JP3840291B2 - Iron powder production method from steelmaking furnace dust - Google Patents

Iron powder production method from steelmaking furnace dust Download PDF

Info

Publication number
JP3840291B2
JP3840291B2 JP19400596A JP19400596A JP3840291B2 JP 3840291 B2 JP3840291 B2 JP 3840291B2 JP 19400596 A JP19400596 A JP 19400596A JP 19400596 A JP19400596 A JP 19400596A JP 3840291 B2 JP3840291 B2 JP 3840291B2
Authority
JP
Japan
Prior art keywords
iron powder
dust
water
acid
steelmaking furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19400596A
Other languages
Japanese (ja)
Other versions
JPH1017905A (en
Inventor
力 井下
博行 松本
克正 三戸
正毅 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Original Assignee
Astec Irie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd filed Critical Astec Irie Co Ltd
Priority to JP19400596A priority Critical patent/JP3840291B2/en
Priority to MYPI97002765A priority patent/MY115542A/en
Priority to US08/883,630 priority patent/US5954854A/en
Priority to TW086109005A priority patent/TW416995B/en
Publication of JPH1017905A publication Critical patent/JPH1017905A/en
Application granted granted Critical
Publication of JP3840291B2 publication Critical patent/JP3840291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は純酸素吹錬転炉等の製鋼吹錬時に発生するダストから精製された溶断用鉄粉、粉末冶金用鉄粉あるいはエッチング廃液の再生処理に使用する還元剤としての鉄粉等を得るための製鋼炉ダストからの鉄粉製造方法に関する。
【0002】
【従来の技術】
純酸素吹錬転炉等から捕集されるダスト中には、脱炭反応の激しい吹錬中期に発生する金属鉄を主体とする粗粒と、吹錬後期に発生するFeO、Fe3 4 等を主体とする微粉とが含まれている。
これらは一括して捕集され、そのままの状態で高炉用焼結鉱あるいはペレット等の付加価値の低い原料として取り扱われる。
従来、このようなダスト中の金属鉄を回収して、スケール、スラグ等の不純物を取り除くことにより付加価値を高めて、溶断用鉄粉、粉末冶金用鉄粉等の用途に利用することが試みられている。
例えば、特公昭57−44724号公報には純酸素吹錬製鋼転炉において発生したダストを湿式法で回収し、該ダストを分級して−44μmサイズの粒子を30%以下にする第1工程と、ついでこの粗粒ダストを湿式微粉砕機によってスケール、スラグ等の不純物を剥離する第2工程と、剥離後のダストから不純物を除去して金属鉄を得る第3工程と、該金属鉄を精製する第4工程により鉄粉を抽出する方法が記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記特公昭57−44724号公報に記載の方法では、ダストから不純物を除去して金属鉄を得る前記第3工程が、一般的な分級、薄流選鉱あるいは磁力選鉱により行われるので、ダスト処理能力が低く、除去効率も低いため大量処理が困難であるという問題があった。
また、金属鉄を精製する前記第4工程が、酸化鉄精錬、あるいは希酸浸出による精製処理等を組み合わせて行われるので、連続処理が困難であり、後工程での解砕処理あるいは洗浄処理が複雑となると共に、安定した品質の精製鉄粉を大量に得ることができないという問題があった。
【0004】
本発明はこのような事情に鑑みてなされたもので、製鋼炉で発生するダストを連続的に処理して、純度のばらつきが少なく高純度の精製鉄粉を大量かつ安価に製造することができる製鋼炉ダストからの鉄粉製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う請求項1記載の製鋼炉ダストからの鉄粉製造方法は、製鋼炉から発生するCaO等の不純物を含むダスト鉄粉から湿式法により原料ダストを回収し、該原料ダストをボールミルあるいはバイブロミル等の粉砕機を用いて粉砕する湿式粉砕工程と、前記工程で生じる湿式粉砕物を水洗浄し前記不純物を微粉と共に除去して洗浄鉄粉を得る水洗工程と、前記洗浄鉄粉を酸洗処理して残存する前記不純物を溶出、除去する溶出洗浄工程とを有する製鋼炉ダストからの鉄粉製造方法であって、前記水洗工程が、傾斜して配置され回転駆動される螺旋体を備えた水沈殿物搬出手段によって、水沈澱槽に投入された前記原料ダストを徐々に搬出しながら、前記螺旋体の上部から噴出される水によって搬出される前記原料ダストを水洗する工程からなり、前記溶出洗浄工程が、傾斜して配置され回転駆動される螺旋体を備えた酸液沈殿物搬出手段によって、酸液沈澱槽に投入された前記洗浄鉄粉を徐々に搬出しながら、前記螺旋体の上部から噴出される塩酸、硫酸等の酸液によって搬出される前記洗浄鉄粉を酸洗処理する工程からなり、前記酸液沈澱物排出手段からCaOの極力除去された精製鉄粉を得る。
請求項2記載の製鋼炉ダストからの鉄粉製造方法は、請求項1記載の製鋼炉ダストからの鉄粉製造方法において、前記精製鉄粉のCaO濃度を、0.1wt%未満とする。
請求項3記載の製鋼炉ダストからの鉄粉製造方法は、請求項1又は2記載の製鋼炉ダストからの鉄粉製造方法において、前記酸液が水素イオン濃度(pH)0.5〜3.0の硫酸又は塩酸溶液である。
請求項4記載の製鋼炉ダストからの鉄粉製造方法は、請求項2又は3記載の製鋼炉ダストからの鉄粉製造方法において、前記酸液が硫酸であって、その硫酸使用量が精製鉄粉1トン当たり10〜400リットルである。
【0006】
前記精製鉄粉中のCaO濃度が0.1wt%より大きいと、該精製鉄粉をエッチング廃液の再生処理用として繰り返し使用した場合に、CaOが溶液中に濃縮されて、スケールが発生してノズル詰まりを生じたり、エッチング能力を低下させたりするので好ましくない。
また、第二の理由として以下の点が挙げられる。エッチング廃液処理では、再生液中の鉄濃度を一定に維持するために、エッチング廃液処理後にその液量が処理前の1.5倍程度に増加する。そして、この過剰分のエッチング廃液を処理するために、650℃〜660℃に維持された酸化雰囲気の炉に廃液を吹き込むことにより、廃液中の塩化鉄を酸化鉄、及び塩素ガス、塩化水素等に変換して、塩酸と酸化鉄を回収する操作が行われている。従って、この回収される酸化鉄のCaO濃度が高くなると、フェライト等の用途に酸化鉄が使用できなくなり、その意味からもCaO濃度を許容値以下にする必要が生じる。
【0007】
前記酸液の水素イオン濃度(pH)が0.5より小さいと、酸液の腐蝕性が激しくなり、設備に特別な耐酸処理を施す必要があり、設備保守コストが上昇する。一方、前記水素イオン濃度が3.0より大きくなると、鉄粉に固着するスケール、スラグ等を含む不純物を充分に溶出することができないので好ましくない。
また、前記酸液である硫酸の使用量が精製鉄粉1トン当たり10リットルより少なくなると、不純物を溶出除去して、必要な純度の精製鉄粉を得ることができない。逆に、前記硫酸使用量を400リットルより多くしても、不純物の溶出量を実質的に増加することができず、これ以上の酸処理は不必要な上に、後工程における排水処理にかかるコストが高くなる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに図1は本発明の一実施の形態に係る製鋼炉ダストからの鉄粉製造方法を適用した製鋼設備10の一部を示す説明図である。
図1に示すように製鋼設備10は、製鋼炉の一例である転炉11と、転炉11の上部に配置されたダスト鉄粉及び発生ガスを捕集するためのフード部12と、フード部12に接続される排気系13と、該排気系13内を排気する煙突14と、該排気系13内で捕集されるダスト鉄粉から原料ダストを抽出するための湿式分級機19と、排気系13内の第2噴射口16に吹き込まれる噴射水によって捕集されるダスト鉄粉を処理するためのダスト処理槽17、及び第2噴射口16に吹き込む噴射水を供給するためのシックナ18とを有する。
【0009】
湿式分級機19は、排気系13内の第1噴射口15から吹き込まれる噴射水によって回収されるダストを溜めるためのダスト沈澱槽20と、管内部の回転する螺旋体22により前記ダスト沈澱槽20内の沈澱物を管内に巻き上げて上昇させることにより分級処理を行うための沈澱物搬出手段21とを有している。このような湿式分級機19においては、沈澱物搬出手段21の開放された上部から洗浄水等を供給することにより、沈澱物中の微粉部分が選択的に沈澱物搬出手段21の内壁に沿って下降流出して、沈殿物中の比較的粒度が大きく、過剰の水分が除去されたダスト沈澱物が沈澱物搬出手段21の上端から排出され、沈澱物の分級あるいは洗浄が行なえるようになっている。
排気系13の第1噴射口15及び第2噴射口16の近傍部分は絞り構造となっており、このオリフィス部に水を吹き込むことにより、排気ガスあるいはダスト鉄粉と水との混合が効果的に行なわれ、水によって捕捉されたダスト鉄粉が第1噴射口15及び第2噴射口16の下流側にそれぞれ設けられた排出口から排出されるようになっている。
【0010】
前記ダスト沈澱物は、ボールミル、バイブロミル等の粉砕機を用いて湿式状態で粉砕、磨鉱する湿式粉砕工程により処理されて原料ダスト(湿式粉砕物)となる。
図2は、この得られた原料ダストの水洗浄と酸洗浄とを行うための水酸洗浄装置23の構成図である。
水酸洗浄装置23は、図2に示すように水洗浄装置24と、酸洗浄装置30とを有する。
そして、水洗浄装置24は、前記原料ダストが投入される水沈澱槽26と、該水沈澱層26の沈澱物を処理するための該水沈澱層26に傾斜して配置される水沈澱物搬出手段27とを有しており、酸洗浄装置30は、前記水沈澱物搬出手段27の上部から排出される洗浄鉄粉が投入される酸沈澱槽32と、該酸沈澱槽32の沈澱物をすくいあげて洗浄、分級、及び水分除去を行うための酸液沈澱物搬出手段33とを有する。
【0011】
前記水沈澱物搬出手段27及び酸液沈澱物搬出手段33は、それぞれの下部が水沈澱槽26、酸沈澱槽32に浸漬し、水平方向に対して10〜15度の角度を有して配置されており、前記各搬出手段27、33の少なくとも上部は半割構造となって開放されている。
そして、水沈澱物搬出手段27、酸液沈澱物搬出手段33の内部には各沈澱槽26、32に堆積する沈澱物を掻き上げて上昇移動させるための螺旋体28、34が設けられており、該螺旋体28、34を図示しないモータ等を回転させることにより、螺旋体28、34と各搬出手段27、33との空隙に巻き込まれた沈澱物が各搬出手段27、33に沿って上昇移動するようになっている。
また、それぞれの搬出手段27、33の上部には水供給管25及び酸液供給管31が配置されていて、各搬出手段27、33の上部の開放された部分に洗浄水あるいは酸液を供給できる。
従って、各搬出手段27、33内を上昇移動する沈澱物と、各搬出手段27、33内を重力により流下する洗浄水あるいは酸液とが効果的に撹拌、混合されると共に、沈澱物内の比較的粒径の小さい粒子が洗い流されて各搬出手段27、33内を下降して各沈澱槽26、32に蓄積され、微粒部分の除去された沈澱物が各搬出手段27、33の上部から排出されるようになっている。
【0012】
続いて、前記説明した製鋼設備10、及び水酸洗浄装置23を用いる本発明の一実施の形態に係る製鋼炉ダストからの鉄粉製造方法について、図3に示す鉄粉製造のフロー図に基づいて説明する。
まず、図1の湿式分級機19から排出される水分を含む原料ダストを、図示しない原料フィーダを用いて、図示しない一次磨鉱ボールミルに投入する(図3に示すステップS1、S2)。
一次磨鉱ボールミルは前記原料フィーダで連続して投入した原料ダストを処理することができる略円筒型のボールミルであり、前記円筒の回転数が20〜36rpm、粉砕媒体となるボール量が3〜5トンである。
また、この一次磨鉱ボールミルに送入される原料ダストを含む水の供給量は200〜1000リットル/hr(平均:270リットル/hr)であり、原料ダストの濃度は50〜80wt%(平均:65wt%)とした。
【0013】
このような一次磨鉱ボールミルにおける原料ダストの滞留時間あるいは処理時間は約60〜120分であり、この湿式粉砕工程により、原料ダストに含まれる不純物の一部を鉄粉から剥離させることができるようになっている。
ここで、上記のように湿式粉砕工程を行う理由は、転炉11から回収されるダスト自体が前記したように水分を多量に含む湿粉であり、乾式で処理しようとすると予備処理として乾燥工程が必要であること、及び、続く酸洗処理が湿式で行われるため、再度乾燥処理が必要となり、不経済であることによる。
また、乾式で粉砕処理を行うと粉塵を発生しやすく、この粉塵対策が必要となり、環境対策に要するコストが多大となる。
【0014】
次いで、前記一次磨鉱ボールミルより排出される処理物を、図1に示す湿式分級機19と同様の構成である予備洗浄エーキンスにかけて前記剥離させた不純物を洗い流す操作を行う(ステップS3)。
ここで、ダスト沈澱槽20内を上昇してオーバーフローする流体の速度は3〜10m/hr(平均:5m/hr)であり、沈澱物搬出手段21の開放された上部に供給される洗浄水の供給量は3〜25m3 /hr(平均:5m3 /hr)とした。
この予備洗浄エーキンスによる洗浄処理により、前記処理物中の鉄粉から剥離した不純物の一部がさらに分離除去されると共に、鉄粉中の微小部分が同時に除去されるために、粒径の大きくなる方向に粒度分布を移行させることができる。
【0015】
続いて、この予備洗浄エーキンスより排出される混合物を、図示しない二次磨鉱バイブロミルにかけて粉砕する(ステップS4)。
二次磨鉱バイブロミルは、容量1000リットルの振動型粉砕機であり、原料ダストを含む水の供給量は200〜1000リットル/hr(平均:270リットル/hr)、原料ダストの濃度は50〜80wt%(平均:65wt%)とした。
この二次磨鉱バイブロミルを用いた湿式粉砕工程により、混合物中の鉄粉に付着残存する不純物がさらに細かく粉砕され、以降の工程における鉄粉と不純物との分離効率が高められた原料ダストを得ることができる。
ここで、図4は鉄粉を含む処理物中にある不純物の一例であるCaO濃度の変化を示しており、前記一次磨鉱ボールミルに投入される前(図4のA)に2〜7wt%の範囲であったCaO濃度が、予備洗浄エーキンスによる処理後(図4のB)には0.5〜5wt%の範囲に減少していることが分かる。
しかし、このような原料ダスト(湿式粉砕物)中にはなお、不純物が多く残存しているため、エッチング廃液の再生処理用に用いられるような還元剤としては純度が充分でなく、このままでは使用できない。
このため、図2に示すような水酸洗浄装置23を用いて、原料ダストについて洗浄分級処理をさらに行うことが必要となる。
【0016】
まず、水酸洗浄装置23を用いる洗浄処理の第1段階(ステップS5)として、原料ダストを水洗浄装置24の上部から原料ダスト供給管29を介して水沈澱槽26に投入する。
これにより、原料ダスト中の比重の大きい鉄粉部分が次第に沈澱して、水沈澱槽26の底部に沈澱物の層を形成する。
そして、水沈澱物搬出手段27内に配置された螺旋体28をモータ等の駆動装置により回転させる。
一方、このとき、水供給管25を用いて洗浄水を3〜25m3 /hr(平均:25m3 /hr)の供給速度で供給して、洗浄水による下降流を水沈澱物搬出手段27の中に形成させると共に、水沈澱槽26内に原料ダストを投入して、比重の軽い部分からならるオーバーフロー流を発生させ、その上昇速度を3〜10m/hr(平均:5m/hr)の範囲に調整する。これにより、効率的に原料ダストの分離精製が行われる。
【0017】
以上の操作により、原料ダスト中の微粉部分はオーバーフローと一緒に洗い流され、粗粒部分が選択的に水沈澱物搬出手段27の上部から洗浄鉄粉として排出される。
前記微粉部分には不純物の大半が含まれるために、原料ダスト中の不純物(CaO)が図4のCに示されるように0.3〜1.7wt%の範囲に大幅に除去されると共に、粒度分布を粗粒側に移行させた洗浄鉄粉が得られる。
次に水酸洗浄装置23を用いる第2段階(ステップS6)として、前記得られた洗浄鉄粉を酸洗浄装置30の上部から供給管を介して酸沈澱槽32に投入する。
これにより、洗浄鉄粉中の比重の大きい部分が次第に沈澱して、酸沈澱槽32の底部に沈澱物の層を形成する。
【0018】
そして、酸液沈澱物搬出手段33内に配置された螺旋体34をモータにより回転駆動させると共に、酸沈澱槽32にオーバーフロー流を形成させて、その上昇速度を3〜10m/hr(平均:5m/hr)に調整する。
一方、このとき、酸液供給管31を用いて比重が1.9である98wt%硫酸を30〜100リットル/hrの供給速度で供給して、酸液による下降流を酸液沈澱物搬出手段33の内部に形成させる。
この時の酸洗浄装置30内の酸液の水素イオン濃度(pH)は0.5〜3.0の範囲とした。
以上の操作により、洗浄鉄粉中の微粉部分が流下して酸沈澱槽32に蓄積されると共に、酸液沈澱物搬出手段33に沿って流下する酸液及び液中のオーバーフロー流により洗浄鉄粉中の不純物が効果的に溶出除去され、精製鉄粉を含む粗粒部分が選択的に酸液沈澱物搬出手段33の上部から排出され、酸沈澱槽32内の上澄み廃液が上部から排出される。
【0019】
そして、精製鉄粉中の不純物(CaO)が図4のDに示すように許容値以下の範囲である0.01〜0.10wt%に大幅に除去された精製鉄粉を含む処理物を得ることができる。
図5及び図6は、それぞれ最終的に得られる精製鉄粉中のCaO濃度と前記酸洗浄装置30で使用する塩酸原単位及び硫酸原単位の関係を示したグラフである。
図5、図6に示されるように酸原単位が低すぎると製品中のCaO許容量から外れる比率が高くなり、逆に酸原単位が飽和量を越えるとCaO濃度の低下量が少なくなり、酸コスト、廃酸処理コスト、設備保全コストが上昇してしまう。
従って、上記を勘案して、製品となる精製鉄粉1トンを得るのに必要な硫酸原単位を10〜400リットルとすることが可能であり、より好ましくは270〜400リットルの範囲とすることが望ましい。そして、塩酸原単位は25〜700リットル/トンとすることが可能であり、より好ましくは550〜700リットルの範囲に設定することが望ましい。
なお、ここで用いる硫酸及び塩酸は水素イオン濃度(pH)が0.5〜3.0の範囲に対応した濃度のものであり、原料ダスト中のCaO含有量及びその他の組成等の要因により処理される鉄粉中のCaO濃度にばらつきを生じることを図5、図6は示している。
【0020】
次くステップS7においては、前記水洗浄装置24と同様の構造の二次洗浄エーキンスを用いて、前記酸洗浄処理後の処理物を処理して、酸性となっている処理物を洗浄した。
このとき、工業用水等の洗浄水を1〜10m3 /hrの供給速度で供給して残存する酸液の除去を行うことができる。
そしてステップS8では、酸液処理後の処理物を気流乾燥機にかけて、150〜250℃の気流中で水分を除去した。
この乾燥後の精製鉄粉の粒度分布を測定したところ、▲1▼750〜150μm、▲2▼150〜105μm、▲3▼105〜74μm、▲4▼74〜63μm、▲5▼63〜44μm、▲6▼44μm以下がそれぞれ、▲1▼0〜20wt%、▲2▼5〜40wt%、▲3▼20〜60wt%、▲4▼5〜25wt%、▲5▼10〜30wt%、▲6▼1〜19wt%であった。なお、前記▲1▼の範囲は710〜150μmとしてもよい。
また、このような精製鉄粉の代表的な組成は、Fe、FeO、Fe2 3 を含むトータルFeが96wt%以上であり、金属Feが92wt%以上、FeOが6wt%以下、CaOが0.5wt%以下、SiO2 が0.1wt%以下、炭素(C)が0.7wt%以下の範囲であった。
【0021】
最後のステップS9では、タイラー(Tyler)標準篩100メッシュ〜150メッシュの範囲のいずれかの篩い目を有する振動篩い機を用いて、前記精製鉄粉を分級して、その篩い上となる鉄粉をエッチング廃液処理における銅除去用の精製鉄粉とし、篩い下となる鉄粉をニッケル除去用の精製鉄粉として使用することができる。
なお、前記100メッシュ、150メッシュのタイラー篩いとは、それぞれ篩目の開き量が147μm、104μmとなるような篩いである。
【0022】
以上、本発明の実施の形態を説明したが、本発明はこれらの実施の形態に限定されるものではなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、本実施の形態においては、水洗浄装置及び酸洗浄装置とをそれぞれ異なる独立の装置とした場合について説明したが、このような水洗工程と溶出洗浄工程とを同一の湿式分級機を用いて行うこともできる。この場合には、湿式分級機から排出される洗浄鉄粉を貯留槽に一旦貯蔵しておき、該貯留槽から取り出される洗浄鉄粉を同一の湿式分級機を用いて処理することができる。
また、必要に応じて水洗浄装置及び酸洗浄装置との組を複数組み合わせることにより水洗工程と酸洗浄工程とを繰り返して、より確実に原料ダスト中の不純物を除去することも可能である。
【0023】
【発明の効果】
請求項1〜4記載の製鋼炉ダストからの鉄粉製造方法においては、原料ダストの供給される水沈澱槽に水沈澱物搬出手段の下部を傾斜して配置し、該水沈澱物搬出手段の内部に備えられた螺旋体を回転駆動させて沈澱物を移動させると共に、前記螺旋体の直上部から噴出される水によって、下降流を形成させることにより、前記上昇移動する沈澱物中の不純物を含む微粉部分が洗浄水により洗い流されて、該水沈澱物搬出手段の上部から洗浄、分級された洗浄鉄粉を得ることができる。
次いで、前記洗浄鉄粉の供給される酸沈澱槽に傾斜して配置された酸液沈澱物搬出手段の螺旋体を回転させて沈澱物を上昇移動させると共に、前記螺旋体の直上部から塩酸、硫酸等の酸液を供給して下降流を形成させることにより、前記上昇移動する沈澱物中の鉄粉に付着する不純物を酸液により効果的に溶出して精製鉄粉を得ることができる。
従って、製鋼炉から生成するダストを連続的に処理して、純度のばらつきが少なく高純度の精製鉄粉を大量かつ安価に製造することが可能である。
【0024】
特に、請求項2記載の製鋼炉ダストからの鉄粉製造方法においては、精製鉄粉のCaO濃度を0.1wt%未満としているので、エッチング廃液の再生処理に際して、この精製鉄粉を還元剤として用いても、CaOが再生サイクルの中で蓄積されることがない。このため、エッチング液のCaO濃度を所定の水準以下に維持することができ、適正条件下でエッチング処理を行うことが容易になる。
請求項3及び4記載の製鋼炉ダストからの鉄粉製造方法においては、酸液に水素イオン濃度を特定範囲に限定した硫酸又は塩酸溶液を用いるので、精製鉄粉中のCaO等の不純物量を所定の水準に維持することができると共に、酸液コスト、廃酸処理コスト、設備保全コストを適正範囲で管理することが可能である。
請求項4記載の製鋼炉ダストからの鉄粉製造方法においては、酸液が硫酸であって、その硫酸使用量を特定範囲に設定するので、さらに適正化された範囲での不純物除去が可能であり、ばらつきが少なく高純度の精製鉄粉を製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る製鋼炉ダストからの鉄粉製造方法を適用した製鋼設備の一部構成図である。
【図2】同鉄粉製造方法を適用した水酸洗浄装置の説明図である。
【図3】同鉄粉製造方法のフロー図である。
【図4】鉄粉中のCaO濃度の各処理工程における変化を示すグラフである。
【図5】製品鉄粉中のCaO濃度と塩酸原単位との関係を示すグラフである。
【図6】製品鉄粉中のCaO濃度と硫酸原単位との関係を示すグラフである。
【符号の説明】
10 製鋼設備 11 転炉(製鋼炉)
12 フード部 13 排気系
14 煙突 15 第1噴射口
16 第2噴射口 17 ダスト処理槽
18 シックナ 19 湿式分級機
20 ダスト沈澱槽 21 沈澱物搬出手段
22 螺旋体 23 水酸洗浄装置
24 水洗浄装置 25 水供給管
26 水沈澱槽 27 水沈澱物搬出手段
28 螺旋体 29 原料ダスト供給管
30 酸洗浄装置 31 酸液供給管
32 酸沈澱槽 33 酸液沈澱物搬出手段
34 螺旋体
[0001]
BACKGROUND OF THE INVENTION
The present invention obtains iron powder for fusing, powdered metallurgy iron powder or iron powder as a reducing agent used for the regeneration treatment of etching waste liquid purified from dust generated during steelmaking blowing in a pure oxygen blowing converter, etc. The present invention relates to a method for producing iron powder from steelmaking furnace dust.
[0002]
[Prior art]
In the dust collected from a pure oxygen blowing converter, etc., there are coarse particles mainly composed of metallic iron generated in the middle stage of blowing, where the decarburization reaction is intense, and FeO, Fe 3 O 4 generated in the latter stage of blowing. Etc., and fine powder mainly composed of
These are collected in a lump and handled as raw materials with low added value, such as sintered ore for blast furnaces or pellets.
Conventionally, metal iron in such dust is collected, and added value is removed by removing impurities such as scale and slag, and attempts are made to use it for applications such as iron powder for fusing and iron powder for powder metallurgy. It has been.
For example, Japanese Patent Publication No. 57-44724 discloses a first process in which dust generated in a pure oxygen blown steel converter is recovered by a wet method, and the dust is classified to reduce particles of -44 μm size to 30% or less. Next, a second step of removing impurities such as scale and slag from the coarse dust by a wet pulverizer, a third step of removing impurities from the peeled dust to obtain metallic iron, and refining the metallic iron A method for extracting iron powder by the fourth step is described.
[0003]
[Problems to be solved by the invention]
However, in the method described in Japanese Patent Publication No. 57-44724, the third step of obtaining metallic iron by removing impurities from dust is performed by general classification, thin-flow or magnetic separation, There was a problem that a large amount of processing was difficult due to low processing capability and low removal efficiency.
Further, since the fourth step of refining metallic iron is performed in combination with iron oxide refining or purification treatment by dilute acid leaching, continuous treatment is difficult, and crushing treatment or washing treatment in a subsequent step is difficult. In addition to being complicated, there is a problem that a large amount of stable quality purified iron powder cannot be obtained.
[0004]
The present invention has been made in view of such circumstances, and can continuously process dust generated in a steelmaking furnace to produce high-purity refined iron powder with low purity variation in a large amount and at low cost. An object of the present invention is to provide a method for producing iron powder from steelmaking furnace dust.
[0005]
[Means for Solving the Problems]
The method for producing iron powder from steelmaking furnace dust according to claim 1, wherein the raw material dust is recovered from the dust iron powder containing impurities such as CaO generated from the steelmaking furnace by a wet method, and the raw material dust is collected by a ball mill or A wet pulverization step of pulverizing using a pulverizer such as a vibro mill, a water rinsing step of washing the wet pulverized product generated in the step with water and removing the impurities together with fine powder to obtain a washed iron powder, and pickling the washed iron powder. An iron powder production method from steelmaking furnace dust having an elution washing process for eluting and removing the impurities remaining after the treatment, wherein the water washing process is provided with a spiral body that is disposed at an angle and is rotationally driven. A process of washing the raw material dust discharged from the upper part of the spiral body with water while gradually discharging the raw material dust put into the water sedimentation tank by the sediment discharge means. The elution cleaning step is carried out while the washing iron powder put into the acid solution precipitation tank is gradually carried out by the acid solution precipitation carrying means provided with a spiral body that is inclined and rotated. The process comprises a step of pickling the washed iron powder ejected by an acid solution such as hydrochloric acid or sulfuric acid ejected from the upper part of the spiral body, and obtaining purified iron powder from which CaO is removed as much as possible from the acid solution precipitate discharging means. .
The method for producing iron powder from steelmaking furnace dust according to claim 2 is the method for producing iron powder from steelmaking furnace dust according to claim 1, wherein the refined iron powder has a CaO concentration of less than 0.1 wt%.
The method for producing iron powder from steelmaking furnace dust according to claim 3 is the method for producing iron powder from steelmaking furnace dust according to claim 1 or 2, wherein the acid solution has a hydrogen ion concentration (pH) of 0.5 to 3. 0 sulfuric acid or hydrochloric acid solution.
The method for producing iron powder from steelmaking furnace dust according to claim 4 is the method for producing iron powder from steelmaking furnace dust according to claim 2 or 3, wherein the acid solution is sulfuric acid, and the amount of sulfuric acid used is refined iron. 10 to 400 liters per ton of flour.
[0006]
When the concentration of CaO in the refined iron powder is greater than 0.1 wt%, when the refined iron powder is repeatedly used for the recycling treatment of the etching waste liquid, CaO is concentrated in the solution and a scale is generated to generate a nozzle. This is not preferable because clogging occurs or etching ability is reduced.
Moreover, the following points are mentioned as a 2nd reason. In the etching waste liquid treatment, in order to keep the iron concentration in the regenerated liquid constant, the amount of the liquid after the etching waste liquid treatment increases to about 1.5 times that before the treatment. And in order to process this excess etching waste liquid, the waste liquid is blown into a furnace in an oxidizing atmosphere maintained at 650 ° C. to 660 ° C., thereby converting iron chloride in the waste liquid into iron oxide, chlorine gas, hydrogen chloride, etc. An operation for recovering hydrochloric acid and iron oxide is performed. Therefore, when the CaO concentration of the recovered iron oxide becomes high, iron oxide cannot be used for applications such as ferrite, and it is necessary to make the CaO concentration below an allowable value also in that sense.
[0007]
If the hydrogen ion concentration (pH) of the acid solution is less than 0.5, the acid solution becomes corrosive, and the equipment needs to be treated with a special acid resistance, resulting in an increase in equipment maintenance costs. On the other hand, when the hydrogen ion concentration is higher than 3.0, impurities including scale, slag and the like adhering to the iron powder cannot be sufficiently eluted, which is not preferable.
Moreover, when the usage-amount of the sulfuric acid which is the said acid solution will be less than 10 liters per ton of refined iron powder, an impurity will be eluted and removed and the refined iron powder of required purity cannot be obtained. On the contrary, even if the amount of sulfuric acid used is more than 400 liters, the amount of impurities eluted cannot be increased substantially, and no further acid treatment is required, and wastewater treatment in the subsequent process is required. Cost increases.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an explanatory view showing a part of a steelmaking facility 10 to which a method for producing iron powder from steelmaking furnace dust according to an embodiment of the present invention is applied.
As shown in FIG. 1, a steelmaking facility 10 includes a converter 11 which is an example of a steelmaking furnace, a hood part 12 for collecting dust iron powder and generated gas disposed on the upper part of the converter 11, and a hood part. 12, an exhaust system 13 connected to the exhaust system 12, a chimney 14 exhausting the exhaust system 13, a wet classifier 19 for extracting raw material dust from dust iron powder collected in the exhaust system 13, and an exhaust A dust treatment tank 17 for treating dust iron powder collected by the jet water blown into the second jet port 16 in the system 13, and a thickener 18 for supplying the jet water blown into the second jet port 16; Have
[0009]
The wet classifier 19 includes a dust settling tank 20 for collecting dust collected by the jet water blown from the first injection port 15 in the exhaust system 13 and a rotating spiral body 22 inside the pipe. And a sediment carrying-out means 21 for carrying out a classification process by rolling up and raising the sediment in the pipe. In such a wet classifier 19, by supplying washing water or the like from the opened upper portion of the precipitate carrying-out means 21, the fine powder portion in the precipitate is selectively along the inner wall of the precipitate carrying-out means 21. The dust deposits that flow down and flow out and have a relatively large particle size in the precipitates and from which excess water has been removed are discharged from the upper end of the precipitate carrying means 21 so that the precipitates can be classified or washed. Yes.
The vicinity of the first injection port 15 and the second injection port 16 of the exhaust system 13 has a throttle structure. By blowing water into this orifice, mixing of exhaust gas or dust iron powder and water is effective. The dust iron powder captured by the water is discharged from discharge ports provided on the downstream side of the first injection port 15 and the second injection port 16, respectively.
[0010]
The dust precipitate is processed into a raw material dust (wet pulverized product) by a wet pulverization process in which it is pulverized and polished in a wet state using a pulverizer such as a ball mill or a vibro mill.
FIG. 2 is a configuration diagram of a hydroxy acid cleaning device 23 for performing water cleaning and acid cleaning of the obtained raw material dust.
As shown in FIG. 2, the acid cleaning device 23 includes a water cleaning device 24 and an acid cleaning device 30.
And the water washing apparatus 24 carries out the water sediment carrying out which is arranged in the water sedimentation tank 26 into which the said raw material dust is thrown in, and this water sedimentation layer 26 for processing the sediment of the said water sedimentation layer 26 incline. Means 27, and the acid washing device 30 is configured to remove an acid precipitation tank 32 into which the washed iron powder discharged from the upper part of the water precipitate carrying-out means 27 is charged, and the precipitate in the acid precipitation tank 32. And an acid solution precipitate carrying-out means 33 for scooping up, cleaning, classifying, and removing water.
[0011]
The water precipitate transporting means 27 and the acid liquid sediment transporting means 33 are so arranged that their lower portions are immersed in the water precipitation tank 26 and the acid precipitation tank 32 and have an angle of 10 to 15 degrees with respect to the horizontal direction. In addition, at least the upper part of each of the carrying-out means 27 and 33 has a half structure and is opened.
In addition, spiral bodies 28 and 34 are provided inside the water precipitate discharge means 27 and the acid liquid precipitate discharge means 33 to scrape and deposit the sediment deposited in the precipitation tanks 26 and 32, By rotating the helical bodies 28 and 34 with a motor (not shown) or the like, the precipitates caught in the gaps between the helical bodies 28 and 34 and the carrying-out means 27 and 33 are moved upward along the carrying-out means 27 and 33. It has become.
Further, a water supply pipe 25 and an acid solution supply pipe 31 are arranged on the upper portions of the respective carry-out means 27 and 33, and the cleaning water or the acid solution is supplied to the open portions of the upper portions of the respective carry-out means 27 and 33. it can.
Accordingly, the precipitates that move up and down in each of the unloading means 27 and 33 and the washing water or acid solution that flows down by gravity in each of the unloading means 27 and 33 are effectively stirred and mixed, and Particles having a relatively small particle size are washed away, descend in the respective carrying-out means 27, 33 and are accumulated in the respective sedimentation tanks 26, 32, and the precipitate from which the fine particles have been removed is discharged from the upper part of each carrying-out means 27, 33. It is supposed to be discharged.
[0012]
Then, about the iron powder manufacturing method from the steelmaking furnace dust which concerns on one embodiment of this invention using the said steel manufacturing equipment 10 and the hydroxyl-acid washing | cleaning apparatus 23, based on the iron powder manufacturing flowchart shown in FIG. I will explain.
First, raw material dust containing moisture discharged from the wet classifier 19 of FIG. 1 is put into a primary grinding ball mill (not shown) using a raw material feeder (not shown) (steps S1 and S2 shown in FIG. 3).
The primary grinding ball mill is a substantially cylindrical ball mill capable of processing the raw material dust continuously fed by the raw material feeder, the rotational speed of the cylinder is 20 to 36 rpm, and the amount of balls serving as a grinding medium is 3 to 5 Tons.
The supply amount of water containing raw material dust fed to the primary grinding ball mill is 200 to 1000 liter / hr (average: 270 liter / hr), and the concentration of raw material dust is 50 to 80 wt% (average: 65 wt%).
[0013]
The residence time or processing time of the raw material dust in such a primary grinding ball mill is about 60 to 120 minutes, and a part of impurities contained in the raw material dust can be separated from the iron powder by this wet pulverization process. It has become.
Here, the reason why the wet pulverization step is performed as described above is that the dust itself collected from the converter 11 is a moist powder containing a large amount of moisture as described above, and if the dry process is performed, the drying step is performed as a preliminary treatment. And the subsequent pickling treatment is performed in a wet manner, so that a drying treatment is required again, which is uneconomical.
In addition, when dry pulverization is performed, dust is likely to be generated, and this dust countermeasure is required, and the cost required for environmental countermeasures becomes large.
[0014]
Next, the processed product discharged from the primary grinding ball mill is subjected to a precleaning akins having the same configuration as the wet classifier 19 shown in FIG. 1 to wash away the separated impurities (step S3).
Here, the speed of the fluid that rises in the dust settling tank 20 and overflows is 3 to 10 m / hr (average: 5 m / hr), and the washing water supplied to the opened upper portion of the precipitate discharge means 21. The supply amount was 3 to 25 m 3 / hr (average: 5 m 3 / hr).
The cleaning process by the pre-cleaning akins further separates and removes part of the impurities separated from the iron powder in the processed product, and also removes a small part in the iron powder at the same time, thereby increasing the particle size. The particle size distribution can be shifted in the direction.
[0015]
Subsequently, the mixture discharged from the pre-cleaning akins is pulverized through a secondary grinding vibro mill (not shown) (step S4).
The secondary grinding vibro mill is a vibration pulverizer with a capacity of 1000 liters, the supply amount of water containing raw material dust is 200 to 1000 liters / hr (average: 270 liters / hr), and the concentration of raw material dusts is 50 to 80 wt. % (Average: 65 wt%).
By the wet grinding process using this secondary grinding vibro mill, impurities remaining on the iron powder in the mixture are further finely ground to obtain raw material dust in which the separation efficiency of iron powder and impurities in the subsequent processes is increased. be able to.
Here, FIG. 4 shows a change in CaO concentration, which is an example of impurities in the processed material containing iron powder, and 2-7 wt% before being charged into the primary grinding ball mill (A in FIG. 4). It can be seen that the CaO concentration that was in the range of 5 decreased to the range of 0.5 to 5 wt% after the treatment with the pre-cleaning akins (B in FIG. 4).
However, since a large amount of impurities still remain in such raw material dust (wet pulverized product), the purity is not sufficient as a reducing agent used for the recycling treatment of etching waste liquid, and it is used as it is. Can not.
For this reason, it is necessary to further perform a cleaning classification process on the raw material dust by using a hydroxy acid cleaning device 23 as shown in FIG.
[0016]
First, as a first stage (step S5) of the cleaning process using the hydroxy acid cleaning device 23, the raw material dust is introduced into the water precipitation tank 26 through the raw material dust supply pipe 29 from the upper part of the water cleaning device 24.
As a result, the iron powder portion having a large specific gravity in the raw material dust gradually precipitates, and a sediment layer is formed at the bottom of the water precipitation tank 26.
And the spiral body 28 arrange | positioned in the water sediment carrying-out means 27 is rotated by drive devices, such as a motor.
On the other hand, at this time, the washing water using the water supply pipe 25 3~25m 3 / hr: supplied at a feed rate of (average 25 m 3 / hr), the downward flow by the washing water of the water precipitate out means 27 The raw material dust is thrown into the water precipitation tank 26 and an overflow flow is generated from a portion with a light specific gravity, and the rising speed is in the range of 3 to 10 m / hr (average: 5 m / hr). Adjust to. Thereby, the separation and purification of the raw material dust is performed efficiently.
[0017]
By the above operation, the fine powder portion in the raw material dust is washed out together with the overflow, and the coarse particle portion is selectively discharged from the upper part of the water precipitate discharge means 27 as washing iron powder.
Since most of the impurities are contained in the fine powder portion, the impurities (CaO) in the raw material dust are largely removed in the range of 0.3 to 1.7 wt% as shown in FIG. Washed iron powder having a particle size distribution shifted to the coarse particle side is obtained.
Next, as a second stage (step S6) using the hydroxy acid cleaning apparatus 23, the obtained cleaning iron powder is put into the acid precipitation tank 32 from the upper part of the acid cleaning apparatus 30 through a supply pipe.
As a result, a portion having a large specific gravity in the washed iron powder is gradually precipitated, and a precipitate layer is formed at the bottom of the acid precipitation tank 32.
[0018]
And while rotating the helical body 34 arrange | positioned in the acid-solution precipitation carrying-out means 33 with a motor, an overflow flow is formed in the acid precipitation tank 32, the raising speed is 3-10 m / hr (average: 5 m / hr). hr).
On the other hand, at this time, 98 wt% sulfuric acid having a specific gravity of 1.9 is supplied at a supply rate of 30 to 100 liters / hr using the acid solution supply pipe 31, and the downward flow caused by the acid solution is conveyed to the acid solution precipitate carrying-out means. 33 is formed inside.
At this time, the hydrogen ion concentration (pH) of the acid solution in the acid cleaning device 30 was set in the range of 0.5 to 3.0.
Through the above operation, the fine powder portion in the washing iron powder flows down and is accumulated in the acid precipitation tank 32, and the washing iron powder is washed away by the acid solution flowing down along the acid solution precipitate carrying-out means 33 and the overflow flow in the solution. The impurities contained therein are effectively eluted and removed, the coarse particle portion containing the refined iron powder is selectively discharged from the upper part of the acid liquid precipitate carrying-out means 33, and the supernatant waste liquid in the acid precipitation tank 32 is discharged from the upper part. .
[0019]
And the processed material containing the refined iron powder by which the impurity (CaO) in refined iron powder was removed significantly 0.01-0.10 wt% which is the range below an allowable value as shown to D of FIG. 4 is obtained. be able to.
5 and 6 are graphs showing the relationship between the CaO concentration in the finally obtained refined iron powder and the basic unit of hydrochloric acid and the basic unit of sulfuric acid used in the acid cleaning device 30, respectively.
As shown in FIG. 5 and FIG. 6, if the acid basic unit is too low, the ratio deviating from the allowable amount of CaO in the product becomes high. Conversely, if the acid basic unit exceeds the saturation amount, the amount of decrease in CaO concentration decreases. Acid cost, waste acid treatment cost, equipment maintenance cost will rise.
Therefore, in consideration of the above, it is possible to make the sulfuric acid basic unit necessary for obtaining 1 ton of refined iron powder as a product to be 10 to 400 liters, more preferably in the range of 270 to 400 liters. Is desirable. The hydrochloric acid basic unit can be set to 25 to 700 liters / ton, more preferably 550 to 700 liters.
The sulfuric acid and hydrochloric acid used here are those corresponding to a hydrogen ion concentration (pH) in the range of 0.5 to 3.0, and are treated depending on factors such as CaO content in the raw material dust and other compositions. 5 and 6 show that the CaO concentration in the iron powder to be produced varies.
[0020]
Next, in step S7, the treated product after the acid washing treatment was treated using a secondary washing akins having the same structure as that of the water washing device 24 to wash the acid treated product.
At this time, the remaining acid solution can be removed by supplying cleaning water such as industrial water at a supply rate of 1 to 10 m 3 / hr.
In step S8, the treated product after the acid solution treatment was subjected to an air dryer to remove moisture in an air stream at 150 to 250 ° C.
When the particle size distribution of the purified iron powder after drying was measured, (1) 750 to 150 μm, (2) 150 to 105 μm, (3) 105 to 74 μm, (4) 74 to 63 μm, (5) 63 to 44 μm, (6) 44 μm or less are (1) 0 to 20 wt%, (2) 5 to 40 wt%, (3) 20 to 60 wt%, (4) 5 to 25 wt%, (5) 10 to 30 wt%, (6) ▼ 1 to 19 wt%. The range of (1) may be 710 to 150 μm.
In addition, a typical composition of such refined iron powder is such that the total Fe containing Fe, FeO, and Fe 2 O 3 is 96 wt% or more, metal Fe is 92 wt% or more, FeO is 6 wt% or less, and CaO is 0 0.5 wt% or less, SiO 2 was 0.1 wt% or less, and carbon (C) was 0.7 wt% or less.
[0021]
In the final step S9, the refined iron powder is classified by using a vibration sieve having a sieve mesh in the range of Tyler standard sieve 100 mesh to 150 mesh, and the iron powder on the sieve. Can be used as the purified iron powder for removing copper in the treatment of the etching waste liquid, and the iron powder used for sieving can be used as the purified iron powder for removing nickel.
The 100-mesh and 150-mesh Tyler sieves are sieves having openings of 147 μm and 104 μm, respectively.
[0022]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, The change of the conditions etc. which do not deviate from a summary are all the application scopes of this invention.
For example, in the present embodiment, the case where the water cleaning device and the acid cleaning device are different from each other has been described, but such a water cleaning step and an elution cleaning step are performed using the same wet classifier. It can also be done. In this case, the cleaning iron powder discharged from the wet classifier can be temporarily stored in a storage tank, and the cleaning iron powder taken out from the storage tank can be processed using the same wet classifier.
Moreover, it is also possible to remove impurities in the raw material dust more reliably by repeating the water washing step and the acid washing step by combining a plurality of sets of water washing devices and acid washing devices as necessary.
[0023]
【The invention's effect】
In the method for producing iron powder from steelmaking furnace dust according to claims 1 to 4, the lower part of the water precipitate carrying means is inclined and arranged in a water precipitation tank to which raw material dust is supplied, and the water precipitate carrying means A fine powder containing impurities in the rising and moving precipitate is formed by rotating the helical body provided in the interior to move the precipitate and by forming a downward flow with water jetted from directly above the helical body. The portion is washed away with washing water, and the washed iron powder washed and classified from the upper part of the water precipitate carrying-out means can be obtained.
Subsequently, the spiral of the acid liquid precipitate carrying means arranged in an inclined manner in the acid precipitation tank to which the washing iron powder is supplied is rotated to move the precipitate upward, and hydrochloric acid, sulfuric acid, etc. By supplying the acid solution to form a downward flow, the impurities adhering to the iron powder in the ascending and moving precipitate can be effectively eluted with the acid solution to obtain a purified iron powder.
Accordingly, it is possible to continuously process the dust generated from the steelmaking furnace, and to produce high-purity purified iron powder with a small variation in purity and in a large amount at a low cost.
[0024]
In particular, in the method for producing iron powder from the steelmaking furnace dust according to claim 2, since the CaO concentration of the refined iron powder is less than 0.1 wt%, this refined iron powder is used as a reducing agent in the regeneration treatment of the etching waste liquid. Even when used, CaO is not accumulated in the regeneration cycle. For this reason, the CaO concentration of the etching solution can be maintained below a predetermined level, and it becomes easy to perform the etching process under appropriate conditions.
In the method for producing iron powder from steelmaking furnace dust according to claims 3 and 4, since a sulfuric acid or hydrochloric acid solution having a hydrogen ion concentration limited to a specific range is used for the acid solution, the amount of impurities such as CaO in the refined iron powder is reduced. While being able to maintain at a predetermined level, it is possible to manage the acid solution cost, the waste acid treatment cost, and the equipment maintenance cost within an appropriate range.
In the method for producing iron powder from steelmaking furnace dust according to claim 4, since the acid solution is sulfuric acid and the amount of sulfuric acid used is set in a specific range, impurities can be removed in a more optimized range. There can be produced highly purified iron powder with little variation.
[Brief description of the drawings]
FIG. 1 is a partial configuration diagram of a steelmaking facility to which a method for producing iron powder from steelmaking furnace dust according to an embodiment of the present invention is applied.
FIG. 2 is an explanatory view of a hydroxy acid cleaning apparatus to which the iron powder production method is applied.
FIG. 3 is a flowchart of the iron powder production method.
FIG. 4 is a graph showing changes in CaO concentration in iron powder in each processing step.
FIG. 5 is a graph showing the relationship between CaO concentration in product iron powder and hydrochloric acid basic unit.
FIG. 6 is a graph showing the relationship between CaO concentration in product iron powder and sulfuric acid basic unit.
[Explanation of symbols]
10 Steel making facilities 11 Converter (steel making furnace)
DESCRIPTION OF SYMBOLS 12 Hood | hood part 13 Exhaust system 14 Chimney 15 1st injection port 16 2nd injection port 17 Dust processing tank 18 Thickina 19 Wet classifier 20 Dust precipitation tank 21 Precipitate removal means 22 Spiral body 23 Hydroxic acid washing device 24 Water washing device 25 Water Supply pipe 26 Water precipitation tank 27 Water precipitate discharge means 28 Spiral body 29 Raw material dust supply pipe 30 Acid cleaning device 31 Acid solution supply pipe 32 Acid precipitation tank 33 Acid liquid precipitate discharge means 34 Spiral body

Claims (4)

製鋼炉から発生するCaO等の不純物を含むダスト鉄粉から湿式法により原料ダストを回収し、該原料ダストをボールミルあるいはバイブロミル等の粉砕機を用いて粉砕する湿式粉砕工程と、前記工程で生じる湿式粉砕物を水洗浄し前記不純物を微粉と共に除去して洗浄鉄粉を得る水洗工程と、前記洗浄鉄粉を酸洗処理して残存する前記不純物を溶出、除去する溶出洗浄工程とを有する製鋼炉ダストからの鉄粉製造方法であって、
前記水洗工程が、傾斜して配置され回転駆動される螺旋体を備えた水沈殿物搬出手段によって、水沈澱槽に投入された前記原料ダストを徐々に搬出しながら、前記螺旋体の上部から噴出される水によって搬出される前記原料ダストを水洗する工程からなり、
前記溶出洗浄工程が、傾斜して配置され回転駆動される螺旋体を備えた酸液沈殿物搬出手段によって、酸液沈澱槽に投入された前記洗浄鉄粉を徐々に搬出しながら、前記螺旋体の上部から噴出される塩酸、硫酸等の酸液によって搬出される前記洗浄鉄粉を酸洗処理する工程からなり、
前記酸液沈澱物排出手段からCaOの極力除去された精製鉄粉を得ることを特徴とする製鋼炉ダストからの鉄粉製造方法。
A wet pulverization process in which raw material dust is recovered from a dust iron powder containing impurities such as CaO generated from a steelmaking furnace by a wet method, and the raw material dust is pulverized using a pulverizer such as a ball mill or a vibro mill; A steelmaking furnace having a water washing step of washing the pulverized product with water and removing the impurities together with fine powder to obtain washed iron powder, and an elution washing step of eluting and removing the remaining impurities by pickling the washed iron powder. A method for producing iron powder from dust,
The water washing step is ejected from the upper part of the spiral body while gradually discharging the raw material dust put into the water sedimentation tank by a water sediment transport means provided with a spiral body that is inclined and rotationally driven. Comprising a step of washing the raw material dust carried out by water,
The elution cleaning step is carried out at an upper portion of the spiral body while gradually discharging the cleaning iron powder charged into the acid liquid precipitation tank by the acid liquid precipitate transporting means provided with a spiral body that is inclined and rotationally driven. Comprising a step of pickling the washed iron powder carried out by an acid solution such as hydrochloric acid or sulfuric acid ejected from
A method for producing iron powder from steelmaking furnace dust, wherein purified iron powder from which CaO has been removed as much as possible is obtained from the acid solution precipitate discharging means.
前記精製鉄粉のCaO濃度を、0.1wt%未満とすることを特徴とする請求項1記載の製鋼炉ダストからの鉄粉製造方法。The method for producing iron powder from steelmaking furnace dust according to claim 1, wherein the refined iron powder has a CaO concentration of less than 0.1 wt%. 前記酸液が水素イオン濃度(pH)0.5〜3.0の硫酸又は塩酸溶液である請求項1又は2記載の製鋼炉ダストからの鉄粉製造方法。The method for producing iron powder from steelmaking furnace dust according to claim 1 or 2, wherein the acid solution is a sulfuric acid or hydrochloric acid solution having a hydrogen ion concentration (pH) of 0.5 to 3.0. 前記酸液が硫酸であって、その硫酸使用量が精製鉄粉1トン当たり10〜400リットルである請求項2又は3記載の製鋼炉ダストからの鉄粉製造方法。The method for producing iron powder from steelmaking furnace dust according to claim 2 or 3, wherein the acid solution is sulfuric acid, and the amount of sulfuric acid used is 10 to 400 liters per ton of refined iron powder.
JP19400596A 1996-06-28 1996-07-03 Iron powder production method from steelmaking furnace dust Expired - Lifetime JP3840291B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19400596A JP3840291B2 (en) 1996-07-03 1996-07-03 Iron powder production method from steelmaking furnace dust
MYPI97002765A MY115542A (en) 1996-06-28 1997-06-19 Method for recovering etchand from etching waste liquid containing iron chloride
US08/883,630 US5954854A (en) 1996-06-28 1997-06-26 Method for recovering etchant from etching waste liquid containing iron chloride
TW086109005A TW416995B (en) 1996-06-28 1997-06-27 Method for recovering etchant from etching waste liquid containing iron chlor ide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19400596A JP3840291B2 (en) 1996-07-03 1996-07-03 Iron powder production method from steelmaking furnace dust

Publications (2)

Publication Number Publication Date
JPH1017905A JPH1017905A (en) 1998-01-20
JP3840291B2 true JP3840291B2 (en) 2006-11-01

Family

ID=16317393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19400596A Expired - Lifetime JP3840291B2 (en) 1996-06-28 1996-07-03 Iron powder production method from steelmaking furnace dust

Country Status (1)

Country Link
JP (1) JP3840291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257053B1 (en) * 2011-06-28 2013-04-22 현대제철 주식회사 Separation apparatus of desulfurized slag and separation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010321691B2 (en) * 2009-11-23 2016-04-28 Igs (Aust) Pty Limited Method of processing metallurgical waste powder
CN108511180B (en) * 2018-03-26 2020-03-31 廊坊京磁精密材料有限公司 Preparation method of anti-oxidation neodymium iron boron magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257053B1 (en) * 2011-06-28 2013-04-22 현대제철 주식회사 Separation apparatus of desulfurized slag and separation method thereof

Also Published As

Publication number Publication date
JPH1017905A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP5873600B2 (en) Nonferrous metallurgical slag processing method
KR100729192B1 (en) Method and apparatus for leaching zinc concentrates
SK282568B6 (en) Reducing device of turbulent bed type for reducing particles of i ron ores and method for reducing particles of iron ores using thi s device
CA1099245A (en) Method and apparatus for removing zinc type metals and compounds in dust recovery process in iron manufacture
JP2002511527A (en) Steel mill dust treatment method by wet processing
CN110721977B (en) Method for directly preparing active iron powder by utilizing slag generated by smelting reduction furnace
JP3840291B2 (en) Iron powder production method from steelmaking furnace dust
JPS627254B2 (en)
US5954854A (en) Method for recovering etchant from etching waste liquid containing iron chloride
JPS63151609A (en) Recovery and purification of high-grade graphite from iron manufacturing dust
KR100325981B1 (en) Method for regenerating a waste solution of iron chloride-based etching solution
JP4852716B2 (en) Zinc concentrate leaching method and leaching equipment
JP3120679B2 (en) Removal method of chloride from sintering machine dust
JP2017190529A (en) Method of processing electric/electronic parts scrap in copper smelting
EP0040659B1 (en) Heavy metal recovery in ferrous metal production processes
WO1981003500A1 (en) Heavy metal recovery in ferrous metal production processes
JP6402062B2 (en) Dust recycling method
CN115254319B (en) Device and method for separating primary large-scale graphite from molten iron pretreatment desulfurization slag
CN214300291U (en) Zinc smelting automatic slag treatment and recovery system
JPH1112768A (en) Method for regenerating waste iron chloride-base liquid etchant
CA1192362A (en) Wet zinc dust atomization and distribution
CN217962948U (en) Sintering machine head flue gas treatment device
JP6422809B2 (en) Dust collection method
CN108330277A (en) A kind of improved environment-friendly type zinc leaching residue technique
GB1596515A (en) Separating solid materials

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term