JP3839606B2 - Frequency selective mirror surface - Google Patents

Frequency selective mirror surface Download PDF

Info

Publication number
JP3839606B2
JP3839606B2 JP03562299A JP3562299A JP3839606B2 JP 3839606 B2 JP3839606 B2 JP 3839606B2 JP 03562299 A JP03562299 A JP 03562299A JP 3562299 A JP3562299 A JP 3562299A JP 3839606 B2 JP3839606 B2 JP 3839606B2
Authority
JP
Japan
Prior art keywords
mirror surface
frequency
selective mirror
resonance
frequency selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03562299A
Other languages
Japanese (ja)
Other versions
JP2000236214A (en
Inventor
友宏 水野
典夫 宮原
修治 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03562299A priority Critical patent/JP3839606B2/en
Publication of JP2000236214A publication Critical patent/JP2000236214A/en
Application granted granted Critical
Publication of JP3839606B2 publication Critical patent/JP3839606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の所定周波数帯の電波のうち、特定の周波数帯の電波を反射すると共にその他の周波数帯の電波を透過する周波数選択鏡面、あるいは特定の周波数帯の電波を透過すると共にその他の周波数帯の電波を反射する周波数選択鏡面に関するものである。
【0002】
【従来の技術】
従来、誘電体と該誘電体の面上に配置された複数個の金属箔からなる共振素子とにより構成された周波数選択鏡面として、例えば、V.D.Agraval et.al.,“Design of a Dichroic Cassegrain Subreflector,”IEEE Trans. Antennas Propagat., Vol.AP-27, No.4, pp.466-473, July 1979.に示されたものがある。図8は上述の文献に示された従来の周波数選択鏡面を示す正面図である。また、図9は図8のIX-IX線に沿う矢視断面図である。図において、11は平面状の誘電体、12は金属箔、13は金属箔12からなる共振素子である。
【0003】
平面状の誘電体11上に、同一寸法のクロスダイポール形の金属箔12からなる共振素子3が周期的に且つ格子状に配置されており、共振素子3は所定周波数帯F1で共振するようにその形状、寸法、配置周期DxおよびDyが決められている。
【0004】
次に動作について説明する。共振周波数帯F1の電波が入射した場合、金属箔12からなる共振素子13は共振し、共振素子13上には電流が流れ、共振素子13は反射方向と透過方向とへ電波を再放射する。この際、透過方向へ再放射された電波は入射波と打ち消し合い、反射方向へ再放射された電波だけが残る。
【0005】
また、周波数帯F1以外の電波、例えば周波数帯F2の電波が入射した場合、共振素子13上には電流が流れず、入射波はそのまま誘電体11を通過する。従って、例えば2つの周波数帯F1およびF2の電波が入射した場合、周波数帯F1の電波は周波数選択鏡面により反射され、かつ周波数帯F2の電波は周波数選択鏡面を透過し、周波数選択鏡面はこれらの周波数帯F1とF2の電波を分波する帯域反射型フィルタとして動作する。
【0006】
また、金属膜と該金属膜に開設された複数個の穴からなる共振素子とにより構成された周波数選択鏡面として、C.C.Chen,“Transmission of Microwave Through Perforated Flat Platesof Finite Thickness,”IEEE Trans. Microwave Theory and tech. Vol.MTT-21, No.1, pp.1-6, Jan. 1973.に示されたものがある。図10は上述の文献に示された従来の周波数選択鏡面を示す正面図である。また、図11は図10のXI-XI線に沿う矢視断面図である。図において、21は平面状の誘電体、24は金属膜、25は穴、23は穴25からなる共振素子である。
【0007】
誘電体21に接着された平面状の金属膜24に、同一寸法の円形の穴25からなる共振素子23が周期的に配置されており、共振素子23は所定周波数帯F1で共振するように、その形状、寸法、配置周期DxおよびDyが決められている。
【0008】
次に動作について説明する。共振周波数帯F1の電波が入射した場合、穴25からなる共振素子23は共振し、共振素子23上には電界が誘起され、共振素子23は反射方向と透過方向とへ電波を再放射する。この際、反射方向へ再放射された電波は、金属膜24による反射波と打ち消し合い、透過方向へ再放射された電波だけが残る。
【0009】
また、周波数帯F1以外の電波、例えば周波数帯F2の電波が入射した場合、共振素子23上には電界が誘起されず、入射波はそのまま金属膜24により反射される。従って、例えば2つの周波数帯F1およびF2の電波が入射した場合、周波数帯F1の電波は周波数選択鏡面を透過し、かつ周波数帯F2の電波は周波数選択鏡面に反射され、周波数選択鏡面はこれらの周波数帯F1とF2の電波を分波する帯域通過型フィルタとして動作する。
【0010】
以上の従来例の変形例として、T.K.Wu “Frequency selective surface and grid array”,chap.4, Wiley, New York, 1995.に示されたものがある。図12は上述の文献に示された従来の周波数選択鏡面を示す正面図である。また、図13は図12のXIII-XIII線に沿う矢視断面図である。
【0011】
平面状の誘電体31上に、同一寸法の円形二重リング形の金属箔32からなる共振素子33が周期的に格子状に配置されており、外側のリング32aは所定周波数帯F1で、内側のリング32bは所定周波数帯F2(F1<F2)で共振するようにその形状、寸法、配置周期DxおよびDyが決められている。
【0012】
次に動作について説明する。共振周波数帯F1、F2の電波が入射した場合、金属箔32からなる共振素子33は共振し、共振素子33上には電流が流れ、共振素子33は反射方向と透過方向とへ電波を再放射する。この際、透過方向へ再放射された電波は入射波と打ち消し合い、反射方向へ再放射された電波だけが残る。
【0013】
また、周波数帯F1、F2以外の電波、例えば周波数帯F3の電波が入射した場合、共振素子33上には電流が流れず、入射波はそのまま誘電体31を通過する。従って、例えば3つの周波数帯F1、F2およびF3の電波が入射した場合、周波数帯F1、F2の電波は周波数選択鏡面により反射され、かつ周波数帯F3の電波は周波数選択鏡面を透過し、周波数選択鏡面はこれらの周波数帯F1、F2とF3の電波を分波する帯域反射型フィルタとして動作する。
【0014】
尚、以上のような複数の共振周波数帯を有する多重共振素子としては、図3に示す共振素子の形状例のうち、矩形多重リング形(c)、円形多重リング形(f)、エルサレムクロス形(h)などがある。
【0015】
【発明が解決しようとする課題】
従来の周波数選択鏡面は以上のように構成されているので、共振素子の形状が多重リング形やエルサレムクロス形などの多重共振素子以外の場合には、共振周波数帯は基本的にはある任意の単一周波数帯のみであり、広帯域な共振周波数帯あるいは複数の共振周波数帯を得るためには、この周波数選択鏡面を多層に重ねて使うことが必要となってしまい、これにより厚みや重量が増してしまうなどの問題点があった。
【0016】
また、共振素子の形状が多重共振素子の場合でも、複数の共振周波数帯のうち、最も高い共振周波数帯と最も低い共振周波数帯の比が極端に大きい場合には、最も高い共振周波数帯について、その配置間隔が波長に対して大きすぎることにより、反射波が所定の角度以外の方向に反射するグレーティング・ローブを発生してしまう問題が発生した。また、そのため所望の帯域幅を十分に確保できない問題が生じていた。
【0017】
このグレーティング・ローブ発生の問題に関して具体的すると、図12及び図13の従来例の場合、高い共振周波数帯F2を得るために、内側のリング32bを極端に小さくすると、その配置間隔が反射させたい所定の波長λに対して大きくなってしまいグレーティング・ローブが発生してしまう。そして、グレーティング・ローブを発生させない為には、その配置間隔を反射させたい所定の波長λに対してλ/2以下にすることが必要である。そのため、図12及び図13の従来例においては、最も高い共振周波数帯と最も低い共振周波数帯の幅を広げることが困難であった。
【0018】
この発明は上記のような問題点を解消するためになされたもので、1層の周波数選択鏡面で、グレーティング・ローブを生じることなく、広帯域な共振周波数帯あるいは複数の共振周波数帯を有する周波数選択鏡面を得ることを目的とする。
【0019】
【課題を解決するための手段】
この発明に係る周波数選択鏡面は、曲面あるいは平面状の誘電体と、該誘電体の面上に配置された複数個の金属箔でなる共振素子が周期的に配置されてなる周波数選択鏡面において、共振素子は、異なる開形状の複数種類が多数配列して設けられ、その配置周期は、同種間で同一且つ異種間で異なるものとされていることを特徴とする。
【0020】
また、この発明に係る他の周波数選択鏡面は、曲面あるいは平面状の金属膜と、該金属膜に開設された複数個の穴でなる共振素子が周期的に配置されてなる周波数選択鏡面において、共振素子は、異なる開形状の複数種類が多数配列して設けられ、またその配置周期は、同種間で同一且つ異種間で異なるものとされていることを特徴とする。
【0021】
【発明の実施の形態】
実施の形態1.
図1は本発明の周波数選択鏡面の正面図である。また、図2は図1のII-II線に沿う矢視断面図である。図において、1は平面状の誘電体、2a,2bは金属箔、3は金属箔2a,2bからなる共振素子である。平面状の誘電体1上には、2種類の直径の異なるリング形の金属箔2a,2bが、それぞれ異なる周期で複数個配置されている。金属箔2aの半径はR1であり、また金属箔2bの半径はR2である。
【0022】
このリング形の金属箔2a,2bは各々共振素子3として働くが、金属箔2a,2bは、それぞれ周波数帯F1、F2(F1<F2)で共振する。金属箔2a,2bの配置周期Dx1、Dy1とDx2、Dy2は、それぞれの共振周波数で、グレーティング・ローブを生じない範囲の寸法に与えられている。すなわち、高い共振周波数帯F2側の金属箔2bの半径R2を小さくしても、その配置間隔Dx2、Dy2が反射させたい所定の波長λに対して大きくなってしまうことがなく、グレーティング・ローブが発生してしまうことがない。
【0023】
次に、動作について説明する。共振周波数帯F1の電波が入射した場合、半径R1を有するリング形の金属箔2aからなる共振素子3が共振し、共振素子3上には電流が流れ、共振素子3は反射方向と透過方向とへ電波を再放射する。この際、透過方向へ再放射された電波は入射波と打ち消し合い、反射方向へ再放射された電波だけが残る。
【0024】
また、共振周波数帯F2の電波が入射した場合には、半径R2を有するリング形の金属箔2bからなる共振素子3が共振し、上述と同様の原理により、反射方向へ再放射された電波だけが残る。
【0025】
この周波数帯F1、F2以外の電波、例えば周波数帯F3の電波が入射した場合、いずれの共振素子3上にも電流が流れず、入射波はそのまま誘電体1を通過する。従って、例えば3つの周波数帯F1、F2およびF3の電波が入射した場合、周波数帯F1、F2の電波は周波数選択鏡面により反射され、かつ周波数帯F3の電波は周波数選択鏡面を透過し、周波数選択鏡面はこれらの周波数帯F1、F2とF3の電波を分波する帯域反射型フィルタとして動作する。
【0026】
つまり、共振周波数帯F1、F2を各々独立に設定することができるため、複数の共振周波数帯を有する周波数選択鏡面が実現できる。また、共振周波数帯F1、F2を隣接して与えることにより、広帯域な共振周波数域を有する周波数選択鏡面が実現できる。
【0027】
なお、本実施の形態においては、金属箔2a,2bからなる2種類の共振素子3は、直径のみが異なり、形は同一の円形であったが、それぞれの共振素子3が物理的に干渉しない形状、寸法、配置周期であれば必ずしも形状が一致している必要はない。
【0028】
図3に共振素子3の形状の例を示す。また、共振素子3の異なる形状の組合せの数においては、必ずしも2種類である必要はなく、必要に応じて多種の共振素子3を配置して良い。さらに、共振素子3の配置においては、図4に示す四角形状、または図5に示す三角形状のいずれで有っても良い。
【0029】
実施の形態2.
図6は本発明の周波数選択鏡面の他の例を示す正面図である。また、図7は図6のVII-VII線に沿う矢視断面図である。図において、1は平面状の誘電体、4は誘電体1を全面的に覆った金属膜、5a,5bは金属膜4に穿孔された所定の形状の穴、6は穴5a,5bからなる共振素子である。
【0030】
誘電体1に接着された平面状の金属膜4には、2種類の寸法の異なる矩形の穴5a,5bが、それぞれ異なる周期で、複数個開設されている。この矩形の穴5a,5bは、共振素子6として働くが、寸法Lx1×Ly1の穴5aと、寸法Lx2×Ly2の穴5bは、それぞれ周波数帯F1、F2(F1<F2)で共振し、各々の配置周期Dx1、Dy1とDx2、Dy2はそれぞれの共振周波数で、グレーティング・ローブを生じない範囲の寸法に与えられている。
【0031】
次に、動作について説明する。共振周波数帯F1の電波が入射した場合、寸法Lx1×Ly1を有する矩形の穴5aからなる共振素子6が共振し、共振素子6上には電界が誘起され、共振素子6は反射方向と透過方向とへ電波を再放射する。この際、反射方向へ再放射された電波は、金属膜4による反射波と打ち消し合い、透過方向へ再放射された電波だけが残る。また、共振周波数帯F2の電波が入射した場合には、寸法Lx2×Ly2を有する矩形の穴5bからなる共振素子6が共振し、上述と同様の原理により、透過方向へ再放射された電波だけが残る。
【0032】
この周波数帯F1、F2以外の電波、例えば周波数帯F3の電波が入射した場合、いずれの共振素子6上にも電界は誘起されず、入射波はそのまま金属膜4を反射する。従って、例えば3つの周波数帯F1、F2およびF3の電波が入射した場合、周波数帯F1、F2の電波は周波数選択鏡面を透過し、かつ周波数帯F3の電波は周波数選択鏡面により反射され、周波数選択鏡面はこれらの周波数帯F1、F2とF3の電波を分波する帯域通過型フィルタとして動作する。
【0033】
つまり、共振周波数帯F1、F2を各々独立に設定することができるため、複数の共振周波数帯を有する周波数選択鏡面が実現できる。また、共振周波数帯F1、F2を隣接して与えることにより、広帯域な共振周波数域を有する周波数選択鏡面が実現できる。
【0034】
なお、本実施の形態においては、穴5a、5bからなる2種類の共振素子6は寸法のみが異なり、形状は相似形であったが、それぞれの共振素子6が物理的に干渉しない形状、寸法、配置周期であれば、必ずしも形状が一致している必要はない。
【0035】
図3に共振素子6の形状の例を示す。また、共振素子6の異なる形状の組合せの数においては、必ずしも2種類である必要はなく、必要に応じて多種の共振素子6を配置して良い。さらに、共振素子6の配置においては、図4に示す四角形状、または図5に示す三角形状のいずれで有っても良い。
【0036】
【発明の効果】
この発明に係る周波数選択鏡面は、曲面あるいは平面状の誘電体と、誘電体の面上に配置された複数個の金属箔でなる共振素子が周期的に配置されてなる周波数選択鏡面において、共振素子は、異なる開形状の複数種類が多数配列して設けられ、その配置周期は、同種間で同一且つ異種間で異なるものとされていることを特徴とする。そのため、1層の周波数選択鏡面で、グレーティング・ローブを生じることなく、広帯域な共振周波数帯あるいは複数の共振周波数帯を有する周波数選択鏡面を得ることができる。
【0037】
また、この発明に係る他の周波数選択鏡面は、曲面あるいは平面状の金属膜と、金属膜に開設された複数個の穴でなる共振素子が周期的に配置されてなる周波数選択鏡面において、共振素子は、異なる開形状の複数種類が多数配列して設けられ、またその配置周期は、同種間で同一且つ異種間で異なるものとされていることを特徴とする。そのため、1層の周波数選択鏡面で、グレーティング・ローブを生じることなく、広帯域な共振周波数帯あるいは複数の共振周波数帯を有する周波数選択鏡面を得ることができる。
【図面の簡単な説明】
【図1】 本発明の周波数選択鏡面の正面図である。
【図2】 図1のII-II線に沿う矢視断面図である。
【図3】 共振素子の形状の例を示す図である。
【図4】 共振素子の四角配列を示す図である。
【図5】 共振素子の三角配列を示す図である。
【図6】 本発明の周波数選択鏡面の他の例を示す正面図である。
【図7】 図6のVII-VII線に沿う矢視断面図である。
【図8】 従来の周波数選択鏡面を示す正面図である。
【図9】 図8のIX-IX線に沿う矢視断面図である。
【図10】 従来の他の周波数選択鏡面を示す正面図である。
【図11】 図10のXI-XI線に沿う矢視断面図である。
【図12】 従来の他の周波数選択鏡面を示す正面図である。
【図13】 図12のXIII-XIII線に沿う矢視断面図である。
【符号の説明】
1 誘電体、2a,2b 金属箔、3,6 共振素子、4 金属膜、5 穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a frequency selective mirror that reflects radio waves in a specific frequency band among a plurality of radio waves in a predetermined frequency band and transmits radio waves in other frequency bands, or transmits radio waves in a specific frequency band and other The present invention relates to a frequency selective mirror that reflects radio waves in a frequency band.
[0002]
[Prior art]
Conventionally, as a frequency selective mirror surface constituted by a dielectric and a plurality of resonant elements made of a metal foil disposed on the surface of the dielectric, for example, VDAgraval et.al., “Design of a Dichroic Cassegrain Subreflector, "IEEE Trans. Antennas Propagat., Vol. AP-27, No. 4, pp. 466-473, July 1979. FIG. 8 is a front view showing a conventional frequency selective mirror surface shown in the above-mentioned document. 9 is a cross-sectional view taken along the line IX-IX in FIG. In the figure, 11 is a planar dielectric, 12 is a metal foil, and 13 is a resonant element made of the metal foil 12.
[0003]
Resonating elements 3 made of cross-dipole-shaped metal foils 12 having the same dimensions are arranged on a planar dielectric 11 periodically and in a lattice shape so that the resonant elements 3 resonate in a predetermined frequency band F 1. The shape, dimensions, and arrangement periods D x and D y are determined.
[0004]
Next, the operation will be described. When a radio wave in the resonance frequency band F 1 is incident, the resonance element 13 made of the metal foil 12 resonates, a current flows on the resonance element 13, and the resonance element 13 re-radiates the radio wave in the reflection direction and the transmission direction. . At this time, the radio wave re-radiated in the transmission direction cancels the incident wave, and only the radio wave re-radiated in the reflection direction remains.
[0005]
When a radio wave other than the frequency band F 1 , for example, a radio wave in the frequency band F 2 is incident, no current flows on the resonance element 13 and the incident wave passes through the dielectric 11 as it is. Thus, for example, when radio waves of two frequency bands F 1 and F 2 are incident, the radio waves of the frequency band F 1 are reflected by the frequency selection mirror surface, and the radio waves of the frequency band F 2 are transmitted through the frequency selection mirror surface, thereby selecting the frequency. The mirror surface operates as a band reflection type filter that demultiplexes the radio waves of these frequency bands F 1 and F 2 .
[0006]
Further, as a frequency selective mirror surface composed of a metal film and a resonant element comprising a plurality of holes opened in the metal film, CCChen, “Transmission of Microwave Through Perforated Flat Plates of Finite Thickness,” IEEE Trans. Microwave Theory and Vol.MTT-21, No.1, pp.1-6, Jan. 1973. FIG. 10 is a front view showing a conventional frequency selective mirror surface shown in the above-mentioned document. 11 is a cross-sectional view taken along the line XI-XI in FIG. In the figure, 21 is a planar dielectric, 24 is a metal film, 25 is a hole, and 23 is a resonant element comprising a hole 25.
[0007]
Resonant elements 23 each having a circular hole 25 of the same size are periodically arranged on a planar metal film 24 bonded to the dielectric 21 so that the resonant element 23 resonates in a predetermined frequency band F 1. The shape, dimensions, and arrangement periods D x and D y are determined.
[0008]
Next, the operation will be described. When a radio wave in the resonance frequency band F 1 is incident, the resonance element 23 formed by the hole 25 resonates, an electric field is induced on the resonance element 23, and the resonance element 23 re-radiates the radio wave in the reflection direction and the transmission direction. . At this time, the radio wave re-radiated in the reflection direction cancels the reflected wave from the metal film 24, and only the radio wave re-radiated in the transmission direction remains.
[0009]
When a radio wave other than the frequency band F 1 , for example, a radio wave in the frequency band F 2 is incident, no electric field is induced on the resonance element 23 and the incident wave is reflected as it is by the metal film 24. Thus, for example, when radio waves in two frequency bands F 1 and F 2 are incident, the radio waves in the frequency band F 1 are transmitted through the frequency selection mirror surface, and the radio waves in the frequency band F 2 are reflected on the frequency selection mirror surface, thereby selecting the frequency. The mirror surface operates as a band-pass filter that demultiplexes the radio waves of these frequency bands F 1 and F 2 .
[0010]
As a modification of the above-described conventional example, there is one shown in TKWu “Frequency selective surface and grid array”, chap. 4, Wiley, New York, 1995. FIG. 12 is a front view showing a conventional frequency selective mirror shown in the above-mentioned document. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
[0011]
Resonating elements 33 made of circular double ring-shaped metal foils 32 of the same size are periodically arranged in a lattice pattern on a planar dielectric 31, and the outer ring 32 a has a predetermined frequency band F 1 . the inner ring 32b has the shape, size, arrangement period D x and D y are determined so as to resonate at a predetermined frequency band F 2 (F 1 <F 2 ).
[0012]
Next, the operation will be described. When radio waves in the resonance frequency bands F 1 and F 2 are incident, the resonance element 33 made of the metal foil 32 resonates, a current flows on the resonance element 33, and the resonance element 33 transmits radio waves in the reflection direction and the transmission direction. Re-radiate. At this time, the radio wave re-radiated in the transmission direction cancels the incident wave, and only the radio wave re-radiated in the reflection direction remains.
[0013]
Further, when radio waves other than the frequency bands F 1 and F 2 , for example, radio waves in the frequency band F 3 are incident, no current flows on the resonance element 33 and the incident wave passes through the dielectric 31 as it is. Therefore, for example, when radio waves of three frequency bands F 1 , F 2 and F 3 are incident, the radio waves of frequency bands F 1 and F 2 are reflected by the frequency selection mirror surface, and the radio waves of frequency band F 3 are reflected by the frequency selection mirror surface. The frequency selective mirror surface operates as a band reflection type filter that demultiplexes the radio waves of these frequency bands F 1 , F 2 and F 3 .
[0014]
As the multiple resonance elements having a plurality of resonance frequency bands as described above, among the resonance element shape examples shown in FIG. 3, a rectangular multiple ring type (c), a circular multiple ring type (f), a Jerusalem cross type (h) etc.
[0015]
[Problems to be solved by the invention]
Since the conventional frequency selective mirror surface is configured as described above, when the shape of the resonant element is other than a multiple resonant element such as a multiple ring type or a Jerusalem cross type, the resonant frequency band is basically an arbitrary one. In order to obtain a wide resonance frequency band or multiple resonance frequency bands, which are only a single frequency band, it is necessary to use this frequency selective mirror layer in multiple layers, which increases the thickness and weight. There was a problem such as.
[0016]
In addition, even when the shape of the resonant element is a multiple resonant element, if the ratio of the highest resonant frequency band to the lowest resonant frequency band among the plurality of resonant frequency bands is extremely large, the highest resonant frequency band, Since the arrangement interval is too large with respect to the wavelength, there is a problem that a grating lobe is generated in which the reflected wave is reflected in a direction other than a predetermined angle. For this reason, there has been a problem that a desired bandwidth cannot be sufficiently secured.
[0017]
Specifically Then on the issue of the grating lobe occurrence, the conventional example of FIG. 12 and FIG. 13, in order to obtain a high resonance frequency band F 2, the extreme decreasing the inner ring 32b, the arrangement interval reflects Therefore, the grating lobe is increased with respect to the predetermined wavelength λ. In order not to generate the grating lobes, it is necessary to set the arrangement interval to λ / 2 or less with respect to a predetermined wavelength λ to be reflected. Therefore, in the conventional example of FIGS. 12 and 13, it is difficult to widen the width of the highest resonance frequency band and the lowest resonance frequency band.
[0018]
The present invention has been made to solve the above-described problems, and a frequency selection mirror having a wide resonance frequency band or a plurality of resonance frequency bands without generating a grating lobe on a single-layer frequency selection mirror surface. The purpose is to obtain a mirror surface.
[0019]
[Means for Solving the Problems]
The frequency selective mirror surface according to the present invention is a frequency selective mirror surface in which resonant elements made of a curved or planar dielectric and a plurality of metal foils disposed on the surface of the dielectric are periodically arranged. resonating element, a plurality of types of different open configuration is provided by a number sequence, the arrangement period is characterized by being a different between the same and different between allogeneic.
[0020]
Further, another frequency selective mirror surface according to the present invention is a frequency selective mirror surface in which a curved or planar metal film and a resonance element including a plurality of holes opened in the metal film are periodically arranged. resonating element, a plurality of types of different open configuration is provided by a number sequence, also the arrangement period is characterized by being a different between the same and different between allogeneic.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a front view of a frequency selective mirror surface of the present invention. 2 is a cross-sectional view taken along the line II-II in FIG. In the figure, reference numeral 1 is a planar dielectric, 2a and 2b are metal foils, and 3 is a resonant element made of metal foils 2a and 2b. On the planar dielectric 1, a plurality of two types of ring-shaped metal foils 2a and 2b having different diameters are arranged at different periods. The radius of the metal foil 2a is R1, and the radius of the metal foil 2b is R2.
[0022]
The ring-shaped metal foils 2a and 2b each function as the resonance element 3, but the metal foils 2a and 2b resonate in the frequency bands F 1 and F 2 (F 1 <F 2 ), respectively. The arrangement periods D x1 , D y1 and D x2 , D y2 of the metal foils 2a and 2b are given dimensions in a range in which no grating lobe is generated at each resonance frequency. That is, even if the radius R 2 of the metal foil 2b on the high resonance frequency band F2 side is reduced, the arrangement interval D x2 , D y2 does not increase with respect to the predetermined wavelength λ to be reflected, and the grating・ Lobes are not generated.
[0023]
Next, the operation will be described. When a radio wave in the resonance frequency band F 1 is incident, the resonance element 3 made of the ring-shaped metal foil 2 a having the radius R 1 resonates, a current flows on the resonance element 3, and the resonance element 3 is reflected and transmitted. Re-radiate radio waves in the direction and direction. At this time, the radio wave re-radiated in the transmission direction cancels the incident wave, and only the radio wave re-radiated in the reflection direction remains.
[0024]
When a radio wave in the resonance frequency band F 2 is incident, the resonance element 3 made of the ring-shaped metal foil 2b having the radius R 2 resonates and re-radiates in the reflection direction according to the same principle as described above. Only radio waves remain.
[0025]
When radio waves other than the frequency bands F 1 and F 2 , for example, radio waves in the frequency band F 3 are incident, no current flows on any of the resonance elements 3, and the incident wave passes through the dielectric 1 as it is. Therefore, for example, when radio waves of three frequency bands F 1 , F 2 and F 3 are incident, the radio waves of frequency bands F 1 and F 2 are reflected by the frequency selection mirror surface, and the radio waves of frequency band F 3 are reflected by the frequency selection mirror surface. The frequency selective mirror surface operates as a band reflection type filter that demultiplexes the radio waves of these frequency bands F 1 , F 2 and F 3 .
[0026]
That is, since the resonance frequency bands F 1 and F 2 can be set independently, a frequency selective mirror surface having a plurality of resonance frequency bands can be realized. Further, by providing the resonance frequency bands F 1 and F 2 adjacent to each other, a frequency selective mirror surface having a wide resonance frequency range can be realized.
[0027]
In the present embodiment, the two types of resonant elements 3 made of the metal foils 2a and 2b differ only in diameter and have the same circular shape, but each resonant element 3 does not physically interfere. The shapes do not necessarily have to coincide with each other as long as the shape, size, and arrangement cycle.
[0028]
FIG. 3 shows an example of the shape of the resonant element 3. Further, the number of combinations of different shapes of the resonant elements 3 is not necessarily two types, and various types of resonant elements 3 may be arranged as necessary. Furthermore, the arrangement of the resonant elements 3 may be either a square shape shown in FIG. 4 or a triangular shape shown in FIG.
[0029]
Embodiment 2. FIG.
FIG. 6 is a front view showing another example of the frequency selective mirror surface of the present invention. 7 is a cross-sectional view taken along the line VII-VII in FIG. In the figure, 1 is a planar dielectric, 4 is a metal film covering the entire surface of the dielectric 1, 5a and 5b are holes of a predetermined shape drilled in the metal film 4, and 6 is a hole 5a and 5b. It is a resonant element.
[0030]
In the planar metal film 4 bonded to the dielectric 1, a plurality of rectangular holes 5 a and 5 b having two different sizes are provided with different periods. The rectangular holes 5a and 5b function as the resonance element 6, but the hole 5a having the dimension L x1 × L y1 and the hole 5b having the dimension L x2 × L y2 are frequency bands F 1 and F 2 (F 1 < F 2 ), and the arrangement periods D x1 , D y1 and D x2 , D y2 are given dimensions that do not cause grating lobes at the respective resonance frequencies.
[0031]
Next, the operation will be described. When a radio wave in the resonance frequency band F 1 is incident, the resonance element 6 composed of the rectangular hole 5a having the dimension L x1 × L y1 resonates, an electric field is induced on the resonance element 6, and the resonance element 6 reflects in the reflection direction. And re-radiate radio waves in the transmission direction. At this time, the radio wave re-radiated in the reflection direction cancels the reflected wave from the metal film 4, and only the radio wave re-radiated in the transmission direction remains. When a radio wave in the resonance frequency band F 2 is incident, the resonance element 6 including the rectangular hole 5b having the dimension L x2 × L y2 resonates and is re-radiated in the transmission direction by the same principle as described above. Only the remaining radio wave remains.
[0032]
When radio waves other than those in the frequency bands F 1 and F 2 , for example, radio waves in the frequency band F 3 are incident, no electric field is induced on any of the resonance elements 6, and the incident waves reflect the metal film 4 as they are. Therefore, for example, when radio waves of three frequency bands F 1 , F 2 and F 3 are incident, the radio waves of the frequency bands F 1 and F 2 are transmitted through the frequency selection mirror surface, and the radio waves of the frequency band F 3 are frequency selection mirror surfaces. The frequency selective mirror surface operates as a band-pass filter that demultiplexes the radio waves of these frequency bands F 1 , F 2, and F 3 .
[0033]
That is, since the resonance frequency bands F 1 and F 2 can be set independently, a frequency selective mirror surface having a plurality of resonance frequency bands can be realized. Further, by providing the resonance frequency bands F 1 and F 2 adjacent to each other, a frequency selective mirror surface having a wide resonance frequency range can be realized.
[0034]
In the present embodiment, the two types of resonant elements 6 including the holes 5a and 5b differ only in size and have similar shapes, but the shapes and dimensions of the respective resonant elements 6 that do not physically interfere with each other. As long as it is an arrangement period, the shapes do not necessarily have to coincide with each other.
[0035]
FIG. 3 shows an example of the shape of the resonant element 6. Also, the number of combinations of different shapes of the resonant elements 6 is not necessarily two types, and various types of resonant elements 6 may be arranged as necessary. Further, the arrangement of the resonant elements 6 may be either a quadrangular shape shown in FIG. 4 or a triangular shape shown in FIG.
[0036]
【The invention's effect】
The frequency selective mirror according to the present invention is a frequency selective mirror in which a curved or planar dielectric and a plurality of metal foils arranged on the surface of the dielectric are periodically arranged. element, a plurality of types of different open configuration is provided by a number sequence, the arrangement period is characterized by being a different between the same and different between allogeneic. Therefore, a frequency selective mirror surface having a wide resonance frequency band or a plurality of resonance frequency bands can be obtained without generating a grating lobe with a single layer frequency selective mirror surface.
[0037]
In addition, another frequency selective mirror surface according to the present invention is a frequency selective mirror surface in which a curved or planar metal film and a resonance element including a plurality of holes provided in the metal film are periodically arranged. element, a plurality of types of different open configuration is provided by a number sequence, also the arrangement period is characterized by being a different between the same and different between allogeneic. Therefore, a frequency selective mirror surface having a wide resonance frequency band or a plurality of resonance frequency bands can be obtained without generating a grating lobe with a single layer frequency selective mirror surface.
[Brief description of the drawings]
FIG. 1 is a front view of a frequency selective mirror surface of the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a diagram showing an example of the shape of a resonant element.
FIG. 4 is a diagram showing a square array of resonant elements.
FIG. 5 is a diagram showing a triangular array of resonant elements.
FIG. 6 is a front view showing another example of the frequency selective mirror surface of the present invention.
7 is a cross-sectional view taken along the line VII-VII in FIG.
FIG. 8 is a front view showing a conventional frequency selective mirror surface.
9 is a cross-sectional view taken along the line IX-IX in FIG.
FIG. 10 is a front view showing another conventional frequency selective mirror surface.
11 is a cross-sectional view taken along the line XI-XI in FIG.
FIG. 12 is a front view showing another conventional frequency selective mirror surface.
13 is a cross-sectional view taken along the line XIII-XIII in FIG.
[Explanation of symbols]
1 dielectric, 2a, 2b metal foil, 3, 6 resonant element, 4 metal film, 5 holes.

Claims (2)

曲面あるいは平面状の誘電体と、該誘電体の面上に配置された複数個の金属箔でなる共振素子が周期的に配置されてなる周波数選択鏡面において、
上記共振素子は、異なる開形状の複数種類が多数配列して設けられ、その配置周期は、同種間で同一且つ異種間で異なるものとされていることを特徴とする周波数選択鏡面。
In a frequency selective mirror surface in which a resonant element composed of a curved or planar dielectric and a plurality of metal foils arranged on the surface of the dielectric is periodically arranged,
The resonating element, different types of open configuration is provided by a number sequence, its placement period, frequency selective mirror surface, characterized in that there is a different between the same and different between allogeneic.
曲面あるいは平面状の金属膜と、該金属膜に開設された複数個の穴でなる共振素子が周期的に配置されてなる周波数選択鏡面において、
上記共振素子は、異なる開形状の複数種類が多数配列して設けられ、またその配置周期は、同種間で同一且つ異種間で異なるものとされていることを特徴とする周波数選択鏡面。
In a frequency-selective mirror surface in which a resonant element composed of a curved or planar metal film and a plurality of holes provided in the metal film is periodically arranged,
The resonating element, different types of open configuration is provided by a number sequence and its placement period, frequency selective mirror surface, characterized in that there is a different between the same and different between allogeneic.
JP03562299A 1999-02-15 1999-02-15 Frequency selective mirror surface Expired - Lifetime JP3839606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03562299A JP3839606B2 (en) 1999-02-15 1999-02-15 Frequency selective mirror surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03562299A JP3839606B2 (en) 1999-02-15 1999-02-15 Frequency selective mirror surface

Publications (2)

Publication Number Publication Date
JP2000236214A JP2000236214A (en) 2000-08-29
JP3839606B2 true JP3839606B2 (en) 2006-11-01

Family

ID=12446970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03562299A Expired - Lifetime JP3839606B2 (en) 1999-02-15 1999-02-15 Frequency selective mirror surface

Country Status (1)

Country Link
JP (1) JP3839606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682114B (en) * 2007-03-30 2013-06-05 新田株式会社 Wireless communication improving sheet body, wireless IC tag, antenna and wireless communication system using the wireless communication improving sheet body and the wireless IC tag
CN108701904A (en) * 2016-10-09 2018-10-23 华为技术有限公司 A kind of frequency-selective surfaces

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447680B1 (en) * 2002-03-05 2004-09-08 한국전자통신연구원 Two-dimensional multilayer disk radiating structure for shaping flat-topped element pattern
JP4549265B2 (en) * 2005-09-06 2010-09-22 三菱瓦斯化学株式会社 Radio wave absorber
JP4796469B2 (en) * 2005-09-30 2011-10-19 ニッタ株式会社 Sheet body, antenna device, and electronic information transmission device
WO2007046527A1 (en) * 2005-10-21 2007-04-26 Nitta Corporation Sheet body for improving communication, antenna device provided with such sheet body and electronic information transmitting apparatus
WO2009057335A1 (en) * 2007-10-31 2009-05-07 Nitta Corporation Sheet material improved for wireless communication, wireless ic tag, and wireless communication system using the same material and tag
KR101189625B1 (en) 2007-10-31 2012-10-12 니타 가부시키가이샤 Wireless communication improving sheet body, wireless IC tag and wireless communication system using the wireless communication improving sheet body and the wireless IC tag
JP5371633B2 (en) * 2008-09-30 2013-12-18 株式会社エヌ・ティ・ティ・ドコモ Reflect array
DE102008051531B4 (en) * 2008-10-14 2013-04-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrical system with a device for suppressing the propagation of electromagnetic interference
JP6386403B2 (en) * 2015-03-23 2018-09-05 日本電信電話株式会社 Antenna device
JP6722601B2 (en) * 2017-01-11 2020-07-15 日本電信電話株式会社 Electromagnetic band filter
US10355721B2 (en) * 2017-05-01 2019-07-16 Palo Alto Research Center Incorporated Multi-band radio frequency transparency window in conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682114B (en) * 2007-03-30 2013-06-05 新田株式会社 Wireless communication improving sheet body, wireless IC tag, antenna and wireless communication system using the wireless communication improving sheet body and the wireless IC tag
CN108701904A (en) * 2016-10-09 2018-10-23 华为技术有限公司 A kind of frequency-selective surfaces
US10826189B2 (en) 2016-10-09 2020-11-03 Huawei Technologies Co., Ltd. Frequency selective surface

Also Published As

Publication number Publication date
JP2000236214A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP3839606B2 (en) Frequency selective mirror surface
KR100959056B1 (en) Frequency selective surface structure for multi frequency band
US6169524B1 (en) Multi-pattern antenna having frequency selective or polarization sensitive zones
JP6116839B2 (en) Reconfigurable Radiation Phase Shift Cell Based on Complementary Slot and Microstrip Resonance
AU774446B2 (en) Antenna arrangements
US6836258B2 (en) Complementary dual antenna system
JP2010093811A (en) Reflector array and antenna equipped with such reflector array
Hong et al. Compact ultra-wide band frequency selective surface with high selectivity
US4851858A (en) Reflector antenna for operation in more than one frequency band
FR2985096A1 (en) ELEMENTARY ANTENNA AND CORRESPONDING TWO-DIMENSIONAL NETWORK ANTENNA
JPS61116405A (en) Structure for dichroic antenna
Ramaccia et al. Inductive tri-band double element FSS for space applications
Hamid et al. Design and oblique incidence performance of a planar radome absorber
JP2014171095A (en) Antenna device
JPH01500555A (en) Frequency selection screen with sharp characteristics
Sen et al. Design of a wide band Frequency Selective Surface (FSS) for multiband operation of reflector antenna
Sharma et al. Closely spaced tri resonance wide band FSS for S/Ku/Ka band
Zheng et al. Interdigitated hexagon loop unit cells for wideband miniaturized frequency selective surfaces
JP2634088B2 (en) Manufacturing method of frequency selective reflector
JP6022139B1 (en) RESONANT ELEMENT OF FREQUENCY SELECTION PLATE, FREQUENCY SELECTION PLATE AND ANTENNA DEVICE
CN109149118B (en) Novel multi-band frequency selection surface unit
JP2003347840A (en) Reflector antenna
Tang et al. A high gain microstrip antenna integrated with the novel FSS
Genovesi et al. Design of compact multiband frequency selective surfaces with meandered elements
Guo et al. Dualband frequency selective surface with double-four-legged loaded slots elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term