JP3840246B2 - Closed circulation culture system and pH adjusting device - Google Patents

Closed circulation culture system and pH adjusting device Download PDF

Info

Publication number
JP3840246B2
JP3840246B2 JP2004366706A JP2004366706A JP3840246B2 JP 3840246 B2 JP3840246 B2 JP 3840246B2 JP 2004366706 A JP2004366706 A JP 2004366706A JP 2004366706 A JP2004366706 A JP 2004366706A JP 3840246 B2 JP3840246 B2 JP 3840246B2
Authority
JP
Japan
Prior art keywords
tank
seawater
water
neutralization
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004366706A
Other languages
Japanese (ja)
Other versions
JP2006166850A (en
Inventor
慶文 狩集
敦志 辻
伸也 広田
伸 真継
Original Assignee
株式会社陸上養殖工学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社陸上養殖工学研究所 filed Critical 株式会社陸上養殖工学研究所
Priority to JP2004366706A priority Critical patent/JP3840246B2/en
Publication of JP2006166850A publication Critical patent/JP2006166850A/en
Application granted granted Critical
Publication of JP3840246B2 publication Critical patent/JP3840246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、陸上において、海水(人工海水を含む)を浄化しながら閉鎖系で循環させて再利用しながら、飼育水槽で魚介類を養殖したり一時的に蓄養したりするようにした閉鎖循環式養殖システム及びpH調整装置に関するものである。   The present invention is a closed circulation in which seafood (including artificial seawater) is circulated in a closed system and reused on land, while culturing and temporarily raising seafood in a breeding aquarium. The present invention relates to an aquaculture system and a pH adjusting device.

海水面から離れた陸上地点で、食用あるいは鑑賞用の魚介類を飼育する閉鎖循環式養殖システムが従来から検討されている。この閉鎖循環式養殖システムでは、飼育魚介類の排泄物や残餌等を飼育水槽から除去する処理を、周辺環境への排出希釈によることなく、システム内で行なう必要がある。   Conventionally, a closed-circulation aquaculture system for breeding edible or appreciating seafood at a land point remote from the sea surface has been studied. In this closed-circulation aquaculture system, it is necessary to perform the process of removing the excrement and residual food of the reared fishery products from the rearing aquarium without using dilution in the surrounding environment.

このために、飼育水槽に海水を循環させる浄化用循環経路を接続し、この循環経路に物理的ろ過装置や生物浄化槽を設け、飼育水槽の海水を循環させる間に、魚介類の排泄物や残餌等の固形物を物理的ろ過装置においてろ過して除去し、さらに魚介類の排泄物に起因するアンモニアを生物浄化槽において硝化菌等の微生物で硝化して除去することによって、海水の浄化を行なうようにしている(例えば特許文献1等参照)。   For this purpose, a purification circulation path that circulates seawater is connected to the breeding aquarium, and a physical filtration device and a biological septic tank are provided in this circulation path. Purifies seawater by removing solids such as bait by filtering them with a physical filtration device, and nitrifying and removing ammonia resulting from seafood excrement in microorganisms such as nitrifying bacteria in a biological septic tank (See, for example, Patent Document 1).

このように魚介類の排泄物に起因する海水中のアンモニアを、硝化菌等の微生物で硝化して除去するようにすると、硝酸成分の生成によって海水のpHが低下し、魚介類の飼育環境が悪化する。そこで、pHの低下を防ぐために海水にアルカリ剤を添加してpH調整を行なうようにしている。
特開平11−225616号公報
In this way, when ammonia in seawater caused by seafood excrement is removed by nitrification with microorganisms such as nitrifying bacteria, the pH of seawater decreases due to the formation of nitric acid components, and the breeding environment for seafood is Getting worse. Therefore, in order to prevent a decrease in pH, an alkaline agent is added to seawater to adjust the pH.
Japanese Patent Laid-Open No. 11-225616

上記のアルカリ剤としては、炭酸ナトリウム、水酸化ナトリウム、炭酸カルシウム等が用いられているが、アルカリ剤中のナトリウムやカルシウムが循環閉鎖系の海水中に蓄積され、塩分上昇、海水イオン成分のバランスのくずれが発生し、魚介類の飼育に不調をきたすおそれがあった。このため、循環閉鎖系の海水の交換なしでは、養殖継続は困難になるものであった。   Sodium carbonate, sodium hydroxide, calcium carbonate, etc. are used as the alkali agent, but the sodium and calcium in the alkali agent are accumulated in the seawater in the closed circulation system, the salinity rises, the balance of seawater ion components There was a risk of a loss of fish and seafood breeding. For this reason, it was difficult to continue the cultivation without exchanging the seawater in the closed circulation system.

本発明は上記の点に鑑みてなされたものであり、アルカリ剤を用いる必要なくpH調整を行なうことができ、海水の交換をする必要なく魚介類の養殖を行なうことができる閉鎖循環式養殖システムを提供することを目的とするものであり、さらにアルカリ剤を用いる必要なくpH調整を行なうことができるpH調整装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and is a closed-circulation aquaculture system capable of adjusting pH without using an alkaline agent and capable of culturing seafood without having to exchange seawater. Further, it is an object of the present invention to provide a pH adjusting device capable of adjusting pH without using an alkali agent.

本発明の請求項1に係る閉鎖循環式養殖システムは、飼育水槽1の海水Sを浄化しながら循環させて飼育水槽1内で魚介類を飼育するようにした閉鎖循環式養殖システムにおいて、隔膜2で仕切られた陽極室3と陰極室4とを備え、飼育水槽1から供給される海水Sを電気分解する電解槽5及び、陽極室4から供給される海水S中の活性塩素を炭化剤6で中和する中和槽7と、水面より上の空間部14が中和槽7内の水面より上の空間部15と連通され、水Wが貯溜された塩素除去槽16と、中和槽7内の空間部15の空気を塩素除去槽16の水W中に噴出して曝気する散気管8と、陰極室4から供給される海水Sと中和槽7から供給される海水Sを混合して飼育水槽1に返送する混合槽9とを備えてなるpH調整装置を具備して成ることを特徴とするものである。   The closed-circulation aquaculture system according to claim 1 of the present invention is a closed-circulation aquaculture system in which the seawater S in the breeding aquarium 1 is circulated while purifying and the seafood is raised in the breeding aquarium 1. An electrolytic chamber 5 for electrolyzing the seawater S supplied from the breeding aquarium 1, and active chlorine in the seawater S supplied from the anode chamber 4 as a carbonizer 6. The neutralization tank 7 for neutralization, the space part 14 above the water surface communicates with the space part 15 above the water surface in the neutralization tank 7, and the chlorine removal tank 16 in which water W is stored, and the neutralization tank 7 is mixed with the air diffuser tube 8 that aspirates the air in the space 15 in the chlorine removal tank 16 by a jet, the seawater S supplied from the cathode chamber 4 and the seawater S supplied from the neutralization tank 7. And a pH adjusting device comprising a mixing tank 9 to be returned to the breeding water tank 1. It is an butterfly.

また請求項2の発明は、請求項1において、電解槽5の隔膜2をカチオン交換膜で形成し、陽極室3を通過する通水量を陰極室4を通過する通水量の1/20以下に設定して成ることを特徴とするものである。   Further, the invention of claim 2 is that in claim 1, the diaphragm 2 of the electrolytic cell 5 is formed of a cation exchange membrane, and the amount of water passing through the anode chamber 3 is reduced to 1/20 or less of the amount of water passing through the cathode chamber 4. It is characterized by being set.

また請求項3の発明は、請求項1又は2において、塩素除去槽16に、水面より上が外部に開放された圧力調整槽19を、水が流通する連通水路18で接続して成ることを特徴とするものである。   In addition, the invention of claim 3 is characterized in that in claim 1 or 2, the chlorine removal tank 16 is connected to a pressure adjusting tank 19 opened to the outside above the water surface by a communicating water channel 18 through which water flows. It is a feature.

また請求項4の発明は、請求項1乃至3のいずれかにおいて、中和槽7内の炭化剤6を攪拌する攪拌ポンプ10を備えて成ることを特徴とするものである。   The invention of claim 4 is characterized in that, in any one of claims 1 to 3, a stirring pump 10 for stirring the carbonizing agent 6 in the neutralization tank 7 is provided.

また請求項5の発明は、請求項1乃至4のいずれかにおいて、電解槽5内の隔膜2で仕切られる室の陽極と陰極を切り換える電極切替手段11と、飼育水槽1から電解槽5の陽極室3と陰極室4とに海水Sを供給する流路を切り換える流路切替手段12と、陽極室3と陰極室4から中和槽7と混合槽9に海水Sを供給する流路を切替える流路切替手段13とを具備して成ることを特徴とするものである。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the electrode switching means 11 for switching the anode and the cathode of the chamber partitioned by the diaphragm 2 in the electrolytic cell 5, and the anode of the electrolytic cell 5 from the breeding water tank 1 Channel switching means 12 for switching the channel for supplying seawater S to chamber 3 and cathode chamber 4, and the channel for supplying seawater S from anode chamber 3 and cathode chamber 4 to neutralization tank 7 and mixing tank 9 are switched. The flow path switching means 13 is provided.

また請求項6の発明は、請求項1乃至5のいずれかにおいて、中和槽7を複数備え、陽極室3から複数の中和槽7のいずれかに海水Sを供給する流路を切替える流路切替手段17を具備して成ることを特徴とするものである。   A sixth aspect of the present invention is the flow according to any one of the first to fifth aspects, comprising a plurality of neutralization tanks 7 for switching a flow path for supplying seawater S from the anode chamber 3 to any one of the plurality of neutralization tanks 7. It is characterized by comprising a path switching means 17.

本発明の請求項7に係るpH調整装置は、隔膜2で仕切られた陽極室3と陰極室4とを備え、海水Sを電気分解する電解槽5と、陽極室4から供給される海水S中の活性塩素を炭化剤6で中和する中和槽7と、水面より上の空間部14が中和槽7内の水面より上の空間部15と連通され、水Wが貯溜された塩素除去槽16と、中和槽7内の空間部15の空気を塩素除去槽16の水W中に噴出して曝気する散気管8と、陰極室4から供給される海水Sと中和槽7から供給される海水Sを混合する混合槽9とを具備して成ることを特徴とするものである。   The pH adjusting device according to claim 7 of the present invention includes an anode chamber 3 and a cathode chamber 4 partitioned by a diaphragm 2, an electrolytic cell 5 for electrolyzing seawater S, and seawater S supplied from the anode chamber 4. Chloride in which water W is stored by the neutralization tank 7 for neutralizing the active chlorine therein with the carbonizing agent 6 and the space part 14 above the water surface communicated with the space part 15 above the water surface in the neutralization tank 7. A removal tank 16, an air diffuser tube 8 for aerating the air in the space 15 in the neutralization tank 7 into the water W of the chlorine removal tank 16, seawater S supplied from the cathode chamber 4, and the neutralization tank 7 It comprises the mixing tank 9 which mixes the seawater S supplied from.

電解槽5で海水Sを電気分解すると、隔膜2で仕切られた陽極室3では海水Sは酸性に、陰極室4では海水Sはアルカリ性になり、陽極室3の酸性の海水S中の塩素の一部は中和槽7の空間部15に気化されると共に塩素除去槽16内での散気管8による曝気で水W中に溶解して除去され、中和槽7内の海水SのpHは上昇する。そしてこの中和槽7から供給される海水Sと電解槽5の陰極室4から供給される海水Sを混合槽9で混合すると、混合した海水SのpHは電気分解する前の海水SのpHより上昇させることができ、pH調整をすることができるものである。   When the seawater S is electrolyzed in the electrolytic cell 5, the seawater S becomes acidic in the anode chamber 3 partitioned by the diaphragm 2, the seawater S becomes alkaline in the cathode chamber 4, and the chlorine in the acidic seawater S in the anode chamber 3 A part of the water is vaporized in the space 15 of the neutralization tank 7 and is dissolved and removed in the water W by aeration by the diffuser pipe 8 in the chlorine removal tank 16. The pH of the seawater S in the neutralization tank 7 is To rise. When the seawater S supplied from the neutralization tank 7 and the seawater S supplied from the cathode chamber 4 of the electrolytic tank 5 are mixed in the mixing tank 9, the pH of the mixed seawater S is the pH of the seawater S before electrolysis. It can be further increased and the pH can be adjusted.

従って、このように混合槽9で混合してpH調整した海水Sを飼育水槽1に返送することによって、アルカリ剤を用いるような必要なく、飼育水槽1の海水SのpH調整を行なうことができるものであり、海水Sの交換をする必要なく魚介類の養殖を行なうことが可能になるものである。   Therefore, by returning the seawater S adjusted in pH by mixing in the mixing tank 9 to the breeding aquarium 1, the pH of the seawater S in the breeding aquarium 1 can be adjusted without using an alkaline agent. Therefore, it is possible to cultivate seafood without having to exchange seawater S.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、魚介類が飼育される飼育水槽1には浄水用循環経路20とpH調整用循環経路21とが接続してある。浄水用循環経路20には循環ポンプ22、ろ過槽23、生物浄化槽24が水の流れに沿った順に接続してあり、循環ポンプ22の働きで、飼育水槽1の海水Sはろ過槽23と生物浄化槽24を通過した後に飼育水槽1に返送されるというように、浄化用循環経路20を通して循環させるようにしてある。そして魚介類の排泄物や残餌等の固形物はろ過槽23においてろ過して除去し、また魚介類の排泄物に起因するアンモニアは生物浄化槽24において硝化菌等の微生物で硝化して除去し、飼育水槽1の海水Sを浄化するようにしてある。   FIG. 1 shows an example of an embodiment of the present invention, and a water purification tank 20 and a pH adjustment circulation path 21 are connected to a breeding aquarium 1 where fish and shellfish are raised. A circulation pump 22, a filtration tank 23, and a biological purification tank 24 are connected to the water purification circulation path 20 in the order along the flow of water, and the seawater S in the breeding tank 1 is transformed into the filtration tank 23 and the biological organism by the action of the circulation pump 22. It is made to circulate through the purification | cleaning circulation path | route 20 so that it may return to the breeding water tank 1 after passing the septic tank 24. FIG. Solid matter such as seafood excrement and residual food is filtered and removed in the filtration tank 23, and ammonia resulting from seafood excretion is nitrified and removed by microorganisms such as nitrifying bacteria in the biological septic tank 24. The seawater S in the breeding aquarium 1 is purified.

一方、pH調整用循環経路21には、流路切替手段12を構成する電磁式の切替弁12a、電解槽5、流路切替手段13を構成する電磁式の切替弁13a、中和槽7、混合槽9が水の流れに沿った順に接続して、pH調整装置100を形成するようにしてあり、pH調整用循環経路21の適所には飼育水槽1の海水Sを循環させるための循環ポンプ(図示省略)が接続してある。   On the other hand, in the pH adjusting circulation path 21, an electromagnetic switching valve 12 a constituting the flow path switching means 12, the electrolytic cell 5, an electromagnetic switching valve 13 a constituting the flow path switching means 13, the neutralization tank 7, The mixing tank 9 is connected in the order along the flow of water to form the pH adjusting device 100, and a circulation pump for circulating the seawater S of the breeding aquarium 1 at an appropriate position of the pH adjusting circulation path 21. (Not shown) is connected.

電解槽5の槽内は隔膜2で仕切って二つの室が形成してあり、各室内にはそれぞれ電極25a,25bが配置してある。そして電極25a,25bには直流電源28が接続してあり、陽極に設定した電極25aが配置された室が陽極室3、陰極に設定した電極25bが配置された室が陰極室4となるものである。切替弁12aと電解槽5の間のpH調整用循環経路21はパラレルな二つの流路26a,26bから形成してあり、一方の流路26aを切替弁12aと陽極室3の間に、他方の流路26bを切替弁12aと陰極室4の間にそれぞれ接続するようにしてある。また電解槽5と切替弁13aの間のpH調整用循環経路21はパラレルな二つの流路27a,27bから形成してあり、一方の流路27aを陽極室3と切替弁13aの間に、他方の流路27bを陰極室4と切替弁13aの間に接続するようにしてある。さらに切替弁13aより下流側のpH調整用循環経路21はパラレルな二つの流路31a,31bに分岐してあり、一方の流路31aは中和槽7の上部に接続してある。他方の流路31bは混合槽9に接続してあり、また中和槽7の下部と混合槽9の間にpH調整用循環経路21の一部をなす流路32が接続してある。   The chamber of the electrolytic cell 5 is partitioned by the diaphragm 2 to form two chambers, and electrodes 25a and 25b are arranged in the respective chambers. A DC power supply 28 is connected to the electrodes 25a and 25b. The chamber in which the electrode 25a set as the anode is arranged is the anode chamber 3, and the chamber in which the electrode 25b set as the cathode is arranged is the cathode chamber 4. It is. The pH adjusting circulation path 21 between the switching valve 12a and the electrolytic cell 5 is formed by two parallel flow paths 26a and 26b. One flow path 26a is connected between the switching valve 12a and the anode chamber 3, and the other. Are connected between the switching valve 12a and the cathode chamber 4, respectively. The pH adjusting circulation path 21 between the electrolytic cell 5 and the switching valve 13a is formed by two parallel flow paths 27a and 27b, and one of the flow paths 27a is provided between the anode chamber 3 and the switching valve 13a. The other flow path 27b is connected between the cathode chamber 4 and the switching valve 13a. Further, the pH adjusting circulation path 21 downstream from the switching valve 13 a is branched into two parallel flow paths 31 a and 31 b, and one flow path 31 a is connected to the upper part of the neutralization tank 7. The other flow path 31 b is connected to the mixing tank 9, and a flow path 32 forming a part of the pH adjusting circulation path 21 is connected between the lower part of the neutralization tank 7 and the mixing tank 9.

中和槽7内には陽極室3から海水Sが供給されるが、この海水S中に浸漬される状態で活性炭などの粒状の炭化剤6が入れてある。中和槽7には攪拌ポンプ10が接続してあり、中和槽7内の海水Sを汲み出して戻すというように循環させることによって、中和槽7内の海水Sを攪拌するようにしてある。中和槽7内の海水Sの水面より上の空間部15に開口するように空気供給路35の一端が接続してある。   Seawater S is supplied into the neutralization tank 7 from the anode chamber 3, and a granular carbonizing agent 6 such as activated carbon is placed in a state of being immersed in the seawater S. A stirring pump 10 is connected to the neutralization tank 7, and the seawater S in the neutralization tank 7 is agitated by circulating the pumping-out of the seawater S in the neutralization tank 7. . One end of the air supply path 35 is connected so as to open into the space 15 above the water surface of the seawater S in the neutralization tank 7.

この中和槽7に隣接して塩素除去槽16が配置してあり、塩素除去槽16内には水道水などの水Wが入れてある。塩素除去槽16内には水W中に浸漬されるように散気管8が配置してあり、この散気管8には上記の空気供給路35の他端が接続してある。空気供給路35の途中にはエアポンプ29が設けてあり、中和槽7の空間部15の空気をエアポンプ29で吸引して散気管8から水W中に吐出するようにしてある。また中和槽7内の空間部15と、塩素除去槽16内の水Wの水面より上の空間部14とに一端と他端が開口するように、中和槽7と塩素除去槽16との間に連通空気路37が接続してある。中和槽7と塩素除去槽16は密閉構造に形成してあり、中和槽7の密閉された空間部15と塩素除去槽16の密閉された空間部14はこの連通空気路37を介して連通する密閉空間を形成するようになっている。   A chlorine removal tank 16 is disposed adjacent to the neutralization tank 7, and water W such as tap water is placed in the chlorine removal tank 16. A diffuser tube 8 is disposed in the chlorine removal tank 16 so as to be immersed in the water W, and the other end of the air supply path 35 is connected to the diffuser tube 8. An air pump 29 is provided in the middle of the air supply path 35, and the air in the space 15 of the neutralization tank 7 is sucked by the air pump 29 and discharged from the diffuser pipe 8 into the water W. Moreover, the neutralization tank 7 and the chlorine removal tank 16 are opened so that one end and the other end are open to the space part 15 in the neutralization tank 7 and the space part 14 above the surface of the water W in the chlorine removal tank 16. A communication air passage 37 is connected between the two. The neutralization tank 7 and the chlorine removal tank 16 are formed in a sealed structure, and the sealed space portion 15 of the neutralization tank 7 and the sealed space portion 14 of the chlorine removal tank 16 are connected via this communication air passage 37. A sealed space that communicates is formed.

またこの塩素除去槽16に隣接して圧力調整槽19が配置してあり、圧力調整槽19内には水Wが入れてある。塩素除去槽16と圧力調整槽19の底部間には水Wの水面より下側において連通水路18が接続してあり、水Wの水面より上において圧力調整槽19の上部には開放口30を開口して設けてある。従って、塩素除去槽16内の水Wと圧力調整槽19内の水Wは連通水路18を通して連通しており、塩素除去槽16内の水Wの水面の上下に応じて圧力調整槽19内の水Wの水面が上下するようになっている。   A pressure adjusting tank 19 is disposed adjacent to the chlorine removing tank 16, and water W is placed in the pressure adjusting tank 19. A communication channel 18 is connected between the bottom of the chlorine removal tank 16 and the pressure adjustment tank 19 below the surface of the water W, and an opening 30 is provided above the pressure surface of the water W above the pressure adjustment tank 19. Opened. Therefore, the water W in the chlorine removal tank 16 and the water W in the pressure adjustment tank 19 communicate with each other through the communication channel 18, and the water in the chlorine removal tank 16 is in the pressure adjustment tank 19 according to the upper and lower surfaces of the water W. The surface of the water W moves up and down.

上記のものにあって、飼育水槽1の海水Sは切替弁12aを通して電解槽5に供給されるが、海水Sは切替弁12aで流路26a,26bに分岐されて陽極室3と陰極室4を通過し、この際に電気分解される。このように電気分解を行なうことによって、陽極室3を通過する海水Sは酸性に、陰極室4を通過する海水Sはアルカリ性に調整されるものであり、陽極室3では陽極反応によって、海水S中の食塩から次亜塩素酸(HClO)や塩素(Cl)などの活性塩素が生成される。ここで、切替弁12a内の水路の径の設定によって、切替弁12aから流路26aを通過して陽極室3に流される海水Sの通水量が、切替弁12aから流路26bを通過して陰極室4に流される海水Sの通水量の1/20以下になるようにしてある。このように陽極室3の通水量を少なくすることによって、陽極室3で生成される酸性水のpHを4以下にすることができる。陰極室4に流される海水Sの通水量に対する陽極室4に流される海水Sの通水量の下限は特に設定されないが、1/100程度が装置の実用上の限界である。 In the above, the seawater S in the breeding aquarium 1 is supplied to the electrolytic cell 5 through the switching valve 12a, but the seawater S is branched into the flow paths 26a and 26b by the switching valve 12a to be the anode chamber 3 and the cathode chamber 4. And is electrolyzed at this time. By performing electrolysis in this way, the seawater S passing through the anode chamber 3 is adjusted to be acidic, and the seawater S passing through the cathode chamber 4 is adjusted to be alkaline. Active chlorine such as hypochlorous acid (HClO) and chlorine (Cl 2 ) is generated from the sodium chloride in the inside. Here, depending on the setting of the diameter of the water channel in the switching valve 12a, the amount of the seawater S flowing from the switching valve 12a to the anode chamber 3 through the channel 26a passes from the switching valve 12a to the channel 26b. The amount of water passing through the seawater S flowing into the cathode chamber 4 is 1/20 or less. By reducing the amount of water passing through the anode chamber 3 in this way, the pH of the acidic water produced in the anode chamber 3 can be made 4 or less. The lower limit of the water flow rate of the seawater S flowing in the anode chamber 4 relative to the water flow rate of the seawater S flowing in the cathode chamber 4 is not particularly set, but about 1/100 is a practical limit of the apparatus.

ここで、電解槽5の陽極室3と陰極室4を仕切る隔膜2としては、カチオン交換膜を用いるのが好ましい。海水Sを電気分解することによって陽極室3に生成される次亜塩素酸(HClO)や塩素(Cl)などの活性塩素は魚毒作用があるが、陰極室4を通過する海水Sは後述のように飼育水槽1に返送されるので、陰極室4を通過する海水Sにこの活性塩素が混入すると飼育水槽1中の魚介類に悪影響を及ぼすおそれがある。カチオン交換膜はこのような活性塩素を通過させないので、陽極室3で生成された活性塩素が陰極室4の海水Sに混入することを防いで、飼育水槽1中の魚介類に悪影響を及ぼすことを未然に防止することができるものである。 Here, as the diaphragm 2 for partitioning the anode chamber 3 and the cathode chamber 4 of the electrolytic cell 5, it is preferable to use a cation exchange membrane. Active chlorine such as hypochlorous acid (HClO) and chlorine (Cl 2 ) produced in the anode chamber 3 by electrolyzing the seawater S has a fish poisoning effect, but the seawater S passing through the cathode chamber 4 will be described later. Therefore, if this active chlorine is mixed into the seawater S passing through the cathode chamber 4, there is a risk of adversely affecting the fish and shellfish in the breeding aquarium 1. Since the cation exchange membrane does not allow such active chlorine to pass through, it prevents the active chlorine produced in the anode chamber 3 from mixing into the seawater S in the cathode chamber 4 and adversely affects the seafood in the breeding aquarium 1. Can be prevented in advance.

上記のように電解槽5で電解された陽極室3の酸性の海水Sは流路27aから切替弁13aを通過し、さらに流路31aから中和槽7に供給される。また陰極室4のアルカリ性の海水Sは流路27bから切替弁13aを通過し、さらに流路31bから混合槽9に供給される。   The acidic seawater S in the anode chamber 3 electrolyzed in the electrolytic cell 5 as described above passes through the switching valve 13a from the flow channel 27a, and is further supplied from the flow channel 31a to the neutralization tank 7. The alkaline seawater S in the cathode chamber 4 passes through the switching valve 13a from the flow path 27b and is further supplied to the mixing tank 9 from the flow path 31b.

そして陽極室3から酸性の海水Sが中和槽7に供給されると、中和槽7内の活性炭などの炭化剤6によって、海水S中の次亜塩素酸(HClO)や塩素(Cl)などの活性塩素が還元されて中和され、魚毒作用を有するこれらの活性塩素は、魚毒性のない塩酸(HCl)に変換される。このとき、海水Sを炭化剤6に接触させて活性塩素を塩酸に変換させる還元中和反応は、海水SのpHが4以下であるときに効果的に行なわれる。このために、上記のように陽極室3の通水量を少なくして海水SのpHが4以下になるようにしているのである。また陽極室3の電気分解で、海水S中に微量含まれる臭素から臭素酸(HBrO)が生成されており、この臭素酸も魚毒作用を有するが、pH4以下で海水Sを炭化剤6に接触させることによって、この臭素酸を魚毒性のない臭化水素(HBr)に中和して変換することができるものである。海水SのpHが4を超えて大きいと、有機塩素化物や臭素化物ができ易くなるものである。さらにこのようにpHが低く酸性度が高いと、中和槽7内での微生物の繁殖を抑制することができ、中和槽7が微生物の繁殖による生物膜で詰まるというようなこともなくなるものである。 When the acidic seawater S is supplied from the anode chamber 3 to the neutralization tank 7, hypochlorous acid (HClO) and chlorine (Cl 2 ) in the seawater S by the carbonizing agent 6 such as activated carbon in the neutralization tank 7. Active chlorine such as) is reduced and neutralized, and these active chlorines having fish poisoning action are converted to hydrochloric acid (HCl) having no fish toxicity. At this time, the reduction neutralization reaction in which the seawater S is brought into contact with the carbonizing agent 6 to convert the active chlorine into hydrochloric acid is effectively performed when the pH of the seawater S is 4 or less. For this reason, the flow rate of the anode chamber 3 is reduced as described above so that the pH of the seawater S becomes 4 or less. In addition, bromine acid (HBrO 3 ) is produced from bromine contained in trace amounts in seawater S by electrolysis of anode chamber 3, and this bromate also has a fish poisoning effect. The bromic acid can be neutralized and converted to hydrogen bromide (HBr) having no fish toxicity. When the pH of the seawater S exceeds 4, the organic chlorinated product or brominated product is easily formed. Furthermore, when the pH is low and the acidity is high, the growth of microorganisms in the neutralization tank 7 can be suppressed, and the neutralization tank 7 is not clogged with biofilms due to the growth of microorganisms. It is.

ここで上記のように、中和槽7に攪拌ポンプ10を接続して、中和槽7内の海水Sを汲み出して戻すというように循環させることによって、中和槽7内の海水Sを攪拌するようにしてある。このように中和槽7内の海水Sを攪拌することによって、海水S中で炭化剤6を攪拌することができるものであり、海水Sと炭化剤6との接触効率を高めて上記の中和反応を効率良く行なうことができ、炭化剤6の使用量を低減することができると共に中和槽7内の海水Sの滞留時間を短くして、中和槽7を小型化することが可能になるものである。   Here, as described above, the agitation pump 10 is connected to the neutralization tank 7, and the seawater S in the neutralization tank 7 is circulated by pumping and returning the seawater S in the neutralization tank 7. I have to do it. By stirring the seawater S in the neutralization tank 7 in this way, the carbonizing agent 6 can be stirred in the seawater S. It is possible to efficiently carry out the sum reaction, reduce the amount of carbonization agent 6 used, and shorten the residence time of the seawater S in the neutralization tank 7, thereby reducing the size of the neutralization tank 7. It will be.

また上記のように、中和槽7の空間部15の空気をエアポンプ29で吸引して散気管8から、塩素除去槽16内の水W中に吐出するようにしてある。中和槽7に供給される海水Sに溶解している塩素(Cl)の一部は気化して空間部15の空気中に存在しているが、空間部15の空気を塩素除去槽16の水Wに吐出する際に、この気化した塩素ガスは空間部15の空気と共に水W中に吐出して曝気されるものであり、塩素ガスの一部を塩素除去槽16の水W中に溶解させることができる。このとき、中和槽7の空間部15の空気が塩素除去槽16内に吐出されるのに伴って、塩素除去槽16の空間部14の空気が連通空気路37を通して中和槽7の空間部15に移行し、塩素除去槽16の空間部14内の気圧が高くならないようにしてある。 Further, as described above, the air in the space portion 15 of the neutralization tank 7 is sucked by the air pump 29 and discharged from the diffuser pipe 8 into the water W in the chlorine removal tank 16. A part of chlorine (Cl 2 ) dissolved in the seawater S supplied to the neutralization tank 7 is vaporized and exists in the air in the space 15, but the air in the space 15 is removed from the chlorine removal tank 16. When discharged into the water W, the vaporized chlorine gas is discharged into the water W together with the air in the space 15 and is aerated. A part of the chlorine gas is discharged into the water W in the chlorine removal tank 16. Can be dissolved. At this time, as the air in the space portion 15 of the neutralization tank 7 is discharged into the chlorine removal tank 16, the air in the space section 14 of the chlorine removal tank 16 passes through the communication air passage 37 and the space in the neutralization tank 7. It moves to the part 15, and it is trying for the atmospheric pressure in the space part 14 of the chlorine removal tank 16 not to become high.

そしてこのように中和槽7の空間部15の塩素ガスが塩素除去槽16内の水Wに溶解すると、中和槽7の空間部15の塩素ガスの分圧が低くなるので、中和槽7内の海水W中の塩素が気化して空間部15に放出される。従って、中和槽7内の海水S中に溶解して含まれる塩素(Cl)の一部をガスとして海水S中から放出して、海水S中から除去することができるものである。このように中和槽7内の海水S中の塩素の一部を除去することによって、海水Sを炭化剤6に接触させて海水S中の塩素(Cl)を塩酸(HCl)に変換させる際の塩酸の生成量は少なくなる。従って、この塩酸の生成量の低下に伴って、中和槽7内の海水SのpHは上昇する。このとき、上記のように流路31aを中和槽7の上部に接続して、海水Sが中和槽7内に流れ落ちるようにすることによって、この流入の際の曝気効果で海水S中の塩素の一部を追い出して空間部15に放出することができ、海水S中からの塩素の除去効率を高めることができるものである。流路31aから海水Sが中和槽7内に流れ落ちるようにするにあたっては、中和槽7の槽内壁に沿って海水Sを流下させるようにしても、中和槽7の水面より上の空間部15を落下させて海水Sを滴下させるようにしてもいずれでもよい。 And when the chlorine gas of the space part 15 of the neutralization tank 7 melt | dissolves in the water W in the chlorine removal tank 16 in this way, since the partial pressure of the chlorine gas of the space part 15 of the neutralization tank 7 will become low, neutralization tank Chlorine in the seawater W in 7 is vaporized and released into the space 15. Therefore, a part of chlorine (Cl 2 ) dissolved and contained in the seawater S in the neutralization tank 7 can be discharged from the seawater S as a gas and removed from the seawater S. By removing a part of the chlorine in the seawater S in the neutralization tank 7 in this way, the seawater S is brought into contact with the carbonizing agent 6 to convert the chlorine (Cl 2 ) in the seawater S into hydrochloric acid (HCl). The amount of hydrochloric acid produced during the process is reduced. Therefore, the pH of the seawater S in the neutralization tank 7 increases with a decrease in the amount of hydrochloric acid produced. At this time, the flow path 31a is connected to the upper part of the neutralization tank 7 as described above, so that the seawater S flows down into the neutralization tank 7, so that the aeration effect at the time of inflow Part of the chlorine can be expelled and released into the space 15, and the removal efficiency of chlorine from the seawater S can be increased. When the seawater S flows from the flow path 31 a into the neutralization tank 7, even if the seawater S flows down along the inner wall of the neutralization tank 7, the space above the water surface of the neutralization tank 7. Either may be sufficient as the part 15 is dropped and the seawater S is dripped.

ここで、中和槽7の空間部15や塩素除去槽16の空間部14は密閉された空間であり、海水S中から放出された塩素ガスは中和槽7や塩素除去槽16内に閉じ込められているものである。従って、塩素ガスを外部空間に放出する場合のように環境空気が塩素ガスで汚染されることを防ぐことができるものである。また連通空気路37を通して中和槽7の空間部15と塩素除去槽16の空間部14は連通しており、中和槽7の空間部15や塩素除去槽16の空間部14の気圧が高くならないようにしてあるが、中和槽7への急激な海水Sの流入などで、中和槽7の空間部15や塩素除去槽16の空間部14の気圧が大気圧よりも高くなると、塩素除去槽16内の水Wが連通水路18を通して、開放口30で大気に開放された圧力調整槽19内に移行し、塩素除去槽16内の水Wの水位が下がって空間部14の容積が大きくなり、中和槽7の空間部15や塩素除去槽16の空間部14の気圧を下げる圧力調整を行なうことができるものである。従って、中和槽7や塩素除去槽16が急激な圧力上昇で破損されたりすることを防ぐことができるものである。   Here, the space part 15 of the neutralization tank 7 and the space part 14 of the chlorine removal tank 16 are sealed spaces, and the chlorine gas released from the seawater S is confined in the neutralization tank 7 and the chlorine removal tank 16. It is what has been. Therefore, it is possible to prevent environmental air from being contaminated with chlorine gas as in the case of releasing chlorine gas to the external space. Further, the space portion 15 of the neutralization tank 7 and the space portion 14 of the chlorine removal tank 16 communicate with each other through the communication air passage 37, and the pressure in the space portion 15 of the neutralization tank 7 and the space portion 14 of the chlorine removal tank 16 is high. If the atmospheric pressure of the space portion 15 of the neutralization tank 7 or the space portion 14 of the chlorine removal tank 16 becomes higher than the atmospheric pressure due to a rapid inflow of the seawater S into the neutralization tank 7, the chlorine The water W in the removal tank 16 moves through the communication channel 18 into the pressure adjustment tank 19 opened to the atmosphere at the opening 30, the water level of the water W in the chlorine removal tank 16 is lowered, and the volume of the space 14 is increased. The pressure can be adjusted to increase the pressure of the space 15 of the neutralization tank 7 and the space 14 of the chlorine removal tank 16. Therefore, it is possible to prevent the neutralization tank 7 and the chlorine removal tank 16 from being damaged by a rapid pressure increase.

そして電解槽5の陽極室3で電解された酸性の海水Sは上記のように中和槽7で処理された後、流路32を通して混合槽9に供給される。混合槽9には上記のように陰極室4で電解されたアルカリ性の海水Sが供給されているので、混合槽9内でこのアルカリ性の海水Sに酸性の海水Sが混合される。このとき、陽極室3で電解された酸性の海水Sは上記のように中和槽7内で塩素の一部が除去され、pHが高められている。従って、混合槽9内で混合した海水SのpHは、飼育水槽1から電解槽5に送られる電気分解前の海水SのpHよりも高くなり、pHを高めた状態で混合槽9から飼育水槽1に返送されるものである。   The acidic seawater S electrolyzed in the anode chamber 3 of the electrolytic cell 5 is supplied to the mixing tank 9 through the flow path 32 after being treated in the neutralization tank 7 as described above. Since the alkaline seawater S electrolyzed in the cathode chamber 4 as described above is supplied to the mixing tank 9, the acidic seawater S is mixed with the alkaline seawater S in the mixing tank 9. At this time, the acidic seawater S electrolyzed in the anode chamber 3 has a part of chlorine removed in the neutralization tank 7 as described above, and the pH is increased. Therefore, the pH of the seawater S mixed in the mixing tank 9 is higher than the pH of the seawater S before electrolysis sent from the breeding aquarium 1 to the electrolytic tank 5, and the pH of the seawater S is increased from the mixing tank 9 to the breeding aquarium. 1 is returned.

このようにして、飼育水槽1の海水Sを、pHを高めた状態で混合槽9から飼育水槽1に返送するようにpH調整循環経路21で循環させることによって、飼育水槽1内の海水SのpHが低下することを防ぐpH調整を行なうことができるものである。中和槽7内での海水SのpH上昇は散気管8による曝気量や曝気時間によって調整することができるものであり、この曝気量や曝気時間の調整によって、飼育水槽1内の海水SのpH調整を正確に行なうことが可能である。そしてpH調整はこのように電気分解で行なうことができ、アルカリ剤の添加をする必要がないので、アルカリ剤中に含まれるナトリウムやカルシウムが海水S中に蓄積されて、塩分上昇や海水Sのイオン成分のバランスのくずれが発生するようなことがなく、海水Sを交換をするような必要がなくなるものである。   In this way, the seawater S in the breeding aquarium 1 is circulated through the pH adjustment circulation path 21 so that the seawater S in the breeding aquarium 1 is returned to the breeding tank 1 from the mixing tank 9 in a state where the pH is increased. The pH can be adjusted to prevent the pH from decreasing. The pH increase of the seawater S in the neutralization tank 7 can be adjusted by the amount of aeration and the time of the aeration tube 8, and by adjusting the amount of aeration and the time of the aeration, the seawater S in the breeding tank 1 can be adjusted. It is possible to accurately adjust the pH. And since pH adjustment can be performed by electrolysis in this way and it is not necessary to add an alkaline agent, sodium and calcium contained in the alkaline agent are accumulated in the seawater S, increasing the salinity and the seawater S. The balance of ionic components is not lost, and there is no need to replace the seawater S.

ここで、上記のように電解槽5で海水Sを電気分解すると、陰極に水酸化マグネシウムなどが析出し、このまま放置すると電極が析出物で覆われ、電流値が低下して電気分解の効率が低下し、場合によっては電解槽5内が閉塞されることもある。そこで、電解槽5に設けられる電極25a,25bはタイマー付き切替えスイッチなどで形成される電極切替手段11を介して直流電源28に接続してあり、所定時間毎あるいは所定通水流量毎に電極25a,25bの陽極と陰極が切替えられるようにしてある。図1の実施の形態では、電極25aを陽極、電極25bを陰極に設定して、陽極室3と陰極室4が形成されるようにしてあるが、電極25aを陰極、電極25bを陽極に切替えると、室3が陰極室に、室4が陽極室となる。   Here, when the seawater S is electrolyzed in the electrolytic cell 5 as described above, magnesium hydroxide or the like is deposited on the cathode, and if left as it is, the electrode is covered with the deposit, the current value is lowered, and the efficiency of electrolysis is reduced. In some cases, the inside of the electrolytic cell 5 may be blocked. Therefore, the electrodes 25a and 25b provided in the electrolytic cell 5 are connected to the DC power supply 28 via the electrode switching means 11 formed by a changeover switch with a timer or the like, and the electrode 25a is provided at every predetermined time or every predetermined water flow rate. 25b can be switched between the anode and the cathode. In the embodiment of FIG. 1, the electrode 25a is set as an anode and the electrode 25b is set as a cathode so that the anode chamber 3 and the cathode chamber 4 are formed. However, the electrode 25a is switched to the cathode and the electrode 25b is switched to the anode. The chamber 3 becomes a cathode chamber and the chamber 4 becomes an anode chamber.

そしてこのように電極切替手段11で陽極と陰極を切替えると、これに連動して、流路切替手段12の切替弁12aと流路切替手段13の切替弁13が切り替わり、室3と室4への通水流量が上記と逆になり、また陽極室となる室4から中和槽7に海水Sが供給されると共に陰極室となる室3から混合槽9に海水Sが供給されるようになる。このようにして上記と同様にして海水Sの電解分解によるpH調整を行なうことができるものであり、電極の陰陽の切替によって電極の表面に析出した水酸化マグネシウムを海水Sに溶解させ、電極が析出物で被覆されることを防ぐことができるものである。   When the electrode switching means 11 switches between the anode and the cathode in this way, the switching valve 12a of the flow path switching means 12 and the switching valve 13 of the flow path switching means 13 are switched in conjunction with this, and the chamber 3 and the chamber 4 are switched. The flow rate of water is reversed from the above, and the seawater S is supplied from the chamber 4 serving as the anode chamber to the neutralization tank 7 and the seawater S is supplied from the chamber 3 serving as the cathode chamber to the mixing tank 9. Become. In this way, the pH can be adjusted by electrolytic decomposition of the seawater S in the same manner as described above. Magnesium hydroxide deposited on the surface of the electrode by switching the yin and yang of the electrode is dissolved in the seawater S. It can prevent being covered with the precipitate.

図2は本発明の他の実施の形態を示すものであり、中和槽7を複数槽(図2の実施の形態では2槽)用いるようにしたものである。このものでは、切替弁13aに接続される流路31aに流路切替手段17を構成する電磁式の切替弁17aを設けて、中和槽7の個数分の本数の流路40a,40bをこの切替弁17aから分岐させ、各中和槽7に流路40a,40bをそれぞれ接続するようにしてある。また各中和槽7は塩素除去槽16と連通空気路37でそれぞれ接続してあると共に、空気供給路35、エアポンプ29、散気管8によって各中和槽7の空間部15の空気を塩素除去槽16に送って吐出させるようにしてある。さらに各中和槽7と混合槽9はそれぞれ流路32で接続してある。その他の構成は図1のものと同じである。このものにあって、切替弁17aは、複数の流路40a,40bのうち一つの流路40a,40bを流路31aと連通させると共に他の流路40a,40bと流路31aとの連通を遮断するように、流路31aと流路40a,40bとの連通を切替えるものであり、所定時間毎にあるいは所定通水量毎に自動的に切替が行なわれるようにしてある。   FIG. 2 shows another embodiment of the present invention, in which a plurality of neutralization tanks 7 (two tanks in the embodiment of FIG. 2) are used. In this configuration, an electromagnetic switching valve 17a constituting the channel switching means 17 is provided in the channel 31a connected to the switching valve 13a, and the number of channels 40a, 40b corresponding to the number of the neutralization tanks 7 is provided. The flow is branched from the switching valve 17a, and the flow paths 40a and 40b are connected to the neutralization tanks 7, respectively. Each neutralization tank 7 is connected to the chlorine removal tank 16 through a communication air path 37 and the air in the space 15 of each neutralization tank 7 is chlorine-removed by the air supply path 35, the air pump 29, and the air diffuser pipe 8. It is made to send to the tank 16 and to make it discharge. Furthermore, each neutralization tank 7 and the mixing tank 9 are connected by a flow path 32. Other configurations are the same as those in FIG. In this configuration, the switching valve 17a communicates one of the plurality of channels 40a and 40b with the channel 31a and communicates with the other channels 40a and 40b and the channel 31a. The communication between the flow path 31a and the flow paths 40a and 40b is switched so as to be shut off, and the switching is automatically performed every predetermined time or every predetermined water flow amount.

そして、電解槽5の陽極室4から送り出される酸性の海水Sは流路27a、切替弁13aから流路31aを通り、切替弁17aを通過して一つの流路40aからこの流路40aが接続された中和槽7に供給される。また切替弁17aが切り替わると、酸性の海水Sは他の流路40bからこの流路40bが接続された中和槽7に供給される。このように複数の中和槽7に順に酸性の海水Sが、所定時間毎にあるいは所定通水量毎に供給されるものであり、酸性の海水Sは各中和槽7で塩素の中和や除去の作用を受ける。ここで、電解槽5の陽極室4から送り出される海水Sの量と、各中和槽7から送り出されて混合槽9に供給される海水Sの総量は等しく設定されるので、複数の各中和槽7から混合槽9に送り出される海水Sの量は、陽極室4から各中和槽7に送り出される海水Sの量よりも少なくなり、各中和槽7内での海水Sの滞留時間を長くすることができる。従って、中和槽7において酸性の海水Sの中和による魚毒成分の除去や、塩素の除去によるpH調整を効率高く行なうことができるものである。また、中和槽7内の活性炭などの炭化剤6を入れ替える場合など、中和槽7のメンテナンスを行なう際に、メンテナンスを行なう中和槽7のみ運転を停止して他の中和槽7の運転を継続するようにすれば、pH調整のシステムの全体を停止させるが必要なくなるものである。   And the acidic seawater S sent out from the anode chamber 4 of the electrolytic cell 5 passes through the flow path 27a, the switching valve 13a, the flow path 31a, passes through the switching valve 17a, and this flow path 40a is connected from one flow path 40a. The neutralized tank 7 is supplied. When the switching valve 17a is switched, the acidic seawater S is supplied from the other channel 40b to the neutralization tank 7 to which the channel 40b is connected. In this way, the acidic seawater S is supplied to the plurality of neutralization tanks 7 in order every predetermined time or every predetermined amount of water flow. It is affected by removal. Here, the amount of the seawater S sent out from the anode chamber 4 of the electrolytic cell 5 and the total amount of the seawater S sent out from each neutralization vessel 7 and supplied to the mixing vessel 9 are set equal to each other. The amount of seawater S sent from the sump tank 7 to the mixing tank 9 is smaller than the amount of seawater S sent from the anode chamber 4 to each neutralization tank 7, and the residence time of the seawater S in each neutralization tank 7 Can be lengthened. Therefore, removal of fish poison components by neutralization of acidic seawater S in the neutralization tank 7 and pH adjustment by removal of chlorine can be performed with high efficiency. Moreover, when replacing the carbonizing agent 6 such as activated carbon in the neutralization tank 7, when performing the maintenance of the neutralization tank 7, the operation of only the neutralization tank 7 that performs maintenance is stopped. If the operation is continued, the entire pH adjustment system is stopped but not necessary.

尚、上記のように本実施形態においては、pH調整装置100を備えた閉鎖循環式養殖システムを例示しているが、pH調整装置100は、閉鎖循環式養殖システムの飼育水槽1からの海水に限らず、所望の海水に対してアルカリ剤を用いずにpH調整を行なうことができるものである。   In addition, as mentioned above, in this embodiment, although the closed circulation culture system provided with the pH adjustment apparatus 100 is illustrated, the pH adjustment apparatus 100 is applied to the seawater from the breeding aquarium 1 of the closed circulation culture system. Not limited to this, pH adjustment can be performed on the desired seawater without using an alkaline agent.

本発明の実施の形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of this invention. 本発明の他の実施の形態の一例を示す概略図である。It is the schematic which shows an example of other embodiment of this invention.

符号の説明Explanation of symbols

1 飼育水槽
2 隔膜
3 陽極室
4 陰極室
5 電解槽
6 炭化剤
7 中和槽
8 散気管
9 混合槽
10 攪拌ポンプ
11 電極切替手段
12 流路切替手段
13 流路切替手段
14 空間部
15 空間部
16 塩素除去槽
17 流路切替手段
18 連通水路
19 圧力調整槽
100 pH調整装置
DESCRIPTION OF SYMBOLS 1 Breeding tank 2 Diaphragm 3 Anode chamber 4 Cathode chamber 5 Electrolysis tank 6 Carbonizer 7 Neutralization tank 8 Air diffuser tube 9 Mixing tank 10 Stirring pump 11 Electrode switching means 12 Channel switching means 13 Channel switching means 14 Space section 15 Space section 16 Chlorine removal tank 17 Flow path switching means 18 Communication channel 19 Pressure adjustment tank 100 pH adjustment device

Claims (7)

飼育水槽の海水を浄化しながら循環させて飼育水槽内で魚介類を飼育するようにした閉鎖循環式養殖システムにおいて、隔膜で仕切られた陽極室と陰極室とを備え、飼育水槽から供給される海水を電気分解する電解槽及び、陽極室から供給される海水中の活性塩素を炭化剤で中和する中和槽と、水面より上の空間部が中和槽内の水面より上の空間部と連通され、水が貯溜された塩素除去槽と、中和槽内の空間部の空気を塩素除去槽の水中に噴出して曝気する散気管と、陰極室から供給される海水と中和槽から供給される海水を混合して飼育水槽に返送する混合槽とを備えてなるpH調整装置を具備して成ることを特徴とする閉鎖循環式養殖システム。   A closed circulation aquaculture system that circulates while purifying the seawater in the breeding aquarium and breeds seafood in the breeding aquarium, and has an anode chamber and a cathode chamber partitioned by a diaphragm, and is supplied from the breeding aquarium An electrolytic cell for electrolyzing seawater, a neutralization tank for neutralizing active chlorine in seawater supplied from the anode chamber with a carbonizing agent, and a space above the water surface above the water surface in the neutralization tank A chlorine removal tank in which water is stored, a diffuser pipe for aerating the air in the space of the neutralization tank into the water of the chlorine removal tank, and seawater and neutralization tank supplied from the cathode chamber A closed-circulation aquaculture system comprising a pH adjusting device comprising a mixing tank that mixes seawater supplied from the tank and returns the mixed water to the breeding tank. 電解槽の隔膜をカチオン交換膜で形成し、陽極室を通過する通水量を陰極室を通過する通水量の1/20以下に設定して成ることを特徴とする請求項1に記載の閉鎖循環式養殖システム。   The closed circulation according to claim 1, wherein the diaphragm of the electrolytic cell is formed of a cation exchange membrane, and the amount of water passing through the anode chamber is set to 1/20 or less of the amount of water passing through the cathode chamber. Type aquaculture system. 塩素除去槽に、水面より上が外部に開放された圧力調整槽を、水が流通する連通水路で接続して成ることを特徴とする請求項1又は2に記載の閉鎖循環式養殖システム。   The closed circulation type aquaculture system according to claim 1 or 2, wherein a pressure adjusting tank, which is open to the outside above the water surface, is connected to the chlorine removal tank by a communication channel through which water flows. 中和槽の炭化剤を攪拌する攪拌ポンプを備えて成ることを特徴とする請求項1乃至3のいずれかに記載の閉鎖循環式養殖システム。   The closed circulation culture system according to any one of claims 1 to 3, further comprising a stirring pump that stirs the carbonizing agent in the neutralization tank. 電解槽内の隔膜で仕切られる室の陽極と陰極を切り換える電極切替手段と、飼育水槽から電解槽の陽極室と陰極室とに海水を供給する流路を切り換える流路切替手段と、陽極室と陰極室から中和槽と混合槽に海水を供給する流路を切替える流路切替手段とを具備して成ることを特徴とする請求項1乃至4のいずれかに記載の閉鎖循環式養殖システム。   Electrode switching means for switching the anode and cathode of a chamber partitioned by a diaphragm in the electrolytic cell, channel switching means for switching the flow path for supplying seawater from the breeding water tank to the anode chamber and the cathode chamber of the electrolytic cell, and an anode chamber 5. The closed circulation culture system according to claim 1, further comprising a flow path switching unit that switches a flow path for supplying seawater from the cathode chamber to the neutralization tank and the mixing tank. 中和槽を複数備え、陽極室から複数の中和槽のいずれかに海水を供給する流路を切替える流路切替手段を具備して成ることを特徴とする請求項1乃至5のいずれかに記載の閉鎖循環式養殖システム。   6. A flow path switching means for switching a flow path for supplying seawater from the anode chamber to any of the plurality of neutralization tanks, comprising a plurality of neutralization tanks. The closed circulation aquaculture system described. 隔膜で仕切られた陽極室と陰極室とを備え、海水を電気分解する電解槽と、陽極室から供給される海水中の活性塩素を炭化剤で中和する中和槽と、水面より上の空間部が中和槽内の水面より上の空間部と連通され、水が貯溜された塩素除去槽と、中和槽内の空間部の空気を塩素除去槽の水中に噴出して曝気する散気管と、陰極室から供給される海水と中和槽から供給される海水を混合する混合槽とを具備して成ることを特徴とするpH調整装置。
An anode chamber and a cathode chamber partitioned by a diaphragm, and an electrolytic cell for electrolyzing seawater, a neutralization tank for neutralizing active chlorine in seawater supplied from the anode chamber with a carbonizing agent, and above the water surface The space is in communication with the space above the surface of the water in the neutralization tank, the chlorine removal tank in which water is stored, and the air that is aerated by jetting the air in the space in the neutralization tank into the water of the chlorine removal tank A pH adjusting apparatus comprising: a trachea; and a mixing tank for mixing seawater supplied from a cathode chamber and seawater supplied from a neutralization tank.
JP2004366706A 2004-12-17 2004-12-17 Closed circulation culture system and pH adjusting device Expired - Fee Related JP3840246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366706A JP3840246B2 (en) 2004-12-17 2004-12-17 Closed circulation culture system and pH adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366706A JP3840246B2 (en) 2004-12-17 2004-12-17 Closed circulation culture system and pH adjusting device

Publications (2)

Publication Number Publication Date
JP2006166850A JP2006166850A (en) 2006-06-29
JP3840246B2 true JP3840246B2 (en) 2006-11-01

Family

ID=36668216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366706A Expired - Fee Related JP3840246B2 (en) 2004-12-17 2004-12-17 Closed circulation culture system and pH adjusting device

Country Status (1)

Country Link
JP (1) JP3840246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221965A (en) * 2014-09-16 2014-12-24 浙江大学 Device and method for temporarily culturing clams based on subacid electrolyzed water

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846298B2 (en) * 2005-08-09 2011-12-28 ホシザキ電機株式会社 Seawater disinfection method
JP4993672B2 (en) * 2006-07-19 2012-08-08 学校法人光産業創成大学院大学 Algae cultivation apparatus and algae cultivation method
CN112616760A (en) * 2021-01-20 2021-04-09 广州市天河区阿他顿商贸有限公司 Su shrimp is vwatched and is bred case equipment with water quality testing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221965A (en) * 2014-09-16 2014-12-24 浙江大学 Device and method for temporarily culturing clams based on subacid electrolyzed water
CN104221965B (en) * 2014-09-16 2016-03-23 浙江大学 A kind of device and method of supporting clam class based on subacidity brine electrolysis temporarily

Also Published As

Publication number Publication date
JP2006166850A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US6802956B2 (en) Electrolytic treatment of aqueous media
CN114853229A (en) Sterilization and removal of nitrogen species from saltwater aquaculture systems
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
EP2902368B1 (en) A physico-chemical process for removal of nitrogen species from recirculated aquaculture systems
KR101498990B1 (en) Continuous Flow Sterile Water Fish Aquaculture System
KR100937004B1 (en) Removal equipment for waterbloom
JP2009055821A (en) Seawater-purifying apparatus for making fish or shellfish to live and method for purifying the seawater
JP3840250B2 (en) Closed circulation culture system and pH adjusting device
JP3840246B2 (en) Closed circulation culture system and pH adjusting device
JP3840245B2 (en) Closed circulation culture system and pH adjusting device
JP3840190B2 (en) Seafood culture method
IL182973A (en) Method and apparatus for reducing metal concentration in water
JP3887256B2 (en) Closed circulation aquaculture system
JP2015061513A (en) Completely closed circulation type land breeding system for abalones and land breeding method for abalones using the same
JP7481782B1 (en) Electrolysis device for aquatic organism cultivation, circulating water treatment system for aquatic organism cultivation, and electrolysis method for aquatic organism cultivation
JP2005245327A (en) Closed circulating culture system
JP2008237168A (en) Water quality controlling apparatus of water tank for aquarium fish
JP4846298B2 (en) Seawater disinfection method
CN215250124U (en) Reclaimed water recycling system for livestock and poultry farm
JP2005245326A (en) Closed circulating culture system
JP2005245329A (en) Closed circulating culture system
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
KR101457026B1 (en) The electrolysis system for the removal of slimes
JP2005245328A (en) Closed circulating culture system
JP3840189B2 (en) Seafood farming equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees