JP3837481B2 - Method for thinning V-Ni alloy - Google Patents

Method for thinning V-Ni alloy Download PDF

Info

Publication number
JP3837481B2
JP3837481B2 JP2001284344A JP2001284344A JP3837481B2 JP 3837481 B2 JP3837481 B2 JP 3837481B2 JP 2001284344 A JP2001284344 A JP 2001284344A JP 2001284344 A JP2001284344 A JP 2001284344A JP 3837481 B2 JP3837481 B2 JP 3837481B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
shape
diaphragm
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001284344A
Other languages
Japanese (ja)
Other versions
JP2003095616A (en
Inventor
哲也 尾崎
政雄 古牧
睦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001284344A priority Critical patent/JP3837481B2/en
Publication of JP2003095616A publication Critical patent/JP2003095616A/en
Application granted granted Critical
Publication of JP3837481B2 publication Critical patent/JP3837481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、V-Ni合金の薄板化方法に関するものである。
【0002】
【従来の技術とその課題】
たとえば燃料電池自動車などの重要なエネルギー源とされる超高純度水素を製造するための水素分離精製装置として、Pd合金を水素透過膜に使用したものが開発され、実用化レベルにあるが、その一方で、合金原料のPdは非常に高価であり、また、300℃未満の低温での透過特性に難点がある。
【0003】
最近、この出願の発明の発明者らにより、5〜30原子%のNiを含むV-Ni合金が高い水素透過能を有することが見出され、低価格化が期待されるが、V-Ni合金には、加工性に乏しく、薄板化が難しいという問題がある。すなわち、V-Ni合金は酸化されやすく、酸化物の融点が低いため、熱間圧延が難しい。また、インゴットを直接冷間圧延すると割れが生じやすいため、1mm以下の厚さにするには、インゴットを切断した後、研磨により薄くするしかない。このため、V-Ni合金を水素分離精製装置に適応するために、膜状、パイプ状などへ加工するのは効率が非常に悪く、実用化にはほど遠かった。
【0004】
この出願の発明は、以上の通りの事情に鑑みてなされたものであり、以上のように薄板化が難しいとされていたV-Ni合金の薄板化を実現することを課題としている。
【0005】
【課題を解決するための手段】
この出願の発明者らは、上記の課題を解決するために鋭意検討した結果、高い水素透過能を有するV-Ni合金にシース圧延を適用することにより、最も薄くて0.01mmの厚さにまで薄板化することができ、しかもその薄板化は比較的容易であり、また、薄いものほど大きな水素透過流量が得られ、低温で大量の水素を効率的に99.99999%以上のいわゆるセブンナイン以上の超高純度まで純化することが可能であるとの知見を得、この出願の発明を完成した。
【0006】
すなわち、この出願の発明は、さや管内に5〜30原子%のNiを含むV-Ni合金を入れ、封入し、さや管ごと熱間圧延し、厚さ0.1 mm〜0.01mmのV-Ni合金の薄板を得ることを特徴とするV-Ni合金の薄板化方法を提供する。
【0007】
【発明の実施の形態】
この出願の発明では、上記の通り、5〜30原子%のNiを含むV-Ni合金をさや管内に入れ、封入し、さや管ごと熱間圧延、すなわちシース圧延する。シース圧延は、たとえばステンレス管などをさや管として用い、さや管内にV-Ni合金のインゴットなどを入れて封入し、さや管ごと熱間圧延することにより実行される。シース圧延により、これまでは難しいとされていたV-Ni合金の薄板化が比較的容易に可能となり、厚さを0.1mm以下、最も薄くて0.01mmまでにすることができる。
【0008】
このように薄板化されたV-Ni合金は、水素分離精製装置の隔膜に用いることができる。
図1<a><b><c>は、各々、水素分離精製装置を概略的に示した断面図である。
厚さ0.1mm〜0.01mmに薄板化された5〜30原子%のNiを含むV-Ni合金は、表裏両面がPd又はPdを含む合金で被覆されて水素分離精製装置の隔膜(1)に用いられている。この隔膜(1)によって水素を99.99999%以上のいわゆるセブンナイン以上の超高純度まで純化することができる。隔膜(1)は薄いものほど大きな水素透過流量が得られ、低温で大量の水素の効率的な純化が可能となる。
【0009】
隔膜(1)は、より具体的には、水素分離精製装置に備えたキャビネット(2)の内部に装着することができるが、その形状には特に制限はない。たとえば、図1<a>に示したような平板状の他、図1<b>に示したように折り曲げて蛇腹状とすることもできる。そして、これら平板状、蛇腹状の隔膜(1)は、キャビネット(2)を仕切るように配設することができる。
【0010】
また、隔膜(1)は、図1<c>に示したように、パイプ状とすることもできる。薄板化したV-Ni合金は、加工するのに十分な曲げ強度を有している。パイプ状とするときの断面形状は、星形、丸形、楕円形、四角形、三角形、五角形、六角形、八角形以上の多角形などの各種の形状が可能である。また、パイプ状とする場合には、たとえば作製した薄板に電子ビーム溶接、拡散接合などを適用することができる。このようにしてパイプ状とされた隔膜(1)は、キャビネット(2)内に1本配設しても、また、複数本並設してもよい。パイプ状の隔膜(1)をキャビネット(2)内に設ける場合には、たとえばスウェジロック継手若しくは電子ビーム溶接などを用いて接合することができる。
【0011】
なお、図1<a><b><c>図中に示した符号3は、キャビネット(2)へのガス導入部であり、符号4は、隔膜(1)による精製後の水素ガス導出部である。符号5は、残渣ガスのドレインである。
【0012】
V-Ni合金薄板を隔膜(1)に用いる場合には、表裏両面にはPd又はPdを含む合金を被覆するが、これは、V-Ni合金の水素透過性能を劣化させる表面酸化を防止するとともに、二原子分子である水素ガスがV-Ni合金に溶け込む際に必要な、原子状水素への解離反応、すなわち、分離反応を促進させるためである。Pd又はPdを含む合金のV-Ni合金の表裏両面への被覆法については、特に制限はなく、真空蒸着法、電気めっき法、無電解めっき法などが考えられる。中でも無電解めっき法は、複雑な形状に対しても均一な被覆が可能であり、好ましい。なお、被覆するPd又はPdを含む合金の厚さについても特に制限はなく、隔膜(1)の全体厚さを考慮し、適宜とすることができる。このPd又はPdを含む合金の被覆は、隔膜(1)の作製後に行う。
【0013】
以上のV-Ni合金薄板は、水素透過能に悪影響を及ぼさない限り、Mnその他の元素を不可避的不純物元素として、若しくは第3元素、第4元素などとして最大5原子%まで含有することができる。
【0014】
【実施例】
アルゴン中のアーク溶解法によりV-15原子%Ni合金を溶製した。表面に形成された酸化膜を取り除いた後、V-15原子%Ni合金をステンレス管内に入れ、真空中において電子ビーム溶接によりステンレス管を封管した。次いで、封管したステンレス管ごと1150℃において厚さ5mmまで熱間圧延し、シース圧延を実行した。この後、1200℃において溶体化急冷熱処理を行った。溶体化急冷熱処理は、Ni原子がVに均一に溶け込んだ高温状態を急冷し、低温にまで下げる処理であり、V-Ni合金の水素透過能及び各種形状への加工性を実現する。次いで4つに分け、それぞれを0.1mm、0.3mm、0.4mm、1.1mmの厚さまで室温においてごく一般的なロールを用いて冷間圧延を行った。冷間圧延により薄板表面はきれいに仕上がる。圧延後の薄板には、いずれも割れ、ひびなどは一切見られなかった。これまで薄板化が難しいとされていたV-Ni合金の薄板化が可能となることが確認された。
【0015】
作製したそれぞれの薄板から直径約12mmの円盤状試料を切り出し、その表面をエメリーペーパーやアルミナ砥粒などを用いた機械研磨及びエッチングを行う化学研磨により鏡面まで仕上げた後、真空蒸着法により試料の表裏両面にPdを厚さ約0.1μmに被覆した。
【0016】
このようにして作製した試料を水素透過試験装置内に装着し、水素透過試験を行った。試験に際し、試料温度を523Kとし、入り口側に500torrの水素圧をかけ、出口側を真空引きした。そして、水素透過性を実用レベルにあるPd-25Ag合金と比較した。その結果を示したのが、図2のグラフである。この図2のグラフにおいて縦軸を水素流束としているが、水素流束は、単位面積当たり及び単位時間当たりに流れる水素の体積を意味する。
【0017】
図2のグラフから確認されるように、水素透過流量は、試料の厚さに反比例して増大し、表裏両面をPdで被覆したV-15Ni合金薄板は、Pd-25Ag合金よりもより水素透過流量が増大する。
【0018】
さらに、厚さ約0.1mmの、表裏両面をPdで被覆したV-15Ni合金薄板について曲げ試験を行ったところ、十分な曲げ加工性を示し、湾曲部にクラックその他の欠陥は認められなかった。また、電子ビームを用いて溶接性も調べたが、溶接部は健全であり、クラックその他の欠陥は認められなかった。図1<a><b><c>に例示される各種形状を有する隔膜(1)が実現可能であることが確認される。
【0019】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。水素分離精製装置の隔膜を除く構成及び構造、隔膜の形状、作製条件、及び表裏両面に被覆するPd又はPdを含む合金の厚さなどの細部については様々な態様が可能であることはいうまでもない。
【0020】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、薄板化が難しいとされていたV-Ni合金の薄板化が実現される。V-Ni合金薄板を各種形状の隔壁として装着した水素分離精製装置が提供され、燃料電池自動車などの重要なエネルギー源となる99.99999%以上の超高純度水素を低コストで生産可能となることが期待される。
【図面の簡単な説明】
【図1】 <a><b><c>は、各々、水素分離精製装置を概略的に示した断面図である。
【図2】 水素透過試験装置内に装着した試料の523Kにおける厚さの逆数と水素流束との関係を示したグラフである。
【符号の説明】
1 隔膜
2 キャビネット
3 ガス導入部
4 水素ガス導出部
5 ドレイン
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for thinning a V-Ni alloy.
[0002]
[Prior art and its problems]
For example, a hydrogen separation and purification device for producing ultra-high purity hydrogen, which is an important energy source for fuel cell vehicles, has been developed using a Pd alloy as a hydrogen permeable membrane. On the other hand, Pd as an alloy raw material is very expensive and has a difficulty in transmission characteristics at a low temperature of less than 300 ° C.
[0003]
Recently, the inventors of the invention of this application have found that a V-Ni alloy containing 5 to 30 atomic% of Ni has a high hydrogen permeability and is expected to reduce the price. Alloys have a problem that they are poor in workability and difficult to thin. That is, the V-Ni alloy is easily oxidized and the hot melting is difficult because the melting point of the oxide is low. In addition, cracking is likely to occur when the ingot is directly cold-rolled. Therefore, in order to obtain a thickness of 1 mm or less, the ingot must be cut and then thinned by polishing. For this reason, in order to adapt the V-Ni alloy to a hydrogen separation and purification apparatus, it was very inefficient to process it into a membrane shape or a pipe shape, and it was far from practical use.
[0004]
The invention of this application has been made in view of the circumstances as described above, and an object thereof is to realize thinning of the V—Ni alloy, which has been considered difficult to thin as described above.
[0005]
[Means for Solving the Problems]
The inventors of this application have made extensive studies to solve the above-mentioned problems. As a result, by applying sheath rolling to a V-Ni alloy having a high hydrogen permeability, the thinnest film has a thickness of 0.01 mm. It can be thinned, and the thinning is relatively easy, and the thinner it is, the larger hydrogen permeation flow rate can be obtained, and a large amount of hydrogen can be efficiently discharged at low temperature more than 99.99999% or more than the so-called Seven Nine or more. The inventor of this application was completed by obtaining the knowledge that it was possible to purify to high purity.
[0006]
That is, in the invention of this application, a V-Ni alloy containing 5 to 30 atomic% Ni is placed in a sheath tube, enclosed, hot rolled together with the sheath tube, and a V-Ni alloy having a thickness of 0.1 mm to 0.01 mm. A method for thinning a V-Ni alloy is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the invention of this application, as described above, a V—Ni alloy containing 5 to 30 atomic% Ni is placed in a sheath tube, enclosed, and the sheath tube is hot-rolled, that is, sheath-rolled. Sheath rolling is performed, for example, by using a stainless steel tube or the like as a sheath tube, enclosing and placing a V-Ni alloy ingot or the like in the sheath tube, and hot rolling the entire sheath tube. Sheath rolling makes it possible to make V-Ni alloy, which has been considered difficult until now, relatively thin, and the thickness can be reduced to 0.1 mm or less and the thinnest to 0.01 mm.
[0008]
The thinned V-Ni alloy can be used for the diaphragm of the hydrogen separation and purification apparatus.
1 <a><b><c> are cross-sectional views schematically showing a hydrogen separation and purification apparatus.
The V-Ni alloy containing 5 to 30 atomic% of Ni thinned to a thickness of 0.1 mm to 0.01 mm is coated with Pd or an alloy containing Pd on both front and back surfaces to the membrane (1) of the hydrogen separation and purification equipment. It is used. With this diaphragm (1), hydrogen can be purified to an ultra-high purity of 99.99999% or more, so-called Seven Nine or more. The thinner the diaphragm (1), the higher the hydrogen permeation flow rate, and the efficient purification of a large amount of hydrogen at a low temperature becomes possible.
[0009]
More specifically, the diaphragm (1) can be mounted inside the cabinet (2) provided in the hydrogen separation and purification apparatus, but the shape thereof is not particularly limited. For example, in addition to the flat plate shape as shown in FIG. 1 <a>, it may be bent into a bellows shape as shown in FIG. 1 <b>. And these flat plate-shaped and bellows-shaped diaphragms (1) can be arrange | positioned so that a cabinet (2) may be partitioned off.
[0010]
Moreover, the diaphragm (1) can also be made into a pipe shape as shown in FIG. The thinned V-Ni alloy has sufficient bending strength for processing. The cross-sectional shape of the pipe shape may be various shapes such as a star shape, a round shape, an ellipse shape, a quadrangle shape, a triangle shape, a pentagon shape, a hexagon shape, and an octagon shape or more. In the case of a pipe shape, for example, electron beam welding, diffusion bonding, or the like can be applied to the manufactured thin plate. One pipe (1) thus formed in a pipe shape may be arranged in the cabinet (2), or a plurality of diaphragms (1) may be arranged in parallel. When the pipe-shaped diaphragm (1) is provided in the cabinet (2), it can be joined using, for example, a Swagelok joint or electron beam welding.
[0011]
In addition, the code | symbol 3 shown in FIG. 1 <a><b><c> figure is a gas introduction part to a cabinet (2), and the code | symbol 4 is the hydrogen gas derivation | leading-out part after refinement | purification by a diaphragm (1) It is. Reference numeral 5 denotes a residual gas drain.
[0012]
When a V-Ni alloy sheet is used for the diaphragm (1), both front and back sides are coated with Pd or an alloy containing Pd, which prevents surface oxidation that degrades the hydrogen permeation performance of the V-Ni alloy. At the same time, it is for promoting the dissociation reaction into atomic hydrogen, that is, the separation reaction, which is necessary when hydrogen gas, which is a diatomic molecule, dissolves in the V-Ni alloy. There is no particular limitation on the method of coating Pd or an alloy containing Pd on the front and back surfaces of the V-Ni alloy, and vacuum deposition, electroplating, electroless plating, and the like are conceivable. Among these, the electroless plating method is preferable because it can uniformly coat even a complicated shape. In addition, there is no restriction | limiting in particular also about the thickness of the alloy containing Pd or Pd to coat | cover, It can set suitably in consideration of the whole thickness of a diaphragm (1). The coating of Pd or an alloy containing Pd is performed after the production of the diaphragm (1).
[0013]
The above V-Ni alloy sheet can contain up to 5 atomic percent of Mn and other elements as inevitable impurity elements, or as the third element, the fourth element, etc., as long as the hydrogen permeability is not adversely affected. .
[0014]
【Example】
V-15 atomic% Ni alloy was melted by arc melting method in argon. After removing the oxide film formed on the surface, a V-15 atomic% Ni alloy was placed in the stainless steel tube, and the stainless steel tube was sealed by electron beam welding in a vacuum. Next, the sealed stainless steel tube was hot-rolled to a thickness of 5 mm at 1150 ° C., and sheath rolling was performed. Thereafter, solution quenching heat treatment was performed at 1200 ° C. The solution quenching heat treatment is a process of rapidly cooling a high temperature state in which Ni atoms are uniformly dissolved in V and lowering it to a low temperature, and realizes hydrogen permeability of V-Ni alloy and workability to various shapes. Then, it was divided into four parts, and each was cold-rolled to a thickness of 0.1 mm, 0.3 mm, 0.4 mm, and 1.1 mm using ordinary rolls at room temperature. The surface of the thin sheet is finished neatly by cold rolling. No cracks or cracks were found in any of the thin plates after rolling. It has been confirmed that thinning of V-Ni alloys, which has been considered difficult to be thin, is possible.
[0015]
A disk-shaped sample with a diameter of about 12 mm was cut out from each thin plate produced, and the surface was finished to a mirror surface by chemical polishing with mechanical polishing and etching using emery paper or alumina abrasive grains, and then the sample was vacuum-deposited. The front and back sides were coated with Pd to a thickness of about 0.1 μm.
[0016]
The sample thus prepared was mounted in a hydrogen permeation test apparatus and a hydrogen permeation test was performed. During the test, the sample temperature was set to 523 K, a hydrogen pressure of 500 torr was applied to the inlet side, and the outlet side was evacuated. And hydrogen permeability was compared with Pd-25Ag alloy which is at a practical level. The results are shown in the graph of FIG. In the graph of FIG. 2, the vertical axis represents the hydrogen flux, and the hydrogen flux means the volume of hydrogen flowing per unit area and per unit time.
[0017]
As can be seen from the graph in FIG. 2, the hydrogen permeation flow rate increases in inverse proportion to the thickness of the sample, and the V-15Ni alloy sheet coated with Pd on both sides is more hydrogen permeable than the Pd-25Ag alloy. The flow rate increases.
[0018]
Further, when a bending test was performed on a V-15Ni alloy thin plate having a thickness of about 0.1 mm and both surfaces coated with Pd, it showed sufficient bending workability and no cracks or other defects were observed in the curved portion. In addition, the weldability was also examined using an electron beam, but the weld was sound and no cracks or other defects were observed. It is confirmed that the diaphragm (1) having various shapes illustrated in FIGS. 1 <a><b><c> can be realized.
[0019]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible with regard to details such as the configuration and structure of the hydrogen separation and purification apparatus excluding the diaphragm, the shape of the diaphragm, the preparation conditions, and the thickness of Pd or the alloy containing Pd coated on both the front and back surfaces. Nor.
[0020]
【The invention's effect】
As described above in detail, the invention of this application realizes thinning of the V-Ni alloy, which has been considered difficult to thin. Hydrogen separation and purification equipment equipped with V-Ni alloy thin plates as partition walls of various shapes will be provided, and it will be possible to produce ultra high purity hydrogen of 99.99999% or more, which is an important energy source for fuel cell vehicles, etc. at low cost Be expected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a hydrogen separation and purification apparatus, respectively.
FIG. 2 is a graph showing the relationship between the reciprocal of the thickness at 523K and the hydrogen flux of a sample mounted in the hydrogen permeation test apparatus.
[Explanation of symbols]
1 Diaphragm 2 Cabinet 3 Gas inlet 4 Hydrogen gas outlet 5 Drain

Claims (1)

さや管内に5〜30原子%のNiを含むV-Ni合金を入れ、封入し、さや管
ごと熱間圧延し、厚さ0.1 mm〜0.01mmのV-Ni合金の薄板を得ることを特徴とするV-Ni合金の薄板化方法。
A V-Ni alloy containing 5 to 30 atomic% Ni is placed in a sheath and enclosed, and the sheath and tube are hot-rolled to obtain a thin sheet of V-Ni alloy with a thickness of 0.1 mm to 0.01 mm. To thin the V-Ni alloy.
JP2001284344A 2001-09-19 2001-09-19 Method for thinning V-Ni alloy Expired - Lifetime JP3837481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284344A JP3837481B2 (en) 2001-09-19 2001-09-19 Method for thinning V-Ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284344A JP3837481B2 (en) 2001-09-19 2001-09-19 Method for thinning V-Ni alloy

Publications (2)

Publication Number Publication Date
JP2003095616A JP2003095616A (en) 2003-04-03
JP3837481B2 true JP3837481B2 (en) 2006-10-25

Family

ID=19107681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284344A Expired - Lifetime JP3837481B2 (en) 2001-09-19 2001-09-19 Method for thinning V-Ni alloy

Country Status (1)

Country Link
JP (1) JP3837481B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363633B2 (en) * 2004-02-17 2009-11-11 株式会社アルバック Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
JP4747737B2 (en) * 2005-08-26 2011-08-17 住友金属鉱山株式会社 Hydrogen permeable alloy membrane and method for producing the same
JP2008055295A (en) * 2006-08-30 2008-03-13 Ihi Corp Hydrogen separation membrane
CN110358957B (en) * 2019-07-31 2021-05-14 江苏美特林科特殊合金股份有限公司 Nickel-vanadium intermediate alloy and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262924A (en) * 1988-04-12 1989-10-19 Natl Res Inst For Metals Hydrogen separating membrane
JP2692942B2 (en) * 1989-03-31 1997-12-17 田中貴金属工業株式会社 Materials for manufacturing Pd-based welded pipes for hydrogen gas purification equipment
JPH0698281B2 (en) * 1990-05-25 1994-12-07 科学技術庁金属材料技術研究所長 Alloy membrane for hydrogen separation
JPH11276866A (en) * 1998-03-31 1999-10-12 Tokyo Gas Co Ltd Hydrogen-permeable membrane and its manufacture
DE19843306C2 (en) * 1998-09-22 2001-06-28 Heraeus Gmbh W C Process for producing a tubular hydrogen permeation membrane
JP2001170460A (en) * 1999-12-17 2001-06-26 Sumitomo Metal Mining Co Ltd Hydrogen separating material and producing method therefor
JP2002201004A (en) * 2000-11-02 2002-07-16 Toyota Motor Corp Hydrogen extracting apparatus
JP2003001381A (en) * 2001-02-19 2003-01-07 Fukuda Metal Foil & Powder Co Ltd Manufacturing method for vanadium alloy foil

Also Published As

Publication number Publication date
JP2003095616A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP3421283B2 (en) Method for producing tubular hydrogen permeable membrane, such membrane and its use
EP1042049B1 (en) Hydrogen gas-extraction module
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
JP3837481B2 (en) Method for thinning V-Ni alloy
KR20020013767A (en) A process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
JP2004074070A (en) Hydrogen-permeable membrane
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2008080234A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
JP2006000722A (en) Hydrogen-permeable alloy membrane and its manufacturing method
TWI354716B (en) Palladium-containing plating solution and its uses
JPH02271901A (en) Production of hydrogen separating medium
JPH04326931A (en) Production of hydrogen separation membrane
JP2007038111A (en) Hydrogen permeable element and method for manufacturing the same
JP2008043907A (en) Hydrogen permeable composite membrane and its manufacturing method
JPH0478030B2 (en)
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
KR20130094259A (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP4029122B2 (en) Hydrogen dissociation / separation composite membrane coated with an auxiliary membrane for improving hydrogen dissociation / separation performance
JP2008068231A (en) Hydrogen-permeable membrane and its manufacturing method
WO2021106203A1 (en) Hydrogen permeation apparatus, hydrogen-permeable metal membrane, method for producing hydrogen-permeable metal membrane, gaskets, and method for producing gasket
JP2008289948A (en) Manufacturing method of palladium-based hydrogen permeable metal membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Ref document number: 3837481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term