JP3838384B2 - Electrophotographic photoreceptor - Google Patents
Electrophotographic photoreceptor Download PDFInfo
- Publication number
- JP3838384B2 JP3838384B2 JP27351596A JP27351596A JP3838384B2 JP 3838384 B2 JP3838384 B2 JP 3838384B2 JP 27351596 A JP27351596 A JP 27351596A JP 27351596 A JP27351596 A JP 27351596A JP 3838384 B2 JP3838384 B2 JP 3838384B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- group
- layer
- general formula
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、特定の高分子化合物を用いた電子写真感光体に関する。
【0002】
【従来の技術】
現在、電子写真用有機感光体(OPC)において、光導電性の有機材料として種々の構造のものが提案され、実用化されている。光導電性の有機材料は、正孔輸送性のものと、電子輸送性のものとに大別できるが、有機材料の特性上、正孔輸送性の材料の方がより高性能のものが得られるため、特に大きな移動度の要求される電荷輸送層に正孔輸送性の材料を使用し、これを電荷発生層上に積層したマイナス帯電型のものが、実用化されたOPCの大半を占めているのが現状である。この場合、導電性支持体上に直接光導電層を形成した場合、帯電性が低く、また繰り返し時の安定性に欠ける等の問題があった。また、導電性支持体と光導電層との接着性の不足により光導電層が剥離したり、導電性支持体上に光導電層を塗布する際に塗布欠陥が発生する等の問題もあった。さらに、導電性支持体表面の凹凸により光導電層の膜厚のむらを生じ、その結果として黒点、白抜け等の画像欠陥が発生する等の問題もあった。
【0003】
これらの問題を解決するための手段として、導電性支持体と光導電層との間に下引き層を設けることが試みられている。この下引き層を構成する材料としては、ポリ酢酸ビニル、ポリビニルアルアコール、ポリビニルフォルマール、ポリビニルブチラール、ポリエステル、ポリアミド等の熱可塑性樹脂、或いはエポキシ樹脂、ウレタン樹脂、フェノール樹脂等の熱硬化製樹脂を用いることが検討されている(特開昭48−47344号公報、特開昭52−20386号公報、特開昭58−30757号公報、特開昭60−22586号公報等)。しかしながら、これらの材料を主成分とする下引き層を用いた場合、前述の帯電性や画像欠陥等に対する改善の効果を十分に引き出すべく下引き層の膜厚を厚くすると、感光体の光感度の低下や残留電位の増大を招きやすいという難点がある。
【0004】
また、金属アルコキシドや金属キレート等の有機金属化合物を主成分とする下引き層を用いると、光感度の低下や残留電位の増大を引き起こすことなく、帯電性の低下や画像欠陥等を抑制できることが知られている(特公平3−66663号公報、特開昭59−223439号公報等)。しかしながら、これらの有機金属化合物を用いた下引き層は、一般に湿度等の環境の影響を受けやすく、また、塗液状態では化学的に不安定なために、比較的短期間で劣化する等の問題がある。
【0005】
下引き層は、その要求される機能上、電子輸送性であることが好ましく、十分な性能を有する電子輸送性材料が得られれば、これらの問題を回避することが可能となると考えられる。その一つのアプローチとして、高分子樹脂中に特定の電子輸送性または電子受容性の低分子化合物を添加した下引き層を用いることが検討されている(特開昭55−142356号公報、特開昭59−170846号等)。しかしながら、これら低分子化合物を用いる場合、有機溶剤に溶解しやすいものの場合には、導電性支持体上に形成された下引き層の上に光導電層を塗布する工程において、上層中に浸出して下引き層中での濃度の低下を起こし、また、その逆に有機溶剤に溶解し難いものの場合には、下引き層中で結晶化を起こすため、目的とする改善効果が得られ難いという問題があった。
【0006】
また、電荷発生層と電荷輸送層の順序を逆にして、プラス帯電用OPCとして使用することも検討されているが、この場合には機械的な強度の低い電荷発生層が上層となるため、OPCのライフを伸ばすために保護層を形成する必要がある。この場合にも機能上、保護層は電子輸送性であることが好ましいが、使用される電子輸送性材料は一般的に溶剤に溶解し難く、かつ、樹脂にも相溶し難いため、均一で機械的強度の高い塗膜よりなる保護層が得られ難いという欠点があった。
【0007】
さらにこれを改良するものとして、電子輸送性材料をポリマー化してアクセプターを有するポリマーを製造する試みもなされている(特開昭52−12153号公報、特開昭52−12154号公報等)。しかしながら、アクセプターを有するポリマーは、他層との接着性、強度等の点で未だ十分な性能を有するものではなく、満足すべきものは未だ得られていないのが現状である。
【0008】
【発明が解決しようとする課題】
したがって、本発明は、従来の技術における上記のような実情に鑑みてなされたものである。すなわち、本発明の目的は、特定の電子輸送性のポリマーを使用し、帯電性、光感度、繰り返し安定性等において改良された特性を有する電子写真感光体を提供することにある。
【0009】
【課題を解決するための手段】
電子輸送性のポリマーを得るためには、空気中の酸素によるトラップを避けるため、飽和カロメル電極(SCE)に対し、概ね−0.8V以上の還元電位を有することが必要であるが、本発明者等は、鋭意検討した結果、特に下記一般式(I)で示されるポリマーが、上記の要求を満足し、均一で機械的強度が高いポリマー層を形成することを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明の電子写真感光体は、導電性支持体上に、下記一般式(I)で示されるポリマーを含有する層を設けたことを特徴とする。
【化3】
[式中、Rは水素原子、炭素数1〜10の脂肪族炭化水素または単環芳香族炭化水素基を表し、Aは下記一般式(II)〜(VI)で示される基を表し、
【化4】
〔式中、Xは、C=O、O、S、SO2 またはNR3 (R3 は水素原子、アルキル基、アリール基またはアシル基を表す。)、R1 およびR2 は、アルキル基、アリール基、ハロゲン原子、ニトロ基、アシル基またはシアノ基を表し、qおよびrは、それぞれ0ないし2の整数を意味する。〕
lは0以上の整数、mおよびnは1以上の整数を意味し、l+m+nは20〜10,000の範囲にあり、かつ、0.1<n/(l+m+n)<0.9である。]
本発明における上記一般式(I)で示される電子輸送性のポリマーは、飽和カロメル電極(SCE)に対し、概ね−0.8V以上の還元電位を有するが、そのために、基:A−CO−O−として、概ね−0.8V以上の還元電位を有する基である上記一般式(II)〜(VI)で示されるものが採用される。また、nの値は、それに対する割合が大きいほど電子輸送性に関しては有効であるが、あまり大きすぎると他層との接着性、機械的強度が低下し、一方、その割合が小さいと他層との接着性、機械的強度に関しては有利であるが、電子輸送性が低下し、期待する効果が得られにくい。したがって、nの値は、0.1<n/(l+m+n)<0.9の範囲に設定することが必要であり、好ましくは0.2<n/(l+m+n)<0.85の範囲に設定される。n/(l+m+n)の値が上記の範囲にある電子輸送性ポリマーを用いると、上層の塗布溶剤に対しても適切な耐性が得られ、電子輸送性も高いものとなる。
【0011】
また、本発明において、上記一般式(I)で示されるポリマーは、下引き層に含有させるのが好ましい。更にまた、ポリマーは顔料分散に有利な水酸基を有するため、有機微粉末として、電子輸送性の顔料、特にアントアントロン顔料、ペリレン顔料、アゾ顔料を分散させるのが好ましく、それにより電子輸送性をさらに改良することもできる。
【0012】
【発明の実施の形態】
以下、本発明の発明の実施の形態について詳しく説明する。
本発明において用いられる前記一般式(I)で示されるポリマーは、下記一般式(VII )で示されるポリビニルアルコールまたはポリビニルアセタール樹脂と下記一般式(VIII)で示されるカルボン酸またはそのハロゲン化物とを反応させることにより合成することができる。
【0013】
【化5】
(式中、Rは前記と同意義を有し、l′およびm′はモル数を意味し、l′は0であってもよい。)
A−CO−Z (VIII)
(式中、Aは前記と同意義を有し、Zはハロゲン原子または水酸基を表す。)
上記一般式(VIII)がA−CO−OH:すなわちカルボン酸を用いて合成を行う場合には、例えば、Langmuir Vol.9,第211頁(1993)に記載されているように、一般式(VII )で示されるポリビニルアルコールまたはポリビニルアセタール樹脂とA−CO−OHで示される化合物を、ピリジン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアミド等の溶剤に溶解し、2,4,6−トリニトロクロロベンゼン等の脱水剤を加え、加熱することにより合成することができる。この場合、ポリビニルアルコールまたはポリビニルアセタール樹脂とA−CO−OHで示される化合物との比率は、必要に応じて任意の割合で使用することができるが、0.1<n/(l+m+n)<0.9の範囲にすることが必要である。それにより、他層との接着性、強度、電子輸送性、上層の塗布溶剤に対する耐性等の点で優れたものとなる。溶剤は、ポリビニルアルコールまたはポリビニルアセタール樹脂1重量部に対して1〜1000重量部の範囲で使用できるが、溶剤の量が少ないと反応中の粘度が高くなり、また、多すぎると廃液が増加し、処理が煩雑となるため5〜500重量部、さらに好ましくは10〜200重量部の範囲で使用すればよい。2,4,6−トリニトロクロロベンゼン等の脱水剤は、A−CO−OHで示される化合物1当量に対し0.5〜10当量、好ましくは0.7〜5当量、さらに好ましくは1〜3当量の範囲で使用する。さらに必要に応じて、ピリジン、トリエチルアミン等の触媒を用いてよく、2,4,6−トリニトロクロロベンゼン等の脱水剤1当量に対し、0.5〜100当量、好ましくは0.7〜70当量、さらに好ましくは1〜50当量の範囲で使用すればよい。反応温度は室温〜溶剤の沸点の範囲の温度で任意に選択できるが、50℃〜溶剤の沸点、さらに好ましくは70℃〜溶剤の沸点の範囲で反応させることが好ましい。
【0014】
また、上記一般式(VIII)で示される化合物として、ハロゲン化物を用いて合成を行う場合には、一般に用いるエステル化と同様にして合成することができる。例えば、上記一般式(VII )で示されるポリビニルアルコールまたはポリビニルアセタール樹脂と上記一般式(VIII)においてZがハロゲン原子を表すハロゲン化物とを、ピリジン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアミド等の溶剤に溶解し、ピリジンやトリエチルアミン等の有機塩基性触媒を用いて反応させる。この場合、ポリビニルアルコールまたはポリビニルアセタール樹脂とハロゲン化物の比率は、必要に応じて任意の割合で使用することができるが、0.1<n/(l+m+n)<0.9の範囲のポリマーが得られるように調整する必要がある。それにより、他層との接着性、強度、電子輸送性、上層の塗布溶剤に対する耐性などの点で優れたポリマーが得られる。溶剤は、ポリビニルアルコールまたはポリビニルアセタール樹脂1重量部に対し1〜1000重量部で使用できるが、溶剤の量が少ないと反応中の粘度が高くなり、また、多すぎると廃液が増加し、処理が煩雑となるため5〜500重量部、さらに好ましくは10〜200重量部で使用すればよい。ピリジン、トリエチルアミン等の触媒は、ハロゲン化物1当量に対し1〜10当量、好ましくは1.5〜7当量、さらに好ましくは2〜5当量の範囲で使用する。反応温度は室温〜溶剤の沸点の範囲の温度で任意に選択できるが、反応の情況によりコントロールするのが望ましい。
【0015】
上記のいずれかの方法で得られたポリマー含有反応溶液は、反応終了後、メタノール、エタノール等のアルコール類、アセトン、水等のポリマーが溶解しにくい貧溶剤中に滴下し、析出させ、ポリマーを分離した後、ポリマーを水や有機溶剤で十分に洗浄し、乾燥させる。さらに、必要に応じて、再沈澱処理により、適当な有機溶剤に溶解させ、貧溶剤中に滴下し、ポリマーを析出させる処理を繰り返してもよい。再沈澱処理の際には、メカニカルスターラー等で、効率よく撹拌しながら行うことが好ましい。再沈澱処理の際にポリマーを溶解させる溶剤は、ポリマー1重量部に対して、1〜100重量部、好ましくは2〜50重量部の範囲で用いられる。また、貧溶剤はポリマー1重量部に対して、1〜1000重量部、好ましくは10〜500重量部の範囲で用いられる。
【0016】
本発明における上記ポリマーの分子量は、前記式(I)中の(l+m+n)の値が20〜10,000の範囲で任意の値を取り得るが、機械的強度、溶解度等の点からGPCによるポリスチレン換算で5,000〜200,000の範囲、特に10,000〜150,000の範囲のものが好ましい。ポリマーの具体例として、表1〜表6に記載のものがあげられるが、本発明はこれらに限定されるものではない。
【0017】
【表1】
【0018】
【表2】
【0019】
【表3】
【0020】
【表4】
【0021】
【表5】
【0022】
【表6】
【0023】
本発明の電子写真用感光体において、前記一般式(I)で示されるポリマーは、下引き層、電荷発生層、電荷輸送層、表面保護層等の如何なる層にも使用することができるが、下引き層、電荷発生層、表面保護層に使用することが好ましく、特に下引き層に使用することが好ましい。以下、下引き層に使用する場合について、さらに詳しく説明する。
【0024】
下引き層の構成成分としては、前記一般式(I)で示されるポリマーの1種を単独で用いても2種以上を混合して用いてもよく、或いは他の一般的な高分子材料と混合して用いてもよい。混合する高分子材料としては、ポリアクリル酸エステル誘導体、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルフォルマール、ポリビニルブチラール、ポリエステル、ポリカーボネート、ポリアミド等の熱可塑性樹脂、或いはエポキシ樹脂、メラミン樹脂、ウレタン樹脂等の熱硬化性樹脂等をあげることができる。
【0025】
下引き層は、上記の材料を有機溶剤に溶解し、浸漬塗布等の方法で導電性支持体上に塗布した後、加熱乾燥して形成することができる。有機溶剤としては2−プロパノール、1−ブタノール等のアルコール系溶媒、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、ジクロロメタン、1,1,2,2−テトラクロロエタン等のハロゲン化炭化水素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、クロロベンゼン、m−クレゾール等の芳香族系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒等の中から適宜選択することができる。乾燥は50〜200℃の温度範囲で行えばよい。
【0026】
下引き層の構成成分として、前記一般式(I)で示されるポリマーとともに硬化性の材料を混合して用いた場合には、乾燥の前後または乾燥と同時に加熱、光照射、或いは適当な化学的処理等の方法によって硬化処理を行うこともできる。硬化性の材料としては前記の熱硬化性樹脂のほか、メタクリル酸−2−ヒドロキシエチル、メタクリル酸グリシジルなどのアクリル酸誘導体、テトラメトキシシラン、3−アミノプロピルトリメトキシシラン、メタクリルオキシプロピルトリメトキシシラン等のアルコキシシラン類、テトラブトキシチタン、テトラブトキシジルコニウム等の金属アルコキシド等の架橋性の単量体があげられる。
【0027】
さらに粒径0.01〜0.5μmの有機微粉末を含有することもでき、特にアントアントロン顔料、ペリレン顔料、アゾ顔料から選択される電子輸送性の有機顔料を含有させると、安定な電気特性の感光体を得ることができるので、好ましく使用される。これらの具体的なものとしては、例えば、下記に示すビスアゾ顔料および縮合芳香族系顔料等があげられる。
【0028】
【化6】
【0029】
【化7】
【0030】
下引き層の膜厚は、0.1〜10μmの範囲で任意に設定することができるが、0.3〜7μmの範囲が好ましく、特に好ましくは0.5〜5μmの範囲であって、安定した画質と電気特性を得ることができる。
【0031】
光導電層は、電荷発生材料、電荷輸送材料を含有する単一の層からなる単層型、あるいは電荷発生材料を含有する電荷発生層と電荷輸送材料を含有する電荷輸送層の2層からなる積層型のいずれであってもよいが、特に積層型の光導電層を採用した場合において、本発明による著しい改善の効果が得られる。これらの光導電層には、必要に応じてさらに表面保護層を積層してもよく、表面保護層に前記一般式(I)で示されるポリマーを用いてもよい。
【0032】
積層型の電子写真用感光体の場合、電荷発生層は、電荷発生材料を適当な結着樹脂とともに有機溶剤中に分散し、下引き層上に浸漬塗布等の方法で塗布した後に乾燥するか、或いは蒸着等の方法により形成することができる。電荷発生材料としてはフタロシアニン系顔料、各種アゾ顔料、ペリレン顔料、ジブロモアントアントロン等の縮合環芳香族系顔料、スクエアリリウム顔料等を用いることができるが、特に無金属フタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン、ジクロロスズフタロシアニン、チタニルフタロシアニン等のフタロシアニン系顔料を用いた場合において、本発明による著しい改善の効果が得られるので好ましい。
【0033】
また、結着樹脂としては、ポリビニルフォルマール、ポリビニルブチラール、ポリビニルアルコール、ポリエステル、ポリカーボネート、ポリメチルメタクリレート等の中から適宜選択することができる。電荷発生層の膜厚は0.1〜5μmの範囲で任意に設定することができるが、0.2〜3μmの範囲が特に好ましい。
【0034】
また、電荷輸送層は、電荷輸送層材料を適当な結着樹脂とともに有機溶剤に溶解し、前記の電荷発生層上に浸漬塗布等の方法で塗布した後に、乾燥することによって形成することができる。用いる電荷輸送材料としてはアントラセン、ピレン等の多環芳香族化合物、カルバゾール、イミダゾール等の含窒素複素環化合物、ヒドラゾン誘導体、スチルベン誘導体、トリフェニルアミン誘導体、テトラフェニルベンジジン誘導体等の中から適宜選択することができる。また、結着樹脂としてはポリエステル、ポリカーボネート、ポリメチルメタクリレート等の中から適宜選択することができる。電荷輸送層の膜厚は5〜50μmの範囲で任意に設定することができるが、10〜40μmの範囲が特に好ましい。
【0035】
【実施例】
以下、本発明に用いられる化合物の合成例、実施例により、本発明を具体的に説明する。
合成例1(化合物(20)の合成)
ポリビニルアルコール(和光純薬社製、重合度約500)1g、2,7−ジニトロフルオレノン−4−カルボン酸7.1g、N,N−ジメチルアセトアミド50mlおよびピリジン7.9mlを200mlのフラスコに入れ、これに2,4,6−トリニトロクロロベンゼン5.7gを100mlのN,N−ジメチルアセトアミドに溶解した溶液をゆっくりと滴下した。滴下終了後、80℃に加熱し、24時間反応を続けた。反応終了後、50mlのアセトンを加え、析出したポリマーをろ別し、アセトンで十分に洗浄し、得られたポリマーを50mlのN,N−ジメチルアセトアミドに溶解させた。この溶液をアセトン200ml中に撹拌しながらゆっくりと滴下し、再沈澱処理を行った。析出したポリマーをろ別し、アセトンで十分に洗浄し、減圧乾燥して、黄色固体3.5gを得た。その赤外吸収スペクトルを図1に示す。得られたポリマーのmとnの比は、 1H−NMRよりm/n〜約1/1であることが確認された。(l=0、m=約250、n=約250、l+m+n=約500)
【0036】
合成例2(化合物(22)の合成)
500mlのフラスコ中、ポリビニルアルコール(和光純薬社製、重合度約500)10gを蒸留水120mlに65℃で溶解させ、1gの濃硫酸を加えた。これに激しく撹拌しながら、n−ブチルアルデヒド4gを一度に加え、65℃で1時間撹拌した。析出したポリマーをろ別し、蒸留水で十分に洗浄し、乾燥して11.1gのポリビニルブチラール(ブチラール樹脂1)を得た。得られたポリビニルブチラール10gを500mlのフラスコ中に入れ、N,N−ジメチルアセトアミド200mlに溶解させ、2,7−ジニトロフルオレノン−4−カルボン酸15g、およびピリジン7.6mlを加え、これに2,4,6−トリニトロクロロベンゼン11.9gを200mlのN,N−ジメチルアセトアミドに溶解した溶液をゆっくりと滴下した。滴下終了後、80℃に加熱し、5時間反応を続けた。反応終了後、2000mlのアセトン中に撹拌しながらゆっくりと滴下し、ポリマーを析出させた。析出したポリマーをろ別し、アセトンで十分に洗浄し、得られたポリマーを100mlのN,N−ジメチルアセトアミドに溶解させ、このポリマー溶液をアセトン2000ml中に撹拌しながらゆっくりと滴下し、再沈澱処理を行った。析出したポリマーをろ別し、メタノールで十分に洗浄し、減圧乾燥して、黄色固体8.5gを得た。その赤外吸収スペクトルを図2に示す。得られたポリマーのl、mおよびnの比は、1H−NMRよりl/m/n=約3/3/2であることが確認された。(l=約180、m=約180、n=約140、l+m+n=約500)
【0037】
合成例3(化合物(13)の合成)
合成例2と同様にして得たポリビニルブチラール10gを500mlのフラスコ中に入れ、N,N−ジメチルアセトアミド200mlに溶解させ、ナフトキノン−2−カルボン酸15.0gおよびピリジン9.4mlを加え、これに2,4,6−トリニトロクロロベンゼン1.7gをN,N−ジメチルアセトアミド200mlに溶解した溶液をゆっくりと滴下した。滴下終了後、80℃に加熱し、5時間反応を続けた。反応終了後、2000mlのアセトンと1000mlのメタノールを混合して得た溶剤中に、撹拌しながらゆっくりと滴下し、ポリマーを析出させた。析出したポリマーをろ別し、メタノールで十分に洗浄し、得られたポリマーを4400mlのテトラヒドロフランに溶解させ、得られたポリマー溶液をメタノール2000ml中に撹拌しながらゆっくりと滴下し、再沈澱処理を行った。析出したポリマーをろ別し、メタノールで十分に洗浄し、減圧乾燥して、黄色固体9.8gを得た。その赤外吸収スペクトルを図3に示す。得られたポリマーのl、mおよびnの比は、1H−NMRよりl/m/n=約3/3/2であることが確認された。(l=約180、m=約180、n=約140、l+m+n=約500)
【0038】
実施例1
合成例1で得られた化合物(20)1.50gをN,N−ジメチルアセトアミド30mlに溶解し、アルミニウムパイプ(40mmφ×318mm)上に浸漬塗布し、150℃で30分間乾燥して、膜厚1.0μmの下引き層を形成した。
次に、X型−無金属フタロシアニン1重量部、塩化ビニル−酢酸ビニル共重合体(VMCH;ユニオンカーバイド社製)1重量部および酢酸n−ブチル40重量部を1mmφのガラスビーズを用いたサンドミルで2時間分散処理し、得られた分散液を上記の下引き層に浸漬塗布し、100℃で10分間乾燥して、膜厚0.5μmの電荷発生層を形成した。
【0039】
最後に、N,N−ビス(3,4−ジメチルフェニル)ビフェニルアミン1重量部およびポリ(4,4−シクロヘキシリデンジフェニレンカーボネート)樹脂1重量部をモノクロロベンゼン6重量部に溶解した溶液を、上記の電荷発生層上に浸漬塗布し、135℃で1時間乾燥して、膜厚20μmの電荷輸送層を形成し、試験用の電子写真感光体を作製した。
【0040】
上記のようにして得られた電子写真感光体について、レーザープリンター(XP、富士ゼロックス社製)を改造した評価装置により、電気特性の評価試験を行った。電気特性の評価は、常温常湿下(20℃、40%RH)および低温低湿下(10℃、20%RH)における、帯電後レーザー光を照射しない場合の感光体の表面電位(VH )、12erg/cm2 のレーザー光を照射した場合の表面電位(VL )、30erg/cm2 の光を照射した場合の表面電位(VR )を測定することにより行った。さらに、操作を1000サイクル繰り返した後、同様の測定を行った。それらの結果を表7に示す。
【0041】
実施例2および3
下引き層の構成成分として合成例(2)または(3)で得られた化合物(22)または(13)を用いた以外は、実施例1と同様にして電子写真感光体を作製し、電気特性の評価試験を行った。その結果を表7に示す。
【0042】
実施例4
下引き層の構成成分として合成例(1)で得られた化合物(20)1.0g、ジブロモアントアントロン2.0g、1mmφのガラスビーズ50g、N,N−ジメチルアセトアミド40mlをペイントシェーカーに入れて1時間分散処理し、アルミニウムパイプ(40mmφ×318mm)上に浸漬塗布し、150℃で30分間乾燥して、膜厚1.5μmの下引き層を形成した。この下引き層上に実施例1と同様にして電荷発生層および電荷輸送層を形成して電子写真感光体を作製し、電気特性の評価試験行った。その結果を表7に示す。
【0043】
実施例5および6
下引き層の構成成分として合成例(2)または(3)で得られた化合物(22)または(13)を用いた以外は、実施例4と同様にして電子写真感光体を作製し、電気特性の評価試験を行った。その結果を表7に示す。
【0044】
実施例7
下引き層の構成成分として合成例(1)で得られた化合物(20)1.0g、ジブロモアントアントロン2.0g、1mmφのガラスビーズ50g、N,N−ジメチルアセトアミド40mlをペイントシェーカーに入れ、1時間分散処理した。これにさらにトリブトキシジルコニウムアセチルアセトネート0.5gを加え、ペイントシェーカーで30分間分散処理した。得られた分散液をアルミニウムパイプ(40mmφ×318mm)上に浸漬塗布し、150℃で30分間乾燥して、膜厚1.5μmの下引き層を形成した。この下引き層上に実施例1と同様にして電荷発生層および電荷輸送層を形成して電子写真感光体を作製し、電気特性の評価試験を行った。その結果を表7に示す。
【0045】
比較例1
下引き層の構成成分として合成例(2)で得られたポリビニルブチラール(ブチラール樹脂1)を用いた以外は、実施例1と同様にして電子写真感光体を作製し、電気特性の評価試験を行った。その結果を表7に示す。
【0046】
比較例2
共重合ナイロン樹脂(アラミンCM8000、東レ社製)1重量部をエタノール8重量部に溶解して得た溶液をアルミニウムパイプ上に浸漬塗布し、150℃で10分間乾燥して、膜厚1.0μmの下引き層を形成した。以下、実施例1と同様にして電子写真感光体を作製し、電気特性の評価試験を行った。その結果を表7に示す。
【0047】
【表7】
【0048】
【発明の効果】
本発明の電子写真用感光体は、上記の一般式(I)で示されるポリマーを含有する層を設けたことにより、帯電性が高く、かつ低温低湿下においても高感度で、低い残留電位を示し、常に安定した電子写真特性を有するものとなる。
【図面の簡単な説明】
【図1】 合成例1で得られたポリマーの赤外吸収スペクトル図。
【図2】 合成例2で得られたポリマーの赤外吸収スペクトル図。
【図3】 合成例3で得られたポリマーの赤外吸収スペクトル図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor using a specific polymer compound.
[0002]
[Prior art]
At present, various structures of photoconductive organic materials have been proposed and put into practical use in electrophotographic organic photoreceptors (OPC). Photoconductive organic materials can be broadly classified into those having a hole transporting property and those having an electron transporting property. However, due to the characteristics of the organic material, a material having a higher performance can be obtained. Therefore, the negatively charged type in which a hole transporting material is used for the charge transporting layer, which requires a particularly high mobility, and is laminated on the charge generation layer occupies most of the practical OPCs. This is the current situation. In this case, when the photoconductive layer is formed directly on the conductive support, there are problems such as low chargeability and lack of stability during repetition. In addition, there were problems such as peeling of the photoconductive layer due to insufficient adhesion between the conductive support and the photoconductive layer, and occurrence of coating defects when applying the photoconductive layer on the conductive support. . Further, the unevenness of the surface of the conductive support causes unevenness of the film thickness of the photoconductive layer, and as a result, there are problems such as occurrence of image defects such as black spots and white spots.
[0003]
As a means for solving these problems, an attempt has been made to provide an undercoat layer between the conductive support and the photoconductive layer. As the material constituting this undercoat layer, thermoplastic resins such as polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyester, polyamide, etc., or thermosetting resins such as epoxy resin, urethane resin, phenol resin, etc. Are being studied (Japanese Patent Laid-Open Nos. 48-47344, 52-20386, 58-30757, 60-22586, etc.). However, when an undercoat layer containing these materials as a main component is used, the photosensitivity of the photoreceptor can be increased by increasing the thickness of the undercoat layer in order to sufficiently bring out the effects of improvement on the above-described charging property and image defects. There is a drawback that it is easy to cause a decrease in the resistance and an increase in the residual potential.
[0004]
In addition, when an undercoat layer mainly composed of an organometallic compound such as a metal alkoxide or a metal chelate is used, a decrease in chargeability or an image defect can be suppressed without causing a decrease in photosensitivity or an increase in residual potential. Known (Japanese Patent Publication No. 3-66663, Japanese Patent Laid-Open No. 59-223439, etc.). However, undercoat layers using these organometallic compounds are generally susceptible to environmental influences such as humidity, and are chemically unstable in the coating liquid state, so that they deteriorate in a relatively short period of time. There's a problem.
[0005]
The undercoat layer is preferably electron transportable in view of the required function, and it is considered that these problems can be avoided if an electron transport material having sufficient performance is obtained. As one of the approaches, use of an undercoat layer in which a specific electron transporting or electron accepting low molecular weight compound is added to a polymer resin has been studied (Japanese Patent Laid-Open Nos. 55-142356 and JP No. 59-170846). However, when these low molecular weight compounds are used, they are leached into the upper layer in the step of applying the photoconductive layer on the undercoat layer formed on the conductive support in the case where they are easily dissolved in an organic solvent. The concentration in the undercoat layer decreases, and conversely, if it is difficult to dissolve in the organic solvent, crystallization occurs in the undercoat layer, making it difficult to obtain the desired improvement effect. There was a problem.
[0006]
In addition, the order of the charge generation layer and the charge transport layer is reversed to be used as a positive charging OPC, but in this case, the charge generation layer with low mechanical strength is the upper layer. In order to extend the life of OPC, it is necessary to form a protective layer. In this case, the protective layer is preferably electron transportable in terms of function. However, since the electron transport material used is generally difficult to dissolve in a solvent and difficult to dissolve in a resin, it is uniform. There was a drawback that it was difficult to obtain a protective layer comprising a coating film having high mechanical strength.
[0007]
As a further improvement, attempts have been made to produce polymers having an acceptor by polymerizing an electron transporting material (Japanese Patent Laid-Open Nos. 52-12153, 52-12154, etc.). However, a polymer having an acceptor does not yet have sufficient performance in terms of adhesion to other layers, strength, and the like, and the present situation is that a satisfactory one has not yet been obtained.
[0008]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the above-described actual situation in the prior art. That is, an object of the present invention is to provide an electrophotographic photoreceptor using a specific electron transporting polymer and having improved characteristics such as chargeability, photosensitivity, and repetitive stability.
[0009]
[Means for Solving the Problems]
In order to obtain an electron transporting polymer, it is necessary to have a reduction potential of approximately −0.8 V or more with respect to a saturated calomel electrode (SCE) in order to avoid trapping by oxygen in the air. As a result of intensive studies, the inventors have found that the polymer represented by the following general formula (I) satisfies the above-described requirements and forms a uniform polymer layer having high mechanical strength, and completes the present invention. It came to.
[0010]
That is, the electrophotographic photoreceptor of the present invention is characterized in that a layer containing a polymer represented by the following general formula (I) is provided on a conductive support.
[Chemical 3]
[In the formula, R is a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms. Hydrocarbon or monocyclic Represents an aromatic hydrocarbon group, A represents a group represented by the following general formulas (II) to (VI),
[Formula 4]
[Wherein X is C = O, O, S, SO 2 Or NR Three (R Three Represents a hydrogen atom, an alkyl group, an aryl group or an acyl group. ), R 1 And R 2 Represents an alkyl group, an aryl group, a halogen atom, a nitro group, an acyl group or a cyano group, and q and r each represents an integer of 0 to 2. ]
l is an integer of 0 or more, m and n are integers of 1 or more, l + m + n is in the range of 20 to 10,000, and 0.1 <n / (l + m + n) <0.9. ]
The electron transporting polymer represented by the above general formula (I) in the present invention has a reduction potential of about −0.8 V or more with respect to a saturated calomel electrode (SCE). As O-, those represented by the above general formulas (II) to (VI) which are groups having a reduction potential of about -0.8 V or more are employed. In addition, the larger the ratio of n, the more effective the electron transport property is. However, when the ratio is too large, the adhesion to other layers and the mechanical strength are lowered. Although it is advantageous with respect to adhesion and mechanical strength, the electron transportability is lowered, and the expected effect is difficult to obtain. Therefore, the value of n needs to be set in the range of 0.1 <n / (l + m + n) <0.9, and preferably in the range of 0.2 <n / (l + m + n) <0.85. Is done. When an electron transporting polymer having a value of n / (l + m + n) in the above range is used, appropriate resistance can be obtained even with respect to the upper layer coating solvent, and electron transporting property is also high.
[0011]
In the present invention, the polymer represented by the general formula (I) is preferably contained in the undercoat layer. Furthermore, since the polymer has a hydroxyl group that is advantageous for pigment dispersion, it is preferable to disperse an electron-transporting pigment, particularly an anthrone pigment, a perylene pigment, and an azo pigment, as an organic fine powder. It can also be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The polymer represented by the general formula (I) used in the present invention comprises a polyvinyl alcohol or polyvinyl acetal resin represented by the following general formula (VII) and a carboxylic acid represented by the following general formula (VIII) or a halide thereof. It can be synthesized by reacting.
[0013]
[Chemical formula 5]
(Wherein, R has the same meaning as described above, l ′ and m ′ represent the number of moles, and l ′ may be 0.)
A-CO-Z (VIII)
(In the formula, A has the same meaning as described above, and Z represents a halogen atom or a hydroxyl group.)
When the above general formula (VIII) is synthesized using A—CO—OH: carboxylic acid, see, for example, Langmuir Vol. 9, page 211 (1993), polyvinyl alcohol or polyvinyl acetal resin represented by the general formula (VII) and a compound represented by A-CO-OH are mixed with pyridine, tetrahydrofuran, N, N- It can be synthesized by dissolving in a solvent such as dimethylformamide or N, N-dimethylamide, adding a dehydrating agent such as 2,4,6-trinitrochlorobenzene and heating. In this case, the ratio between the polyvinyl alcohol or polyvinyl acetal resin and the compound represented by A-CO-OH can be used at an arbitrary ratio as necessary, but 0.1 <n / (l + m + n) <0. In the range of .9. Thereby, it will be excellent in terms of adhesion to other layers, strength, electron transportability, resistance to the upper layer coating solvent, and the like. The solvent can be used in the range of 1 to 1000 parts by weight with respect to 1 part by weight of polyvinyl alcohol or polyvinyl acetal resin. However, if the amount of the solvent is small, the viscosity during the reaction increases, and if it is too much, the waste liquid increases. Since the treatment becomes complicated, it may be used in the range of 5 to 500 parts by weight, more preferably 10 to 200 parts by weight. The dehydrating agent such as 2,4,6-trinitrochlorobenzene is 0.5 to 10 equivalents, preferably 0.7 to 5 equivalents, more preferably 1 to 3 relative to 1 equivalent of the compound represented by A-CO-OH. Use within a range of equivalents. Further, if necessary, a catalyst such as pyridine and triethylamine may be used, and 0.5 to 100 equivalents, preferably 0.7 to 70 equivalents, per 1 equivalent of a dehydrating agent such as 2,4,6-trinitrochlorobenzene. More preferably, it may be used in the range of 1 to 50 equivalents. The reaction temperature can be arbitrarily selected within the range of room temperature to the boiling point of the solvent, but the reaction is preferably carried out in the range of 50 ° C. to the boiling point of the solvent, more preferably 70 ° C. to the boiling point of the solvent.
[0014]
Moreover, when it synthesize | combines using a halide as a compound shown by the said general formula (VIII), it is compoundable similarly to esterification generally used. For example, a polyvinyl alcohol or polyvinyl acetal resin represented by the above general formula (VII) and a halide in which Z represents a halogen atom in the above general formula (VIII) are mixed with pyridine, tetrahydrofuran, N, N-dimethylformamide, N, N -Dissolve in a solvent such as dimethylamide and react with an organic basic catalyst such as pyridine or triethylamine. In this case, the ratio between the polyvinyl alcohol or polyvinyl acetal resin and the halide can be used at an arbitrary ratio as necessary, but a polymer in the range of 0.1 <n / (l + m + n) <0.9 is obtained. Need to be adjusted. Thereby, a polymer excellent in terms of adhesion to other layers, strength, electron transportability, resistance to the coating solvent of the upper layer, and the like can be obtained. The solvent can be used in an amount of 1 to 1000 parts by weight based on 1 part by weight of polyvinyl alcohol or polyvinyl acetal resin. However, if the amount of the solvent is small, the viscosity during the reaction increases. Since it becomes complicated, it may be used at 5 to 500 parts by weight, more preferably 10 to 200 parts by weight. A catalyst such as pyridine and triethylamine is used in the range of 1 to 10 equivalents, preferably 1.5 to 7 equivalents, more preferably 2 to 5 equivalents, per 1 equivalent of halide. The reaction temperature can be arbitrarily selected within the range of room temperature to the boiling point of the solvent, but is preferably controlled depending on the reaction conditions.
[0015]
After completion of the reaction, the polymer-containing reaction solution obtained by any one of the above methods is dropped in a poor solvent in which a polymer such as alcohol such as methanol or ethanol, or a polymer such as acetone or water is difficult to dissolve, and the polymer is deposited. After separation, the polymer is thoroughly washed with water or an organic solvent and dried. Furthermore, if necessary, the treatment of dissolving in an appropriate organic solvent by reprecipitation treatment and dropping it into a poor solvent to precipitate the polymer may be repeated. The reprecipitation treatment is preferably carried out with efficient stirring using a mechanical stirrer or the like. The solvent for dissolving the polymer in the reprecipitation treatment is used in the range of 1 to 100 parts by weight, preferably 2 to 50 parts by weight, based on 1 part by weight of the polymer. The poor solvent is used in an amount of 1 to 1000 parts by weight, preferably 10 to 500 parts by weight with respect to 1 part by weight of the polymer.
[0016]
The molecular weight of the polymer in the present invention can be any value within the range of (l + m + n) in the formula (I) in the range of 20 to 10,000, but from the viewpoint of mechanical strength, solubility, etc., polystyrene by GPC A value in the range of 5,000 to 200,000, particularly 10,000 to 150,000 is preferable. Specific examples of the polymer include those listed in Tables 1 to 6, but the present invention is not limited thereto.
[0017]
[Table 1]
[0018]
[Table 2]
[0019]
[Table 3]
[0020]
[Table 4]
[0021]
[Table 5]
[0022]
[Table 6]
[0023]
In the electrophotographic photoreceptor of the present invention, the polymer represented by the general formula (I) can be used in any layer such as an undercoat layer, a charge generation layer, a charge transport layer, a surface protective layer, It is preferably used for the undercoat layer, the charge generation layer, and the surface protective layer, and particularly preferably used for the undercoat layer. Hereinafter, the case where it is used for the undercoat layer will be described in more detail.
[0024]
As a constituent component of the undercoat layer, one kind of the polymer represented by the general formula (I) may be used alone, or two or more kinds may be mixed and used, or other general polymer materials and You may mix and use. Examples of polymer materials to be mixed include polyacrylic acid ester derivatives, polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyester, polycarbonate, polyamide, and other thermoplastic resins, or epoxy resins, melamine resins, urethane resins, etc. A thermosetting resin etc. can be mention | raise | lifted.
[0025]
The undercoat layer can be formed by dissolving the above materials in an organic solvent, applying the solution on a conductive support by a method such as dip coating, and then drying by heating. Examples of organic solvents include alcohol solvents such as 2-propanol and 1-butanol, ketone solvents such as methyl ethyl ketone and cyclohexanone, halogenated hydrocarbon solvents such as dichloromethane, 1,1,2,2-tetrachloroethane, tetrahydrofuran, and dioxane. May be appropriately selected from ether solvents such as chlorobenzene, m-cresol, and other amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone. it can. What is necessary is just to perform drying in the temperature range of 50-200 degreeC.
[0026]
When a curable material is used in combination with the polymer represented by the general formula (I) as a component of the undercoat layer, heating, light irradiation, or an appropriate chemical before or after drying. Curing treatment can also be performed by a method such as treatment. In addition to the thermosetting resin described above, curable materials include acrylic acid derivatives such as 2-hydroxyethyl methacrylate and glycidyl methacrylate, tetramethoxysilane, 3-aminopropyltrimethoxysilane, and methacryloxypropyltrimethoxysilane. And a crosslinkable monomer such as a metal alkoxide such as tetrabutoxytitanium and tetrabutoxyzirconium.
[0027]
Furthermore, organic fine powder having a particle size of 0.01 to 0.5 μm can also be contained. In particular, when an electron-transporting organic pigment selected from anthanthrone pigments, perylene pigments, and azo pigments is contained, stable electrical characteristics can be obtained. Can be obtained, so that it is preferably used. Specific examples of these include bisazo pigments and condensed aromatic pigments shown below.
[0028]
[Chemical 6]
[0029]
[Chemical 7]
[0030]
The thickness of the undercoat layer can be arbitrarily set in the range of 0.1 to 10 μm, preferably in the range of 0.3 to 7 μm, particularly preferably in the range of 0.5 to 5 μm, and stable. Image quality and electrical characteristics can be obtained.
[0031]
The photoconductive layer is composed of a charge generation material, a single layer type comprising a single layer containing a charge transport material, or a charge transport layer containing a charge generation material and a charge transport layer containing a charge transport material. Any of the laminated types may be used, but particularly when the laminated type photoconductive layer is employed, the remarkable improvement effect of the present invention can be obtained. A surface protective layer may be further laminated on these photoconductive layers as necessary, and the polymer represented by the general formula (I) may be used for the surface protective layer.
[0032]
In the case of a layered type electrophotographic photoreceptor, is the charge generation layer dispersed in an organic solvent together with an appropriate binder resin and applied to the undercoat layer by a method such as dip coating and then dried? Alternatively, it can be formed by a method such as vapor deposition. As the charge generation material, phthalocyanine pigments, various azo pigments, perylene pigments, condensed ring aromatic pigments such as dibromoanthanthrone, squarylium pigments, etc. can be used. The use of phthalocyanine pigments such as phthalocyanine, dichlorotin phthalocyanine, and titanyl phthalocyanine is preferable because the effect of the present invention can be remarkably improved.
[0033]
The binder resin can be appropriately selected from polyvinyl formal, polyvinyl butyral, polyvinyl alcohol, polyester, polycarbonate, polymethyl methacrylate, and the like. The film thickness of the charge generation layer can be arbitrarily set in the range of 0.1 to 5 μm, but the range of 0.2 to 3 μm is particularly preferable.
[0034]
The charge transport layer can be formed by dissolving the charge transport layer material together with an appropriate binder resin in an organic solvent, applying the charge generation layer onto the charge generation layer by a method such as dip coating, and then drying. . The charge transport material to be used is appropriately selected from polycyclic aromatic compounds such as anthracene and pyrene, nitrogen-containing heterocyclic compounds such as carbazole and imidazole, hydrazone derivatives, stilbene derivatives, triphenylamine derivatives, and tetraphenylbenzidine derivatives. be able to. The binder resin can be appropriately selected from polyester, polycarbonate, polymethyl methacrylate, and the like. The film thickness of the charge transport layer can be arbitrarily set in the range of 5 to 50 μm, but the range of 10 to 40 μm is particularly preferable.
[0035]
【Example】
Hereinafter, the present invention will be specifically described with reference to synthesis examples and examples of compounds used in the present invention.
Synthesis Example 1 (Synthesis of Compound (20))
1 g of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, degree of polymerization: about 500), 7.1 g of 2,7-dinitrofluorenone-4-carboxylic acid, 50 ml of N, N-dimethylacetamide and 7.9 ml of pyridine were placed in a 200 ml flask, A solution prepared by dissolving 5.7 g of 2,4,6-trinitrochlorobenzene in 100 ml of N, N-dimethylacetamide was slowly added dropwise thereto. After completion of dropping, the mixture was heated to 80 ° C. and the reaction was continued for 24 hours. After completion of the reaction, 50 ml of acetone was added, the precipitated polymer was separated by filtration, washed thoroughly with acetone, and the obtained polymer was dissolved in 50 ml of N, N-dimethylacetamide. This solution was slowly added dropwise to 200 ml of acetone while stirring to perform reprecipitation. The precipitated polymer was filtered off, sufficiently washed with acetone, and dried under reduced pressure to obtain 3.5 g of a yellow solid. The infrared absorption spectrum is shown in FIG. The ratio of m to n of the obtained polymer is 1 It was confirmed by H-NMR that m / n to about 1/1. (L = 0, m = about 250, n = about 250, l + m + n = about 500)
[0036]
Synthesis Example 2 (Synthesis of Compound (22))
In a 500 ml flask, 10 g of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, degree of polymerization: about 500) was dissolved in 120 ml of distilled water at 65 ° C., and 1 g of concentrated sulfuric acid was added. While stirring vigorously, 4 g of n-butyraldehyde was added at once and stirred at 65 ° C. for 1 hour. The precipitated polymer was separated by filtration, sufficiently washed with distilled water, and dried to obtain 11.1 g of polyvinyl butyral (butyral resin 1). 10 g of the obtained polyvinyl butyral was placed in a 500 ml flask, dissolved in 200 ml of N, N-dimethylacetamide, 15 g of 2,7-dinitrofluorenone-4-carboxylic acid, and 7.6 ml of pyridine were added thereto. A solution prepared by dissolving 11.9 g of 4,6-trinitrochlorobenzene in 200 ml of N, N-dimethylacetamide was slowly added dropwise. After completion of dropping, the mixture was heated to 80 ° C. and the reaction was continued for 5 hours. After completion of the reaction, the solution was slowly added dropwise to 2000 ml of acetone with stirring to precipitate a polymer. The precipitated polymer was separated by filtration, washed thoroughly with acetone, the obtained polymer was dissolved in 100 ml of N, N-dimethylacetamide, and this polymer solution was slowly dropped into 2000 ml of acetone while stirring for reprecipitation. Processed. The precipitated polymer was separated by filtration, sufficiently washed with methanol, and dried under reduced pressure to obtain 8.5 g of a yellow solid. The infrared absorption spectrum is shown in FIG. The ratio of l, m and n of the obtained polymer was confirmed by 1H-NMR to be 1 / m / n = about 3/3/2. (L = about 180, m = about 180, n = about 140, l + m + n = about 500)
[0037]
Synthesis Example 3 (Synthesis of Compound (13))
10 g of polyvinyl butyral obtained in the same manner as in Synthesis Example 2 was placed in a 500 ml flask, dissolved in 200 ml of N, N-dimethylacetamide, 15.0 g of naphthoquinone-2-carboxylic acid and 9.4 ml of pyridine were added thereto. A solution prepared by dissolving 1.7 g of 2,4,6-trinitrochlorobenzene in 200 ml of N, N-dimethylacetamide was slowly added dropwise. After completion of dropping, the mixture was heated to 80 ° C. and the reaction was continued for 5 hours. After completion of the reaction, the mixture was slowly added dropwise to a solvent obtained by mixing 2000 ml of acetone and 1000 ml of methanol with stirring to precipitate a polymer. The precipitated polymer is filtered off, washed thoroughly with methanol, the resulting polymer is dissolved in 4400 ml of tetrahydrofuran, and the resulting polymer solution is slowly added dropwise to 2000 ml of methanol with stirring to perform reprecipitation. It was. The precipitated polymer was separated by filtration, sufficiently washed with methanol, and dried under reduced pressure to obtain 9.8 g of a yellow solid. The infrared absorption spectrum is shown in FIG. The ratio of l, m and n of the obtained polymer was confirmed by 1H-NMR to be 1 / m / n = about 3/3/2. (L = about 180, m = about 180, n = about 140, l + m + n = about 500)
[0038]
Example 1
1.50 g of the compound (20) obtained in Synthesis Example 1 is dissolved in 30 ml of N, N-dimethylacetamide, dip-coated on an aluminum pipe (40 mmφ × 318 mm), dried at 150 ° C. for 30 minutes, An undercoat layer of 1.0 μm was formed.
Next, 1 part by weight of X-type metal-free phthalocyanine, 1 part by weight of vinyl chloride-vinyl acetate copolymer (VMCH; manufactured by Union Carbide) and 40 parts by weight of n-butyl acetate were obtained by a sand mill using 1 mmφ glass beads. After the dispersion treatment for 2 hours, the obtained dispersion was dip-coated on the undercoat layer and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.5 μm.
[0039]
Finally, a solution prepared by dissolving 1 part by weight of N, N-bis (3,4-dimethylphenyl) biphenylamine and 1 part by weight of poly (4,4-cyclohexylidenediphenylene carbonate) resin in 6 parts by weight of monochlorobenzene, It was dip-coated on the charge generation layer and dried at 135 ° C. for 1 hour to form a charge transport layer having a thickness of 20 μm, and a test electrophotographic photosensitive member was produced.
[0040]
The electrophotographic photosensitive member obtained as described above was subjected to an electrical property evaluation test using an evaluation device obtained by modifying a laser printer (XP, manufactured by Fuji Xerox Co., Ltd.). The evaluation of the electrical characteristics is based on the surface potential (VH) of the photoconductor when the laser beam is not irradiated after charging under normal temperature and normal humidity (20 ° C., 40% RH) and low temperature and low humidity (10 ° C., 20% RH), 12 erg / cm 2 Surface potential (VL) when irradiated with laser light of 30 erg / cm 2 This was carried out by measuring the surface potential (VR) when irradiated with the above light. Furthermore, after the operation was repeated 1000 cycles, the same measurement was performed. The results are shown in Table 7.
[0041]
Examples 2 and 3
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the compound (22) or (13) obtained in Synthesis Example (2) or (3) was used as a constituent of the undercoat layer. A property evaluation test was conducted. The results are shown in Table 7.
[0042]
Example 4
As a constituent of the undercoat layer, 1.0 g of the compound (20) obtained in Synthesis Example (1), 2.0 g of dibromoanthanthrone, 50 g of 1 mmφ glass beads, and 40 ml of N, N-dimethylacetamide were placed in a paint shaker. The dispersion was treated for 1 hour, dip-coated on an aluminum pipe (40 mmφ × 318 mm), and dried at 150 ° C. for 30 minutes to form an undercoat layer having a thickness of 1.5 μm. A charge generation layer and a charge transport layer were formed on the undercoat layer in the same manner as in Example 1 to produce an electrophotographic photoreceptor, and an electrical property evaluation test was conducted. The results are shown in Table 7.
[0043]
Examples 5 and 6
An electrophotographic photosensitive member was produced in the same manner as in Example 4 except that the compound (22) or (13) obtained in Synthesis Example (2) or (3) was used as a constituent of the undercoat layer. A property evaluation test was conducted. The results are shown in Table 7.
[0044]
Example 7
As a constituent of the undercoat layer, 1.0 g of the compound (20) obtained in Synthesis Example (1), 2.0 g of dibromoanthanthrone, 50 g of 1 mmφ glass beads, and 40 ml of N, N-dimethylacetamide were placed in a paint shaker. Dispersed for 1 hour. To this was further added 0.5 g of tributoxyzirconium acetylacetonate, and the mixture was dispersed for 30 minutes with a paint shaker. The obtained dispersion was dip coated on an aluminum pipe (40 mmφ × 318 mm) and dried at 150 ° C. for 30 minutes to form an undercoat layer having a thickness of 1.5 μm. A charge generation layer and a charge transport layer were formed on the undercoat layer in the same manner as in Example 1 to produce an electrophotographic photoreceptor, and an electrical property evaluation test was performed. The results are shown in Table 7.
[0045]
Comparative Example 1
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the polyvinyl butyral (butyral resin 1) obtained in Synthesis Example (2) was used as a constituent of the undercoat layer, and an electrical property evaluation test was conducted. went. The results are shown in Table 7.
[0046]
Comparative Example 2
A solution obtained by dissolving 1 part by weight of a copolymer nylon resin (Alamine CM8000, manufactured by Toray Industries, Inc.) in 8 parts by weight of ethanol is dip-coated on an aluminum pipe, dried at 150 ° C. for 10 minutes, and a film thickness of 1.0 μm. A subbing layer was formed. Thereafter, an electrophotographic photosensitive member was produced in the same manner as in Example 1, and an electrical property evaluation test was performed. The results are shown in Table 7.
[0047]
[Table 7]
[0048]
【The invention's effect】
The electrophotographic photoreceptor of the present invention is provided with a layer containing the polymer represented by the above general formula (I), so that it has high chargeability, high sensitivity even under low temperature and low humidity, and low residual potential. And always have stable electrophotographic characteristics.
[Brief description of the drawings]
1 is an infrared absorption spectrum of the polymer obtained in Synthesis Example 1. FIG.
2 is an infrared absorption spectrum of the polymer obtained in Synthesis Example 2. FIG.
3 is an infrared absorption spectrum diagram of the polymer obtained in Synthesis Example 3. FIG.
Claims (4)
lは0以上の整数、mおよびnは1以上の整数を意味し、l+m+nは20〜10,000の範囲にあり、かつ、0.1<n/(l+m+n)<0.9である。]An electrophotographic photosensitive member, wherein a layer containing a polymer represented by the following general formula (I) is provided on a conductive support.
l is an integer of 0 or more, m and n are integers of 1 or more, l + m + n is in the range of 20 to 10,000, and 0.1 <n / (l + m + n) <0.9. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27351596A JP3838384B2 (en) | 1996-10-16 | 1996-10-16 | Electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27351596A JP3838384B2 (en) | 1996-10-16 | 1996-10-16 | Electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10123739A JPH10123739A (en) | 1998-05-15 |
JP3838384B2 true JP3838384B2 (en) | 2006-10-25 |
Family
ID=17528941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27351596A Expired - Fee Related JP3838384B2 (en) | 1996-10-16 | 1996-10-16 | Electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3838384B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3809396B2 (en) * | 2002-05-10 | 2006-08-16 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US7312007B2 (en) * | 2004-09-16 | 2007-12-25 | Xerox Corporation | Photoconductive imaging members |
JP5972218B2 (en) * | 2012-06-29 | 2016-08-17 | キヤノン株式会社 | Method for producing electrophotographic photosensitive member |
-
1996
- 1996-10-16 JP JP27351596A patent/JP3838384B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10123739A (en) | 1998-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6015645A (en) | Photoconductive imaging members | |
US5244762A (en) | Electrophotographic imaging member with blocking layer containing uncrosslinked chemically modified copolymer | |
JP4767546B2 (en) | Photoconductive imaging member | |
JP4541801B2 (en) | Photoconductive imaging member | |
JPH02123370A (en) | Photosensitive image forming member having polyurethane charged blocking layer | |
US5302484A (en) | Imaging members and processes for the preparation thereof | |
US5874193A (en) | Photoconductive imaging members | |
JPH05232727A (en) | Electrophotographic image forming member containing polyarylamine polyester | |
US20090035677A1 (en) | Condensation polymer photoconductive elements | |
JP5832478B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JPH09114120A (en) | Electrophotographic photoreceptor | |
JP2006299269A (en) | Process for preparing phthalocyanine co-crystal | |
JP3317116B2 (en) | Electrophotographic photoreceptor | |
JP3838384B2 (en) | Electrophotographic photoreceptor | |
JP3337152B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
EP1097406A2 (en) | Photoconductor with charge generation binder blend | |
JP2001265033A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic device each using the same | |
JP2000258931A (en) | Electrophotographic photoreceptor | |
JP2002055472A (en) | Electrophotographic image forming member | |
JPH0693130B2 (en) | Electrophotographic photoreceptor | |
JPH01179164A (en) | Electrophotographic sensitive body | |
US7226712B2 (en) | Photoconductive imaging members having pyrolyzed polyacrylonitrile hole blocking layer | |
JPH0345962A (en) | Electrophotographic sensitive body | |
JP2877147B1 (en) | Electrophotographic photoreceptor | |
JP2000267317A (en) | Electrophotographic photoreceptor, its production and electrophotographic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060726 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130811 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |