9011095A Expired - Fee Related JP3840581B2 (en) 1995-03-24 1995-03-24 Recycling method of light transmitting material

Country Status (1)

Country Link
JP (1) JP3840581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054256B2 (en) * 2000-07-24 2012-10-24 ダイキン工業株式会社 Method for producing recycled fluororesin and recycled fluororesin

Also Published As

Publication number Publication date
JPH08259727A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JP5464210B2 (en) Method for producing stabilized fluoropolymer
JPH03179009A (en) Perfluorodioxole polymer
JP5962873B2 (en) Method for producing modified molded product of fluororesin
JP6936274B2 (en) Molded product and its manufacturing method
JP5167818B2 (en) Method for producing stabilized fluoropolymer
JP2007194626A (en) Method of cleaning fluorine rubber molded article for semiconductor production device, and cleaned molded article
CN1878826A (en) Method of modifying a fluoropolymer and articles thereby
KR20160102976A (en) Method for manufacturing fluorine-containing cross-linked product and use thereof
JP2002348315A (en) Non-crystalline (per)fluorinated polymer
US20200255551A1 (en) Method for producing purified polytetrafluoroethylene aqueous dispersion liquid, method for producing modified polytetrafluoroethylene powder, method for producing polytetrafluoroethylene molded body, and composition
US4200711A (en) Process for preparing fluorine-containing polymers having carboxyl groups
US7956225B2 (en) Polyfluoro-1-alkene and method for producing the same
US20220213996A1 (en) Welded body
JP3840581B2 (en) Recycling method of light transmitting material
JP4996813B2 (en) Perfluorinated polymer
TWI359825B (en)
US4587274A (en) Process for preparation of fluorine-containing compound having carboxyl group
JP6870721B2 (en) Fluororesin molded product manufacturing method and manufacturing system
EP4286425A1 (en) Method for producing fluoropolymer composition
JPH10249334A (en) Automatically cleaning mechanism for light transmitting tube of photoirradiation device
JPH10195212A (en) Production of fluororesin molding product
JPWO2004088422A1 (en) Fluorine-containing compound and fluorine-containing polymer
JPH07110904B2 (en) Hydrophilic fluorine film
JPH0971674A (en) Fluororesin molding
JPH0680733A (en) Fluorocopolymer and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees