JP3838752B2 - Shock absorbing member for automobile and manufacturing method thereof - Google Patents

Shock absorbing member for automobile and manufacturing method thereof Download PDF

Info

Publication number
JP3838752B2
JP3838752B2 JP23060997A JP23060997A JP3838752B2 JP 3838752 B2 JP3838752 B2 JP 3838752B2 JP 23060997 A JP23060997 A JP 23060997A JP 23060997 A JP23060997 A JP 23060997A JP 3838752 B2 JP3838752 B2 JP 3838752B2
Authority
JP
Japan
Prior art keywords
absorbing member
automobile
slide core
shock
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23060997A
Other languages
Japanese (ja)
Other versions
JPH1160769A (en
Inventor
隆義 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP23060997A priority Critical patent/JP3838752B2/en
Publication of JPH1160769A publication Critical patent/JPH1160769A/en
Application granted granted Critical
Publication of JP3838752B2 publication Critical patent/JP3838752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用衝撃緩衝部材およびその製造方法に関する。詳しくは衝撃緩衝特性、耐座屈性にすぐれ、生産性の向上した自動車用衝撃緩衝部材およびその製造方法に関する。
【0002】
【従来の技術】
従来、バンパー、バンパービーム等の自動車用の衝撃緩衝部材としては、金属製のものが多用されてきた。金属製の衝撃緩衝部材は強度的には問題ないものの腐食しやすいこと、重量が重く最近の省資源の要求に対応できない欠点がある。このため、軽量化、省資源、リサイクル性などの観点から合成樹脂製のものが採用されるようになってきている。これらの合成樹脂製の自動車用衝撃緩衝部材は一般に閉断面構造を有する形状とすることが効果的であるが、金属にくらべて剛性が低い為に、形状、肉厚分布等の最適化が必要である。
【0003】
閉断面構造を有する自動車用衝撃緩衝部材の製造方法としては、ブロー成形による一体成形や射出成形により前面用本体部材と裏面用部材を別々に成形し、二次加工により張り合わせる方法がある。いずれの方法で得られた自動車用緩衝部材も閉断面中空構造のため、自動車の衝突時などのように衝撃が加わった場合、座屈変形や強度が充分でない場合がある。強度を確保しようとするために肉厚を増すと、製品重量が増加し樹脂を用いるメリットが少なくなる。
【0004】
また、閉断面構造として、発泡体で形成することも考えられるが、軽量化は達成できても、強度等が不十分で実用性はない。また、発泡体を内部に挿入して一体化することも考えられるが、二種の材料の組み合わせであること、二次加工を必要とすることなど、強度、衝撃緩衝性、耐座屈性、生産性の点で実用化は難しい。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、熱可塑性樹脂が有する優れた成形性を利用するとともに、特別な成形方法を採用することによって、射出成形による一体成形でありながら軽量化を維持しつつ強度、剛性、衝撃緩衝性、耐座屈性にすぐれた自動車用衝撃緩衝部材およびその効率的な製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、射出成形の優れた生産性、発泡成形による軽量化について自動車用衝撃緩衝部材への適応について種々検討を行った。その結果、成形金型にスライドコアを採用し、発泡性樹脂との組み合わせにより、非発泡で高密度の外殻と低密度の内部発泡構造部分からなる複合構造の自動車用衝撃緩衝部材が得られることを見いだした。本発明はかかる知見に基づいて完成したものである。
【0007】
すなわち、(1)熱可塑性樹脂からなる一体構造形成体であって外殻部分を除いた内部が発泡構造であることを特徴とする自動車用衝撃緩衝部材。
(2)内部発泡構造部分が、この内部発泡構造部分より高密度であって車体の前後方向に連続するリブ構造を内蔵する上記(1)に記載の自動車用衝撃緩衝部材。
(3)リブ構造を長手方向に1〜4本有する上記(1)または(2)に記載の自動車用衝撃緩衝部材。
(4)金型キャビティ内に進退可能で突出状態のスライドコアから形成されるキャビティ内に発泡性の熱可塑性樹脂を射出充填した後、次いでスライドコアを後退させて内部を発泡させることを特徴とする自動車用衝撃緩衝部材の製造方法。
(5)発泡性の熱可塑性樹脂を射出充填した後、ガスを注入しながらスライドコアを後退後脱圧して内部を発泡させることを特徴とする上記(4)に記載の自動車用衝撃緩衝部材の製造方法。
(6)長手方向に1〜4本のスライドコアを有する金型キャビティを用いる上記(4)または(5)に記載の自動車用衝撃緩衝部材の製造方法である。
【0008】
【発明の実施の形態】
以下本発明について詳細に説明する。
まず、本発明の自動車用衝撃緩衝部材を構成する熱可塑性樹脂としては、特に制限はなく、射出成形が可能な熱可塑性樹脂が用いられる。これらの樹脂としては、ポリプロピレン、エチレン−プロピレンランダム共重合体もしくはブロック共重合体、高、中密度ポリエチレンなどの結晶性ポリオレフィン、ポリアミド、ポリエステル、ポリカーボネート、ABS樹脂などを挙げることができる。これらの樹脂は単独で、あるいは二種以上を組み合わせて用いることができる。これらの中でもポリプロピレン、プロピレン−エチレンブロック共重合体、高密度ポリエチレンなどの結晶性ポリオレフィンが好適である。
【0009】
また、熱可塑性樹脂には、耐衝撃性、剛性、耐熱性の向上を目的として、公知の低結晶性のエチレン−α−オレフィン共重合体(EPR、EBR、EPDM等)、スチレン−ブタジエンゴム、スチレン−ブタジエン−スチレンブロック共重合体ゴム、スチレン−エチレン−ブチレン−スチレンブロック共重合体などの衝撃強度改良配合剤、タルク、マイカ、ガラス繊維などの強度、剛性、耐熱性改良配合剤、不飽和カルボン酸類変成ポリオレフィン樹脂などを必要に応じて配合することもできる。これらの配合量は通常それぞれ独立に熱可塑性樹脂100重量部に対して、50重量部以下である。さらに、結晶化促進剤、酸化防止剤(リン系、フエノール系、硫黄系など)、中和剤、滑剤、分散剤、過酸化物、熱安定剤、紫外線吸収剤、光安定剤、帯電防止剤、難燃剤、難燃助剤、可塑剤、エポキシ化合物、金属不活性化剤、顔料、染料などの添加剤を適宜添加できる。
【0010】
本発明の自動車用衝撃緩衝部材の製造に際しては、熱可塑性樹脂に発泡性を付与するために発泡剤を添加する必要がある。発泡剤としては熱により、分解してガスを発生するものが用いられ、例えば、シュウ酸誘導体、アゾ化合物、ヒドラジン誘導体、セミカルバジド、アジド化合物、ニトロソ化合物、トリアゾール、尿素およびその関連化合物などがある。具体的にはアゾジカルボンアミド(ADCA)、ベンゼンスルホヒドラジド、N,N−ジニトロペンタメチレンテトラミン、テレフタルアジド等を挙げることができる。
【0011】
本発明の自動車用衝撃緩衝部材は、熱可塑性樹脂からなる一体構造成形体であって外殻部分を除いた内部が発泡構造であるものである。すなわち、一般の射出成形方法で発泡性の樹脂を用いて成形して得られた成形品の場合のように、均一な発泡構造ではなく、外殻部が非発泡の樹脂構造と内部が樹脂発泡構造からなる実質的に二層構造からなるものである。本発明の自動車用衝撃緩衝部材の一例を図面にもとづいて説明する。
【0012】
図1は、自動車用衝撃緩衝部材の正面図、図2は、平面図である。図においては、自動車用衝撃緩衝部材、2は車体本体への取り付け部、3は取り付け用のボルト穴である。図3は、図1の自動車用衝撃緩衝部材のA−A線に沿う切断図。図4は他の例のA−A線に沿う切断図である。図中の4は、非発泡部である外殻構造部を示し、5は発泡構造部を示す。本発明の自動車用衝撃緩衝部材は、通常図1、図2のように、長尺の湾曲部と両端部に設けられた自動車本体への取り付け部からなる。また全体として、閉断面一体構造をとり、外殻の非発泡構造部と発泡構造部の多層構造をとるところに特徴がある。図3は発泡構造部がほぼ全体にわたり均一である場合を示し、図4は発泡構造部が比較的高密度の隔壁を隔てて長手方向に三分割された場合を示す。この隔壁、すなわちリブ構造は自動車用緩衝部材の車体に対して前後方向であって、通常長手方向に沿って連続して形成されている。この隔壁は通常1〜4であり、2〜3であることが変形量、耐座屈性、成形性などの点から好ましい。ここで、自動車用衝撃緩衝部材の断面形状は長手方向に垂直な断面の外殻が、略矩形または自動車本体側から前面部側に向かってテーパーをなす台形とするのが好ましい。テーパー部の角度αは、1〜20度の範囲に設定するのが好ましね、より好ましくは1〜10度の範囲である。この範囲を越えると成形性や耐座屈性が低下する。このように、ある角度を有する形状にすると外殻の中で車体本体取り付け側の上下部分の肉厚が厚くなることになり、耐座屈性がより向上する。
【0013】
なお、内部の発泡構造は、その密度は必ずしも均一である必要はなく、また非発泡部との境界も明確に区別できる必要はなく密度が連続的に変化したものであってもよい。また、隔壁部は実質的に非発泡樹脂で形成されることが好ましいが他の発泡部分より、高密度であれば本発明の効果は達成される。さらに、自動車本体への取り付け手段、位置についても任意であり、図2の場合の部材の両側の場合に限らず、両端部の中央部に非発泡部のみからなる部分を形成してもよい。
【0014】
ここにおいて、外殻や隔壁の厚み等は部材の全体の設計重量、要求特性、発泡部と非発泡部の密度等を考慮して適宜決定すればよい。また、外殻部の厚み、断面の面積等は、部材の長手方向で一定とすることもできるが、自動車の種類、重量、車幅などの要因や必要な耐荷重、耐座屈によって適宜決定することができる。
【0015】
以上のような閉断面構造を採用することにより、内部に発泡構造部を有さない同一重量の自動車用衝撃緩衝部材と比較して、衝撃緩和特性にすぐれ、耐変形、耐座屈性にすぐれたものとなる。
次に、本発明の自動車用衝撃緩衝部材の製造方法について説明する。
本発明の製造方法は、金型キャビティ内に進退可能で突出状態のスライドコアから形成されるキャビティ内に発泡性の熱可塑性樹脂を射出充填した後、次いでスライドコアを後退させて内部を発泡させることを特徴とする。すなわち一般の発泡体の射出成形とは異なり、溶融樹脂の射出充填時には、最終成形品のキャビティ容積よりも小さい容積、すなわち射出樹脂(発泡がない)に相当する容積として樹脂の発泡を起こさせないように完全充填する。金型による冷却により非発泡の外殻部を形成しこの形成が終わり、外殻部の内側が溶融状態で発泡可能な時点でスライドコアを後退することによって溶融樹脂を発泡させる。この場合に、必要により、スライドコアを後退させる際に、窒素などの高圧ガスを導入して、スライドコアの後退で生じた空間にガスを充満させ、この状態で外殻形成の冷却を行い、ついで脱ガスして樹脂を発泡させ空間を満たす方法を採用することもできる。したがって、この場合はスライトコアの後退後においても、外殻の形成と発泡の抑制が継続することになる。
【0016】
つぎに、本発明の製造方法の概念を図面を用いて説明する。図5はスライドコアが前進した樹脂射出時の、図6はスライドコアが完全に後退した場合の金型の状態を示す金型の断面図である。図5、図6において7は自動車用衝撃緩衝部材の前面側を形成する固定型であり、8は裏面側を形成する移動型である。9はこの移動型から固定型に向かって進退可能に突出するスライドコア型であり、これらによって成形用の空隙部(キャビティ)10が形成されている。
【0017】
自動車用衝撃緩衝部材の製造方法は、まず固定型と移動型を型締めして、次いでスライドコア9をキャビティ内に突出させて自動車用衝撃緩衝部材の重量に相当する樹脂が充填する容積になるように、キャビティ容積を小さくする。このとき必要により、キャビテー10に0.5〜2Mpaの高圧ガスを導入することにより、次いで射出される発泡性の樹脂の発泡を防止するとともに、表面外観を向上させることもできる。発泡性の溶融樹脂をスプルー11よりキャビティに樹脂が発泡しない条件で射出しキヤビティに充填、充満させる。キャビティ内に溶融樹脂が完全に充満されると、金型に接する部分は樹脂の冷却がはじまり発泡することなく硬化が起こり、この硬化により非発泡樹脂からなる外殻が形成される。ついで、内部がいまだ溶融状態である時点でスライドコア9を後退させてキャビテー容積を最終成形品の容積とする。この際にスライドコア9の後退により形成されるキャビティ拡大部分を一時的に空間として確保するために、高圧のガスをスライドコアの頂部に導入することが好ましい。スライドコアの後退が完了した後に導入したガスを排出する。キャビティの拡大による減圧またはガスの排出による減圧により溶融樹脂は発泡しその後冷却硬化し発泡層部分が内部に形成される。
【0018】
このような方法で成形された自動車用衝撃緩衝部材は、図4に示すように外殻部に非発泡構造層4が形成され、内部に発泡構造部分5が形成されたものとなる。なお、内部の発泡構造部分は、図4に示すように比較的高密度のリブ構造を形成する部分6を内蔵したものとなる。この比較的高密度のリブ構造部分の形成は、スライドコアに接している溶融樹脂が外殻部分ほどではないものの、内部の他の部分よりも比較的早く冷却され、スライドコアの後退、脱圧によってスライドコアで隔てられていた壁面の結合が起こることに起因するものと考えられる。なお、外殻の非発泡構造層と内部の発泡構造層は密度的に明確に境界が存在するわけでなく、ある幅をもって変化する場合であってもよい。本製造方法では、内部にリブ構造を形成する図4の場合について述べたが、図3に示す自動車用衝撃緩衝部材はスライドコアが一本の場合でありより容易に製造することができる。なお、非発泡である外殻部の肉厚は、金型の冷却条件、スライドコアの後退時期の制御によって調整できる。また、複数のスライドコアを用いる場合に、スライトコア自体に冷却手段を設けることもできる。
【0019】
以上詳細に述べたように、本発明の自動車用衝撃緩衝部材は外殻の非発泡構造層と内部の発泡構造層が一体構造をとることにより、外殻部だけにより形成された自動車用衝撃緩衝部材よりすぐれた特性を発揮する。また、このような自動車用衝撃緩衝部材はスライドコアの前進時に非発泡構造層を明確に形成し、スライドコアの後退時に内部発泡構造層を形成するという、二段階成形手段を採用することで、1台の成形機で一体成形でき、熱溶着などの二次加工の必要性がなく生産性よく製造することができる。
【0020】
【実施例】
以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
射出成形機〔三菱重工業株式会社製;850MGW(型締力850トン)〕を用いて、図1、図2、図4に示す形状の自動車用衝撃緩衝部材〔長さ:1200mm、幅:125mm、高さ:100mm、テーパ(α):2度〕を成形した。樹脂としては、ポリプロピレン〔出光石油化学株式会社製;IDEMITSU PP J−466HP、MI=3g/10分(230℃、2.16kg荷重)に発泡剤〔永和化成工業株式会社製;ポリスレンEE206〕を2重量%添加したものを用いた。樹脂を溶融し、三分割されたスライドコアを前進した状態で主要部の外殻厚みが5.8mmとなるようにしたキャビティに発泡させないように100%射出充填した。ついで、スライドコアをスライドコアの頂部に2MPaの窒素ガスを導入しながら 最終成形品の形状に対応する位置までスライドコアを後退させた。その後冷却したあと金型を開き自動車用衝撃緩衝部材を取り出した。
【0021】
得られた自動車用衝撃緩衝部材は図4に示すように、斜線部の非発泡構造層部分と発泡構造層部分(×:高密度部分、点々:高発泡部分)から形成されていた。この自動車用衝撃緩衝部材をペンデュラム衝突試験〔車重:1.1トン、衝突条件:5マイル〕を行い、最大変形量、発生荷重、座屈状態を評価した。評価結果を表1に示す。
【0022】
比較例1〜2
図7に示すように、自動車用衝撃緩衝部材の前面用本体部材と裏面用部材を別々に射出成形で成形した。ついで二部材を熱溶着することにより最終の自動車用衝撃緩衝部材を得た。比較例1では実施例1と同じ製品重量とし、比較例2は重量を増加した場合を示す。実施例に準じて評価した結果を表1に示す。これらの評価より、本発明の自動車用衝撃緩衝部材は、製造工程が少ないにもかかわらず製品重量を考慮して最大変形量が少なくすぐれた衝撃緩衝特性を有することが明らかである。
【0023】
【表1】

Figure 0003838752
【0024】
【発明の効果】
本発明によれば、特定の閉断面二層構造を採用することにより、衝撃緩衝効果が高く、耐座屈性にすぐれ、軽量化も維持される自動車用衝撃緩衝部材が得られる。また、射出成形手段のみによって成形できるとともに、外殻部の形成で実質賦形が完了し、内部の発泡構造層の冷却を特に待つことなく離型が可能であり成形サイクルの点でもすぐれている。さらに、部材全体が同一の材料で形成されるのでリサイクル性にもすぐれたものである。
【0025】
【図面の簡単な説明】
【図1】本発明の自動車用衝撃緩衝部材の概略正面図
【図2】本発明の自動車用衝撃緩衝部材の概略平面図
【図3】本発明の自動車用衝撃緩衝部材の概略切断図(図1のA−A断面)
【図4】本発明の自動車用衝撃緩衝部材の他の例の概略切断図(図1のA−A断面)
【図5】本発明の製造方法を説明するための、成形前の金型の断面図
【図6】本発明の製造方法を説明するための、成形後の金型の断面図
【図7】比較例の自動車用衝撃緩衝部材の概略切断図
【符号の説明】
:自動車用衝撃緩衝部材
2:自動車本体への取り付け部
3:取り付け用ボルト穴
4:外殻非発泡構造部
5:発泡構造部
6:高密度発泡部
7:固定型
8:移動型
9:スライトコア
10:金型キャビティ
11:スプルー
12:前面用本体部材
13:裏面用部材
14:溶着部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automobile impact cushioning member and a method for manufacturing the same. More particularly, the present invention relates to an automobile impact cushioning member having excellent impact cushioning characteristics and buckling resistance and improved productivity, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, metal shock-absorbing members such as bumpers and bumper beams have been frequently used. Metal shock-absorbing members have no drawbacks in strength, but are susceptible to corrosion, and are disadvantageous in that they are heavy and cannot respond to recent demands for resource saving. For this reason, those made of synthetic resin have been adopted from the viewpoints of weight reduction, resource saving, recyclability, and the like. These shock-absorbing members for automobiles made of synthetic resin are generally effective to have a shape with a closed cross-sectional structure, but since the rigidity is lower than that of metal, optimization of shape, thickness distribution, etc. is required. It is.
[0003]
As a manufacturing method of an impact buffer member for an automobile having a closed cross-sectional structure, there is a method in which a front main body member and a rear surface member are separately formed by integral molding or injection molding by blow molding and bonded by secondary processing. Since the automobile shock-absorbing member obtained by any of the methods has a closed cross-section hollow structure, when an impact is applied, such as during a car collision, the buckling deformation and the strength may not be sufficient. Increasing the wall thickness to ensure strength increases the product weight and reduces the merit of using the resin.
[0004]
In addition, it is conceivable to form the closed cross-section structure with a foam, but even if weight reduction can be achieved, the strength and the like are insufficient and there is no practicality. It is also possible to integrate the foam by inserting it inside, but it is a combination of two kinds of materials, secondary processing is required, such as strength, impact buffering, buckling resistance, Practical use is difficult in terms of productivity.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention utilizes the excellent moldability of the thermoplastic resin and adopts a special molding method, thereby maintaining strength while maintaining weight reduction while being integrally molded by injection molding. An object of the present invention is to provide an automobile impact cushioning member excellent in rigidity, impact cushioning and buckling resistance and an efficient manufacturing method thereof.
[0006]
[Means for Solving the Problems]
The present inventor has conducted various studies on the application to an impact buffer member for automobiles with regard to excellent productivity of injection molding and weight reduction by foam molding. As a result, a shock-absorbing member for automobiles having a composite structure composed of a non-foamed, high-density outer shell and a low-density inner foamed structure portion is obtained by using a slide core in the molding die and combining with a foamable resin. I found out. The present invention has been completed based on such findings.
[0007]
That is, (1) A shock-absorbing member for an automobile, which is a monolithic structure forming body made of a thermoplastic resin, and the inside excluding the outer shell portion has a foam structure.
(2) internal foamed structure portion, automotive shock absorbing member according to the above (1) to a built-in rib structure continuous in the direction before and after the vehicle a higher density than the inner foam structure portion.
(3) The automobile shock absorbing member according to (1) or (2), wherein the shock absorbing member has 1 to 4 rib structures in the longitudinal direction.
(4) After the foaming thermoplastic resin is injected and filled into the cavity formed from the projecting slide core that can be advanced and retracted into the mold cavity, the slide core is then retracted to foam the inside. A method of manufacturing an impact buffer member for an automobile.
(5) The automobile impact cushioning member according to (4), wherein after filling and injecting a foamable thermoplastic resin, the slide core is retracted while injecting gas and then the pressure is removed to foam the inside. Production method.
(6) The method for producing an impact buffering member for an automobile according to (4) or (5) above, wherein a mold cavity having 1 to 4 slide cores in the longitudinal direction is used.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
First, there is no restriction | limiting in particular as a thermoplastic resin which comprises the impact buffer member for motor vehicles of this invention, The thermoplastic resin which can be injection-molded is used. Examples of these resins include polypropylene, ethylene-propylene random copolymer or block copolymer, crystalline polyolefin such as high and medium density polyethylene, polyamide, polyester, polycarbonate, and ABS resin. These resins can be used alone or in combination of two or more. Among these, crystalline polyolefins such as polypropylene, propylene-ethylene block copolymer, and high density polyethylene are preferable.
[0009]
Thermoplastic resins include known low-crystalline ethylene-α-olefin copolymers (EPR, EBR, EPDM, etc.), styrene-butadiene rubber, for the purpose of improving impact resistance, rigidity, and heat resistance. Impact strength improving compounding agent such as styrene-butadiene-styrene block copolymer rubber, styrene-ethylene-butylene-styrene block copolymer, strength, rigidity, heat resistance improving compounding agent, unsaturated such as talc, mica, glass fiber, etc. Carboxylic acid modified polyolefin resin etc. can also be mix | blended as needed. These blending amounts are usually 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. Furthermore, crystallization accelerators, antioxidants (phosphorus, phenol, sulfur, etc.), neutralizers, lubricants, dispersants, peroxides, heat stabilizers, UV absorbers, light stabilizers, antistatic agents Additives such as flame retardants, flame retardant aids, plasticizers, epoxy compounds, metal deactivators, pigments and dyes can be added as appropriate.
[0010]
In producing the automobile impact buffer member of the present invention, it is necessary to add a foaming agent to impart foamability to the thermoplastic resin. As the foaming agent, one that decomposes by heat to generate gas is used, and examples thereof include oxalic acid derivatives, azo compounds, hydrazine derivatives, semicarbazides, azide compounds, nitroso compounds, triazoles, urea, and related compounds. Specific examples include azodicarbonamide (ADCA), benzenesulfohydrazide, N, N-dinitropentamethylenetetramine, terephthalazide and the like.
[0011]
The shock-absorbing member for automobiles of the present invention is an integral structure molded body made of a thermoplastic resin, and the inside excluding the outer shell portion has a foamed structure. In other words, it is not a uniform foam structure, as in the case of a molded product obtained by molding with a foamable resin by a general injection molding method. The structure consists of a substantially two-layer structure. An example of the shock absorbing member for automobile according to the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a front view of an impact buffer member for an automobile, and FIG. 2 is a plan view. In the figure, 1 is an impact buffer member for an automobile, 2 is an attachment portion to the vehicle body, and 3 is a bolt hole for attachment. FIG. 3 is a cross-sectional view taken along the line AA of the automobile shock absorbing member of FIG. 1. FIG. 4 is a sectional view taken along the line AA of another example. In the figure, 4 indicates an outer shell structure part which is a non-foamed part, and 5 indicates a foamed structure part. The impact buffering member for automobiles of the present invention is usually composed of a long curved part and attachment parts to the automobile body provided at both ends as shown in FIGS. Further, as a whole, it has a characteristic in that it has a closed cross-section integrated structure and a multi-layer structure of a non-foamed structure portion and a foamed structure portion of the outer shell. FIG. 3 shows a case where the foamed structure portion is substantially uniform throughout, and FIG. 4 shows a case where the foamed structure portion is divided into three in the longitudinal direction across a relatively high density partition wall. The partition wall, that is, the rib structure, is formed in the front-rear direction with respect to the vehicle body of the automobile shock-absorbing member, and is usually formed continuously along the longitudinal direction. The partition walls are usually 1 to 4 and preferably 2 to 3 from the viewpoints of deformation, buckling resistance, moldability and the like. Here, it is preferable that the cross-sectional shape of the shock-absorbing member for automobiles is a trapezoid in which the outer shell having a cross-section perpendicular to the longitudinal direction forms a substantially rectangular shape or a taper from the automobile body side toward the front surface side. The angle α of the tapered portion is preferably set in the range of 1 to 20 degrees, more preferably in the range of 1 to 10 degrees. If this range is exceeded, the moldability and buckling resistance will decrease. As described above, when the shape has a certain angle, the thickness of the upper and lower portions of the outer shell on the vehicle body attachment side is increased, and the buckling resistance is further improved.
[0013]
The density of the internal foam structure does not necessarily have to be uniform, and the boundary with the non-foamed portion need not be clearly distinguished, and the density may be continuously changed. In addition, it is preferable that the partition wall is substantially formed of a non-foamed resin, but the effect of the present invention is achieved if the density is higher than other foamed portions. Furthermore, the attachment means and position to the automobile body are also arbitrary, and not only in the case of both sides of the member in the case of FIG. 2, but also a portion consisting only of a non-foamed portion may be formed at the center of both ends.
[0014]
Here, the thickness of the outer shell and the partition may be appropriately determined in consideration of the overall design weight of the member, required characteristics, the density of the foamed portion and the non-foamed portion, and the like. In addition, the thickness of the outer shell, the area of the cross section, etc., can be constant in the longitudinal direction of the member, but are determined appropriately according to factors such as the type, weight, width of the vehicle, necessary load resistance, and buckling resistance. can do.
[0015]
By adopting the closed cross-section structure as described above, it has superior shock mitigation characteristics, deformation resistance, and buckling resistance compared to the same weight automotive impact cushioning member that does not have a foam structure inside. It will be.
Next, the manufacturing method of the impact buffer member for automobiles of the present invention will be described.
In the manufacturing method of the present invention, a foamable thermoplastic resin is injected and filled into a cavity formed from a projecting slide core that can advance and retreat into a mold cavity, and then the slide core is retracted to foam the inside. It is characterized by that. That is, unlike general foam injection molding, when the molten resin is injected and filled, the volume of the resin is smaller than the cavity volume of the final molded product, that is, the volume corresponding to the injection resin (no foaming) is prevented from causing foaming of the resin. Fill completely. A non-foamed outer shell portion is formed by cooling with a mold, and this formation is completed. When the inside of the outer shell portion can be foamed in a molten state, the slide core is retracted to foam the molten resin. In this case, if necessary, when the slide core is retracted, a high-pressure gas such as nitrogen is introduced to fill the space generated by the slide core retreat, and cooling of the outer shell is performed in this state. Next, a method of filling the space by degassing and foaming the resin can be adopted. Therefore, in this case, the formation of the outer shell and the suppression of foaming will continue even after the slite core is retracted.
[0016]
Next, the concept of the production method of the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view of the mold showing the state of the mold when the slide core is moved forward and the resin is injected, and FIG. 6 is a state of the mold when the slide core is completely retracted. 5 and 6, reference numeral 7 denotes a fixed type that forms the front side of the automobile shock absorbing member, and 8 denotes a movable type that forms the back side. Reference numeral 9 denotes a slide core mold projecting from the movable mold toward the fixed mold so as to be able to advance and retreat, and a molding cavity 10 is formed by these.
[0017]
In the manufacturing method of the shock absorbing member for automobiles, first, the fixed mold and the movable mold are clamped, and then the slide core 9 is protruded into the cavity so that the volume corresponding to the weight of the shock absorbing member for automobiles is filled. Thus, the cavity volume is reduced. At this time, if necessary, by introducing a high pressure gas of 0.5 to 2 Mpa into the cavity 10, foaming of the foamable resin to be injected next can be prevented and the surface appearance can be improved. The foamable molten resin is injected from the sprue 11 into the cavity so that the resin does not foam, and is filled and filled in the cavity. When the molten resin is completely filled in the cavity, the resin is cooled and the portion that contacts the mold is cured without foaming, and an outer shell made of non-foamed resin is formed by this curing. Next, when the inside is still in a molten state, the slide core 9 is moved backward to make the cavity volume the volume of the final molded product. At this time, it is preferable to introduce a high-pressure gas into the top of the slide core in order to temporarily secure a cavity enlarged portion formed by the retraction of the slide core 9 as a space. The introduced gas is discharged after the slide core has been retracted. The molten resin is foamed by the decompression due to the expansion of the cavity or the decompression due to the discharge of the gas, and then cooled and hardened to form the foamed layer portion inside.
[0018]
As shown in FIG. 4, the automobile impact cushioning member formed by such a method has a non-foamed structural layer 4 formed in the outer shell portion and a foamed structural portion 5 formed therein. Note that the internal foam structure portion includes a portion 6 that forms a relatively high density rib structure as shown in FIG. The formation of this relatively high density rib structure part is that the molten resin in contact with the slide core is not as much as the outer shell part, but is cooled relatively faster than other parts inside, and the slide core is retracted and depressurized. It is thought that this is caused by the coupling of the wall surfaces separated by the slide core. In addition, the non-foamed structure layer of the outer shell and the foamed structure layer in the inner part do not necessarily have a clear boundary in terms of density, and may change with a certain width. In the present manufacturing method, the case of FIG. 4 in which the rib structure is formed inside has been described. However, the automobile shock absorbing member shown in FIG. 3 has a single slide core and can be manufactured more easily. The thickness of the non-foamed outer shell can be adjusted by controlling the cooling conditions of the mold and the retreat timing of the slide core. Moreover, when using a some slide core, a cooling means can also be provided in slite core itself.
[0019]
As described above in detail, the impact buffering member for automobiles of the present invention has an impact cushioning member for automobiles that is formed only by the outer shell portion by forming the non-foamed structural layer of the outer shell and the foamed structural layer of the inner body integrally. Exhibits superior properties than the members. In addition, by adopting a two-stage molding means, such an automobile impact cushioning member clearly forms a non-foamed structural layer when the slide core advances, and forms an internal foamed structural layer when the slide core moves backward, It can be integrally formed with a single molding machine and can be manufactured with high productivity without the need for secondary processing such as heat welding.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
Example 1
Using an injection molding machine [Mitsubishi Heavy Industries, Ltd .; 850 MGW (clamping force 850 tons)], an impact buffer member for automobiles having a shape shown in FIGS. 1, 2, and 4 [length: 1200 mm, width: 125 mm, Height: 100 mm, taper (α): 2 degrees] was molded. As the resin, polypropylene (manufactured by Idemitsu Petrochemical Co., Ltd .; IDEMITSU PP J-466HP, MI = 3 g / 10 min (230 ° C., 2.16 kg load)) and 2 blowing agents (manufactured by Eiwa Kasei Kogyo Co., Ltd .; Polyslen EE206) are used. What added weight% was used. The resin was melted and 100% injection-filled so as not to foam into the cavity whose outer shell had a thickness of 5.8 mm in a state where the slide core divided into three parts was advanced. Next, the slide core was retracted to a position corresponding to the shape of the final molded product while introducing 2 MPa of nitrogen gas into the top of the slide core. Then, after cooling, the mold was opened and the automobile shock absorbing member was taken out.
[0021]
As shown in FIG. 4, the obtained impact buffering member for automobiles was formed of a non-foamed structure layer portion and a foamed structure layer portion (×: high density portion, points: highly foamed portion) in the shaded portion. The impact buffer member for automobiles was subjected to a pendulum collision test (vehicle weight: 1.1 ton, collision condition: 5 miles) to evaluate the maximum deformation, generated load, and buckling state. The evaluation results are shown in Table 1.
[0022]
Comparative Examples 1-2
As shown in FIG. 7, the front body member and the back surface member of the automobile shock absorbing member were separately molded by injection molding. Then, the final shock absorbing member for automobiles was obtained by heat welding the two members. In Comparative Example 1, the product weight is the same as in Example 1, and Comparative Example 2 shows the case where the weight is increased. The results of evaluation according to the examples are shown in Table 1. From these evaluations, it is clear that the shock absorbing member for automobiles of the present invention has excellent shock absorbing characteristics with a small maximum deformation amount in consideration of the product weight in spite of a small manufacturing process.
[0023]
[Table 1]
Figure 0003838752
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the impact-buffering member for motor vehicles by which a specific impact cross-section two-layer structure is employ | adopted has a high impact buffering effect, is excellent in buckling resistance, and a weight reduction is also obtained. In addition to being able to be molded only by injection molding means, substantial shaping is completed by forming the outer shell, and it is possible to release without particularly waiting for the cooling of the internal foam structure layer, which is also excellent in terms of molding cycle. . Furthermore, since the entire member is made of the same material, it is excellent in recyclability.
[0025]
[Brief description of the drawings]
FIG. 1 is a schematic front view of an impact buffer member for an automobile according to the present invention. FIG. 2 is a schematic plan view of an impact buffer member for an automobile according to the present invention. 1 AA cross section)
FIG. 4 is a schematic sectional view of another example of the shock absorbing member for automobile according to the present invention (cross section AA in FIG. 1).
FIG. 5 is a sectional view of a mold before molding for explaining the manufacturing method of the present invention. FIG. 6 is a sectional view of a mold after molding for explaining the manufacturing method of the present invention. Schematic cutaway view of impact buffer member for automobile of comparative example 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 : Impact buffer member for motor vehicles 2: Attachment part to motor vehicle body 3: Bolt hole 4 for attachment: Non-foaming structure part 5: Foam structure part 6: High density foam part 7: Fixed type 8: Moving type 9: Slite core 10: mold cavity 11: sprue 12: front body member 13: back member 14: welded portion

Claims (6)

熱可塑性樹脂からなる一体構造成形体であって外殻部分を除いた内部が発泡構造であることを特徴とする自動車用衝撃緩衝部材。A shock-absorbing member for automobiles, wherein the shock-absorbing member is a monolithic structure molded body made of a thermoplastic resin, and the inside excluding the outer shell portion has a foamed structure. 内部発泡構造部分が、この内部発泡構造部分より高密度であって車体の前後方向に連続するリブ構造を内蔵する請求項1記載の自動車用衝撃緩衝部材。Internal foam structure portion, automotive shock absorbing member according to claim 1 wherein a built-in rib structure continuous with the front-rear direction of the vehicle body to a higher density than the inner foam structure portion. リブ構造を長手方向に1〜4本有する請求項1または2記載の自動車用衝撃緩衝部材。The shock-absorbing member for automobile according to claim 1 or 2, having 1 to 4 rib structures in the longitudinal direction. 金型キャビティ内に進退可能で突出状態のスライドコアから形成されるキャビティ内に発泡性の熱可塑性樹脂を射出充填した後、次いでスライドコアを後退させて内部を発泡させることを特徴とする自動車用衝撃緩衝部材の製造方法。For automobiles characterized in that a foamable thermoplastic resin is injected and filled into a cavity formed from a projecting slide core that can be advanced and retracted into a mold cavity, and then the slide core is retracted to foam the inside. A method of manufacturing the shock absorbing member. 発泡性の熱可塑性樹脂を射出充填した後、ガスを圧入しながらスライドコアを後退後脱圧して内部を発泡させることを特徴とする請求項4記載の自動車用衝撃緩衝部材の製造方法。5. The method for producing an impact buffering member for an automobile according to claim 4, wherein the foaming thermoplastic resin is injected and filled, and then the slide core is retracted and then depressurized while gas is being injected to foam the inside. 長手方向に1〜4本のスライドコアを有する金型キャビティを用いる請求項4または5記載の自動車用衝撃緩衝部材の製造方法。The method for producing an impact buffer member for an automobile according to claim 4 or 5, wherein a mold cavity having 1 to 4 slide cores in the longitudinal direction is used.
JP23060997A 1997-08-27 1997-08-27 Shock absorbing member for automobile and manufacturing method thereof Expired - Fee Related JP3838752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23060997A JP3838752B2 (en) 1997-08-27 1997-08-27 Shock absorbing member for automobile and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23060997A JP3838752B2 (en) 1997-08-27 1997-08-27 Shock absorbing member for automobile and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1160769A JPH1160769A (en) 1999-03-05
JP3838752B2 true JP3838752B2 (en) 2006-10-25

Family

ID=16910449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23060997A Expired - Fee Related JP3838752B2 (en) 1997-08-27 1997-08-27 Shock absorbing member for automobile and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3838752B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488864B2 (en) 2000-10-19 2004-01-19 森六株式会社 Shock absorber for vehicles
JP2007216532A (en) * 2006-02-17 2007-08-30 Mitsuboshi Kaseihin Kk Foamed resin, interior part for automobile, and manufacturing method for foamed resin
JP5202173B2 (en) * 2008-08-07 2013-06-05 テクノポリマー株式会社 Manufacturing apparatus and manufacturing method of resin foam molding
JP5380112B2 (en) * 2009-02-27 2014-01-08 株式会社プライムポリマー Injection foam molding method and apparatus
JP5425559B2 (en) * 2009-08-25 2014-02-26 三甲株式会社 container
JP5377251B2 (en) * 2009-11-27 2013-12-25 旭化成株式会社 Foamed resin container
JP5204915B2 (en) * 2012-07-26 2013-06-05 積水化学工業株式会社 Awning
KR101323805B1 (en) * 2012-10-24 2013-10-31 주식회사 에이피케이 Ear tip and method of manufacturing the same and ear phone including the ear tip
JP6111163B2 (en) * 2013-07-29 2017-04-05 積水化成品工業株式会社 Foam molding

Also Published As

Publication number Publication date
JPH1160769A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US7160621B2 (en) Energy absorbing articles
CA2504490C (en) Impact absorbing member for vehicle
US6488871B2 (en) Fiber-reinforced resin molded article and method of manufacturing the same
KR101051896B1 (en) Vehicle bumper structure
JP4976147B2 (en) Clip mounting seat and interior material
JP6658472B2 (en) Foam molding
JP3838752B2 (en) Shock absorbing member for automobile and manufacturing method thereof
JP2001082520A (en) Shock absorbing member, interior trim member for automobile, and door trim for automobile
KR20010075109A (en) Door inside member for car
WO2022162790A1 (en) Resin formed product
US8048347B2 (en) Method of manufacture of a foamed core class “A” article
JP4216923B2 (en) Manufacturing method of bumper core material for automobile
JP2007030475A (en) Resin molding, its manufacturing process and automobile door
JP4424633B2 (en) Bumper core material for automobile
JP4697546B2 (en) Interior material for vehicle and manufacturing method thereof
JP4762523B2 (en) Bumper core material for vehicle body, molding apparatus and molding method thereof
JPH08295194A (en) Impact absorbing structural body for vehicle
JP2001018250A (en) Composite molding of synthetic resin
US20130214446A1 (en) Method of forming resin molded product
WO2024071426A1 (en) Foam molded product, vehicle member, and vehicle backdoor
US10800075B2 (en) Vehicle interior part and method of manufacturing same
JPH09226485A (en) Thermoplastic resin made automobile shock absorbing member and manufacture thereof
JP2005132303A (en) Impact absorption element for vehicle
JP2009029030A (en) Vibratorily welded structure of resin-molded article
JP2023055427A (en) Molded body, automobile member, and method for manufacturing molded body

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees