JP3837461B2 - Diacetylene compound having crown ether structure and process for producing the same - Google Patents

Diacetylene compound having crown ether structure and process for producing the same Download PDF

Info

Publication number
JP3837461B2
JP3837461B2 JP05536598A JP5536598A JP3837461B2 JP 3837461 B2 JP3837461 B2 JP 3837461B2 JP 05536598 A JP05536598 A JP 05536598A JP 5536598 A JP5536598 A JP 5536598A JP 3837461 B2 JP3837461 B2 JP 3837461B2
Authority
JP
Japan
Prior art keywords
formula
compound
compound represented
diacetylene
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05536598A
Other languages
Japanese (ja)
Other versions
JPH11255757A (en
Inventor
悟 島田
宏雄 松田
修司 岡田
八郎 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP05536598A priority Critical patent/JP3837461B2/en
Publication of JPH11255757A publication Critical patent/JPH11255757A/en
Application granted granted Critical
Publication of JP3837461B2 publication Critical patent/JP3837461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規なジアセチレン化合物に関するものであり、さらに詳しくは、固相重合性を有し、導電性材料、電極材料、非線形光学材料、感光材料、高分子半導体結晶などの機能材料の原料として有用な、クラウンエーテル構造を有するジアセチレン化合物及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、導電性材料、電極材料、非線形光学材料、感光材料、高分子半導体結晶などを形成するための単量体として、ジアセチレン化合物の研究が盛んに行われている。
【0003】
導電性材料、電極材料などの形成に用いるには、ジアセチレン化合物が固相重合性を有することが必要となる。また、導電性材料、電極材料には、イオンとの錯形成能を有するクラウンエーテル構造などを有し、イオン輸送能の高い化合物が好適であることが知られている。
【0004】
しかしながら、イオンとの錯形成能を有するクラウンエーテル構造を有し、導電性効果やイオン輸送能が大きく、しかも固相重合性を有するジアセチレン化合物は、これまで全く見出されていない。
【0005】
【発明が解決しようとする課題】
したがって本発明は、クラウンエーテル構造を有し、かつ、固相重合性を有する新規なジアセチレン化合物を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題は、以下の発明により達成された。
(1)式(1)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −CO−E1
(式中、kは1〜12、mは1〜12の整数を示し、E1 は下記の構造を示す。
【0007】
【化3】

Figure 0003837461
【0008】
(nは1〜4の整数を示す。))
で表わされるジアセチレン化合物。
(2)式(2)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −CO−E2
(式中、kは1〜12、mは1〜12の整数を示し、E2 は下記の構造を示す。
【0009】
【化4】
Figure 0003837461
【0010】
(nは1〜4の整数を示す。))
で表わされるジアセチレン化合物。
(3)式(3)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −COX
(式中、Xはヒドロキシル基又はハロゲン原子を示し、k及びmはそれぞれ1〜12の整数を示す。)
で表わされる1,3−アルカジインカルボン酸化合物と、式(4)
H−E1
(式中、E1 は式(1)で定義したと同義である。)
で表わされる化合物とを反応させることを特徴とする(1)項記載のジアセチレン化合物の製造方法。
【0011】
(4)式(3)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −COX
(式中、Xはヒドロキシル基又はハロゲン原子を示し、k及びmはそれぞれ1〜12の整数を表わす。)
で表わされる1,3−アルカジインカルボン酸化合物と、式(5)
H−E2
(式中、E2 は式(2)で定義したと同義である。)
で表わされる化合物とを反応させることを特徴とする(2)項記載のジアセチレン化合物の製造方法。
【0012】
【発明の実施の形態】
前記式(1)又は式(2)で表わされるジアセチレン化合物は、文献未載の新規な化合物である。
式(1)〜(5)において、kは1〜1 2、好ましくは10〜12の整数を表わし、mは1〜1 2、好ましくは3〜8の整数を表わす。E1 及びE2 は上記した構造のクラウンエーテル残基であり、E1 及びE2 において、nは1〜4、好ましくは1〜2の整数を表わす。
【0013】
本発明の前記式(1)又は式(2)で表わされるジアセチレン化合物は、前記式(3)で表わされる1,3−アルカジインカルボン酸化合物を出発原料として製造することができる。式(3)及び(5)において、Xはヒドロキシル基又はハロゲン原子(例えば塩素、臭素又はヨウ素原子など)であり、好ましくは塩素原子である。
【0014】
本発明において、式(1)又は式(2)のジアセチレン化合物を製造するには、前記式(3)で表わされる1,3−アルカジインカルボン酸化合物を、前記式(4)又は式(5)のアザクラウン化合物と反応させる。式(3)の化合物は、例えば塩化物の場合、対応の1,3−アルカジインカルボン酸とシュウ酸二塩化物、五塩化リン、三塩化リン、塩化チオニル、塩化ホスホニルなどとを反応させることにより得ることができる。
式(3)の化合物と式(4)又は式(5)の化合物との反応は、非プロトン性溶媒(例えば塩化メチレン、エーテル類など)中において行うことができる。アルゴンや窒素等の不活性ガスの界囲気中で行うことが好ましく、通常、常圧下において、0〜50℃、好ましくは25〜40℃の範囲の温度で、攪拌することによって実施される。式(4)又は式(5)で表わされる化合物の使用量は特に制限するものではないが、式(3)で表わされる化合物1モルに対し、通常1.0〜2.0モル、好ましくは1.1〜1.2モル使用する。
この反応により、式(3)の化合物の末端に式(4)又は式(5)の化合物の残基が導入され、式(1)又は式(2)で表わされる化合物が得られる。
【0015】
反応終了後、pH緩衝溶液、例えばリン酸緩衝溶液を加え、有機層を適当な溶剤、例えば酢酸エチルや塩化メチレンを用いて溶剤抽出したのち、この抽出液を硫酸ナトリウムや硫酸マグネシウムのような乾燥剤を用いて乾燥後、生成物を、例えばシリカゲルカラムクロマトグラフィーなどにより、分離、精製すれば、前記式(1)又は式(2)で表わされる本発明の化合物が、白色結晶として得られる。
【0016】
一例として、式(1)においてkが11、nが2、mが8の化合物(化合物3a)又は式(2)においてkが11、nが2、mが8の化合物(化合物3b)を製造する場合の反応スキームを示す。
【0017】
【化5】
Figure 0003837461
【0018】
上記スキームにおいて、溶媒としての塩化メチレン中で化合物1とシュウ酸二塩化物を反応させたのち、トリエチルアミン及び塩化メチレン中で化合物2a又は2bを反応させて、化合物3a又は3bを得ることができる。化合物3a、3bは固相重合により、高分子化合物(poly−3a、poly−3b)とすることができる。
【0019】
本発明の式(1)又は式(2)で表わされる化合物は、固相重合で高分子化することが可能であり、微結晶への紫外線照射、ガンマ線照射など、通常の方法で固相重合させることができる。また、式(1)又は式(2)で表わされる化合物はクラウンエーテル構造を有するため、イオン輸送能を有する。
式(1)の化合物を固相重合させた高分子化合物は、下記の繰り返し単位を有する化合物であり、分子量は特に制限はないが、通常1万〜50万である。
【0020】
【化6】
Figure 0003837461
【0021】
同様に、式(2)の化合物を固相重合させた高分子化合物は、下記の繰り返し単位を有し、分子量は特に制限はないが、通常1万〜50万である。
【0022】
【化7】
Figure 0003837461
【0023】
【発明の効果】
本発明の新規なジアセチレン化合物は、イオンとの錯形成能を有するクラウンエーテル構造を有し、イオン輸送能が高く、かつ、固相重合性を有することから、導電性材料、電極材料、非線形光学材料、感光材料、半導体結晶等の機能性材料の原料として極めて有用である。
【0024】
【実施例】
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらによってなんら限定されるものではない。
【0025】
実施例1
CH3 −(CH2)11−C≡C−C≡C−(CH2)8 −COOH
上記式で表わされる化合物1.4gとシュウ酸二塩化物35g を、反応溶媒としての塩化メチレン100ml 中で、窒素ガス雰囲気下で、常圧において、25℃で12時間攪拌しながら反応させ、溶媒を留去して、前記化合物の酸塩化物を得た。さらに、この酸塩化物と、1−アザ−18−クラウン−6 1gを、反応溶媒としての塩化メチレン100ml 中で、窒素ガス雰囲気下で、常圧において、25℃で12時間攪拌しながら反応させた。溶媒を留去した後、シリカゲルカラムクロマトグラフィーによりヘキサン−酢酸エチルを展開溶媒として分離、精製することにより、式(2)においてkが11、mが8、nが2の化合物2.2gが得られた。
このジアセチレン化合物は、白色結晶であり、その融点は約6℃であった。
元素分析値
計算値(γ)C 71.69 H 10.57
実測値(γ)C 71.40 H 10.42
【0026】
実施例2
CH3 −(CH2)11−C≡C−C≡C−(CH2)3 −COOH
上記式で表わされる化合物4gとシュウ酸二塩化物60g を、反応溶媒としての塩化メチレン200ml 中で、窒素ガス雰囲気下で、常圧において、25℃で12時間攪拌しながら反応させ、溶媒を留去して、前記化合物の酸塩化物を得た。さらに、この酸塩化物と、1−アザ−18−クラウン−6 3gを、反応溶媒としての塩化メチレン200ml 中で、窒素ガス雰囲気下で、常圧において、25℃で12時間攪拌しながら反応させた。溶媒を留去した後、シリカゲルカラムクロマトグラフィーによりヘキサン−酢酸エチルを展開溶媒として分離、精製することにより、式(2)においてkが11、mが3、nが2の化合物6.5gが得られた。
このジアセチレン化合物は、白色結晶であり、その融点は約−5℃であった。
元素分析値
計算値(γ)C 69.91 H 10.08
実測値(γ)C 70.02 H 10.22
【0027】
実施例3
CH3 −(CH2)11−C≡C−C≡C−(CH2)8 −COOH
上記式で表わされる化合物3gとシュウ酸二塩化物20g を、反応溶媒としての塩化メチレン100ml 中で、窒素ガス雰囲気下で、常圧において、25℃で12時間攪拌しながら反応させ、溶媒を留去して、前記化合物の酸塩化物を得た。さらに、この酸塩化物と、1−アザ−15−クラウン−5 2.5gを、反応溶媒としての塩化メチレン100m1 中で、窒素ガス雰囲気下で、常圧において、25℃で12時間攪拌しながら反応させた。溶媒を留去した後、シリカゲルカラムクロマトグラフィーによりヘキサン−酢酸エチルを展開溶媒として分離、精製することにより、式(1)においてkが11、mが8、nが2の化合物4.2gが得られた。
このジアセチレン化合物は、白色結晶であり、その融点は約−3℃であった。
元素分析値
計算値(γ)C 73.00 H 10.67
実測値(γ)C 72.87 H 10.42
【0028】
参考例
実施例1〜3で得られた本発明のジアセチレン化合物の各試料の微結晶にコバルト60ガンマー線又は高圧水銀灯による紫外線を照射したところ、いずれも固相重合させることができた。重合体は赤紫色の固体として得られ、ヘキサン、塩化メチレン等には不溶であるが、DMF(ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)には加熱により溶解して黄色透明溶液を与え、冷却後、赤色のゲル状物質となった。分子量 1万〜5万。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel diacetylene compound. More specifically, the present invention has solid-phase polymerizability and is used as a raw material for functional materials such as conductive materials, electrode materials, nonlinear optical materials, photosensitive materials, and polymer semiconductor crystals. The present invention relates to a diacetylene compound having a crown ether structure and a method for producing the same.
[0002]
[Prior art]
In recent years, diacetylene compounds have been actively studied as monomers for forming conductive materials, electrode materials, nonlinear optical materials, photosensitive materials, polymer semiconductor crystals, and the like.
[0003]
In order to use it for forming a conductive material, an electrode material, etc., it is necessary that the diacetylene compound has a solid-phase polymerizability. Further, it is known that a compound having a crown ether structure having a complex forming ability with ions and a high ion transporting ability is suitable for the conductive material and the electrode material.
[0004]
However, a diacetylene compound having a crown ether structure capable of complexing with ions, having a large conductive effect and ion transport ability, and having solid-phase polymerizability has not been found so far.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a novel diacetylene compound having a crown ether structure and having solid-phase polymerizability.
[0006]
[Means for Solving the Problems]
The above object has been achieved by the following invention.
(1) Formula (1)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —CO—E 1
(In the formula, k represents 1 to 12, m represents an integer of 1 to 12, and E 1 represents the following structure.
[0007]
[Chemical 3]
Figure 0003837461
[0008]
(N represents an integer of 1 to 4)
The diacetylene compound represented by these.
(2) Formula (2)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —CO—E 2
(Wherein, k is 1 to 12, m represents an integer of 1 to 12, E 2 represents the following structure.
[0009]
[Formula 4]
Figure 0003837461
[0010]
(N represents an integer of 1 to 4)
The diacetylene compound represented by these.
(3) Formula (3)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —COX
(In the formula, X represents a hydroxyl group or a halogen atom, and k and m each represent an integer of 1 to 12.)
A 1,3-alkadiynecarboxylic acid compound represented by formula (4):
H-E 1
(In the formula, E 1 has the same meaning as defined in formula (1).)
A process for producing a diacetylene compound according to item (1), wherein the compound represented by formula (1) is reacted.
[0011]
(4) Formula (3)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —COX
(In the formula, X represents a hydroxyl group or a halogen atom, and k and m each represents an integer of 1 to 12.)
A 1,3-alkadiynecarboxylic acid compound represented by formula (5)
H-E 2
(In the formula, E 2 has the same meaning as defined in Formula (2).)
(2) The manufacturing method of the diacetylene compound as described in (2) characterized by making it react.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The diacetylene compound represented by the formula (1) or the formula (2) is a novel compound not described in any literature.
In the formulas (1) to (5), k represents an integer of 1 to 12, preferably 10 to 12, and m represents an integer of 1 to 12, preferably 3 to 8. E 1 and E 2 are crown ether residues having the structure described above. In E 1 and E 2 , n represents an integer of 1 to 4, preferably 1 or 2.
[0013]
The diacetylene compound represented by the formula (1) or the formula (2) of the present invention can be produced using a 1,3-alkadiyne carboxylic acid compound represented by the formula (3) as a starting material. In the formulas (3) and (5), X is a hydroxyl group or a halogen atom (for example, chlorine, bromine or iodine atom), preferably a chlorine atom.
[0014]
In the present invention, in order to produce the diacetylene compound of the formula (1) or the formula (2), the 1,3-alkadiyne carboxylic acid compound represented by the formula (3) is converted to the formula (4) or the formula ( Reaction with the azacrown compound of 5). When the compound of formula (3) is, for example, chloride, the corresponding 1,3-alkadiyne carboxylic acid is reacted with oxalic acid dichloride, phosphorus pentachloride, phosphorus trichloride, thionyl chloride, phosphonyl chloride, etc. Can be obtained.
The reaction of the compound of formula (3) with the compound of formula (4) or formula (5) can be carried out in an aprotic solvent (for example, methylene chloride, ethers, etc.). It is preferably carried out in an ambient atmosphere of an inert gas such as argon or nitrogen, and is usually carried out by stirring at a temperature in the range of 0 to 50 ° C., preferably 25 to 40 ° C. under normal pressure. The amount of the compound represented by the formula (4) or the formula (5) is not particularly limited, but is usually 1.0 to 2.0 mol, preferably 1 mol relative to 1 mol of the compound represented by the formula (3). 1.1 to 1.2 moles are used.
By this reaction, the residue of the compound of the formula (4) or the formula (5) is introduced into the terminal of the compound of the formula (3) to obtain the compound represented by the formula (1) or the formula (2).
[0015]
After completion of the reaction, a pH buffer solution such as a phosphate buffer solution is added, and the organic layer is subjected to solvent extraction using an appropriate solvent such as ethyl acetate or methylene chloride. The extract is then dried with sodium sulfate or magnesium sulfate. The product of the present invention represented by the formula (1) or formula (2) is obtained as white crystals when the product is separated and purified by, for example, silica gel column chromatography after drying with an agent.
[0016]
As an example, a compound (compound 3a) in which k is 11, n is 2, and m is 8 in formula (1) or a compound (compound 3b) in which k is 11, n is 2, and m is 8 in formula (2) is produced. The reaction scheme in the case of
[0017]
[Chemical formula 5]
Figure 0003837461
[0018]
In the above scheme, compound 3a or 3b can be obtained by reacting compound 1 and oxalic acid dichloride in methylene chloride as a solvent and then reacting compound 2a or 2b in triethylamine and methylene chloride. The compounds 3a and 3b can be converted into polymer compounds (poly-3a and poly-3b) by solid phase polymerization.
[0019]
The compound represented by the formula (1) or formula (2) of the present invention can be polymerized by solid phase polymerization, and solid phase polymerization can be performed by a usual method such as ultraviolet irradiation or gamma ray irradiation to microcrystals. Can be made. Moreover, since the compound represented by Formula (1) or Formula (2) has a crown ether structure, it has an ion transport ability.
The polymer compound obtained by solid-phase polymerization of the compound of formula (1) is a compound having the following repeating unit, and the molecular weight is not particularly limited, but is usually 10,000 to 500,000.
[0020]
[Chemical 6]
Figure 0003837461
[0021]
Similarly, the polymer compound obtained by solid-phase polymerization of the compound of formula (2) has the following repeating units, and the molecular weight is not particularly limited, but is usually 10,000 to 500,000.
[0022]
[Chemical 7]
Figure 0003837461
[0023]
【The invention's effect】
The novel diacetylene compound of the present invention has a crown ether structure having the ability to form a complex with ions, has a high ion transport ability, and has a solid-phase polymerization property. It is extremely useful as a raw material for functional materials such as optical materials, photosensitive materials, and semiconductor crystals.
[0024]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.
[0025]
Example 1
CH 3 — (CH 2 ) 11 —C≡C—C≡C— (CH 2 ) 8 —COOH
A compound represented by the above formula (1.4 g) and oxalic acid dichloride (35 g) were reacted in 100 ml of methylene chloride as a reaction solvent under a nitrogen gas atmosphere at normal pressure and stirring at 25 ° C. for 12 hours. Distilled off to obtain the acid chloride of the compound. Further, this acid chloride was reacted with 1 g of 1-aza-18-crown-6 in 100 ml of methylene chloride as a reaction solvent under a nitrogen gas atmosphere at atmospheric pressure and stirring at 25 ° C. for 12 hours. It was. After distilling off the solvent, separation and purification with hexane-ethyl acetate as a developing solvent by silica gel column chromatography yielded 2.2 g of a compound having k of 11, m of 8, and n of 2 in formula (2). It was.
This diacetylene compound was white crystals, and its melting point was about 6 ° C.
Calculated elemental analysis value (γ) C 71.69 H 10.57
Actual value (γ) C 71.40 H 10.42
[0026]
Example 2
CH 3 — (CH 2 ) 11 —C≡C—C≡C— (CH 2 ) 3 —COOH
4 g of the compound represented by the above formula and 60 g of oxalic acid dichloride are reacted in 200 ml of methylene chloride as a reaction solvent under a nitrogen gas atmosphere at normal pressure with stirring at 25 ° C. for 12 hours. To give the acid chloride of the compound. Further, this acid chloride was reacted with 1-aza-18-crown-6 3 g in 200 ml of methylene chloride as a reaction solvent under a nitrogen gas atmosphere at atmospheric pressure with stirring at 25 ° C. for 12 hours. It was. After distilling off the solvent, separation and purification with hexane-ethyl acetate as a developing solvent by silica gel column chromatography yielded 6.5 g of a compound having k of 11, m of 3, and n of 2 in formula (2). It was.
This diacetylene compound was a white crystal, and its melting point was about −5 ° C.
Calculated elemental analysis value (γ) C 69.91 H 10.08
Actual value (γ) C 70.02 H 10.22
[0027]
Example 3
CH 3 — (CH 2 ) 11 —C≡C—C≡C— (CH 2 ) 8 —COOH
3 g of the compound represented by the above formula and 20 g of oxalic acid dichloride are reacted in 100 ml of methylene chloride as a reaction solvent under a nitrogen gas atmosphere at normal pressure with stirring for 12 hours at 25 ° C. To give the acid chloride of the compound. Furthermore, this acid chloride was reacted with 2.5 g of 1-aza-15-crown-5 in 100 ml of methylene chloride as a reaction solvent under a nitrogen gas atmosphere at atmospheric pressure and stirring for 12 hours at 25 ° C. I let you. After distilling off the solvent, separation and purification using hexane-ethyl acetate as a developing solvent by silica gel column chromatography yielded 4.2 g of a compound having k of 11, m of 8, and n of 2 in formula (1). It was.
This diacetylene compound was white crystals, and its melting point was about -3 ° C.
Calculated elemental analysis value (γ) C 73.00 H 10.67
Actual value (γ) C 72.87 H 10.42
[0028]
Reference Example When the microcrystals of each sample of the diacetylene compound of the present invention obtained in Examples 1 to 3 were irradiated with ultraviolet rays from a cobalt 60 gamma ray or a high pressure mercury lamp, all of them could be subjected to solid phase polymerization. The polymer is obtained as a reddish purple solid, insoluble in hexane, methylene chloride, etc., but dissolved in DMF (dimethylformamide) and DMSO (dimethyl sulfoxide) by heating to give a yellow transparent solution, and after cooling, A red gel was formed. Molecular weight 10,000-50,000.

Claims (4)

式(1)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −CO−E1
(式中、kは1〜12、mは1〜12の整数を示し、E1 は下記の構造を示す。
Figure 0003837461
(nは1〜4の整数を示す。))
で表わされるジアセチレン化合物。
Formula (1)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —CO—E 1
(In the formula, k represents 1 to 12, m represents an integer of 1 to 12, and E 1 represents the following structure.
Figure 0003837461
(N represents an integer of 1 to 4)
The diacetylene compound represented by these.
式(2)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −CO−E2
(式中、kは1〜12、mは1〜12の整数を示し、E2 は下記の構造を示す。
Figure 0003837461
(nは1〜4の整数を示す。))
で表わされるジアセチレン化合物。
Formula (2)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —CO—E 2
(Wherein, k is 1 to 12, m represents an integer of 1 to 12, E 2 represents the following structure.
Figure 0003837461
(N represents an integer of 1 to 4)
The diacetylene compound represented by these.
式(3)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −COX
(式中、Xはヒドロキシル基又はハロゲン原子を示し、k及びmはそれぞれ1〜12の整数を示す。)
で表わされる1,3−アルカジインカルボン酸化合物と、式(4)
H−E1
(式中、E1 は式(1)で定義したと同義である。)
で表わされる化合物とを反応させることを特徴とする請求項1記載のジアセチレン化合物の製造方法。
Formula (3)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —COX
(In the formula, X represents a hydroxyl group or a halogen atom, and k and m each represent an integer of 1 to 12.)
A 1,3-alkadiynecarboxylic acid compound represented by formula (4):
H-E 1
(In the formula, E 1 has the same meaning as defined in formula (1).)
A process for producing a diacetylene compound according to claim 1, wherein the compound represented by formula (1) is reacted.
式(3)
CH3 −(CH2)k −C≡C−C≡C−(CH2)m −COX
(式中、Xはヒドロキシル基又はハロゲン原子を示し、k及びmはそれぞれ1〜12の整数を表わす。)
で表わされる1,3−アルカジインカルボン酸化合物と、式(5)
H−E2
(式中、E2 は式(2)で定義したと同義である。)
で表わされる化合物とを反応させることを特徴とする請求項2記載のジアセチレン化合物の製造方法。
Formula (3)
CH 3 — (CH 2 ) k —C≡C—C≡C— (CH 2 ) m —COX
(In the formula, X represents a hydroxyl group or a halogen atom, and k and m each represents an integer of 1 to 12.)
A 1,3-alkadiynecarboxylic acid compound represented by formula (5)
H-E 2
(In the formula, E 2 has the same meaning as defined in Formula (2).)
A process for producing a diacetylene compound according to claim 2, wherein the compound represented by formula (2) is reacted.
JP05536598A 1998-03-06 1998-03-06 Diacetylene compound having crown ether structure and process for producing the same Expired - Lifetime JP3837461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05536598A JP3837461B2 (en) 1998-03-06 1998-03-06 Diacetylene compound having crown ether structure and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05536598A JP3837461B2 (en) 1998-03-06 1998-03-06 Diacetylene compound having crown ether structure and process for producing the same

Publications (2)

Publication Number Publication Date
JPH11255757A JPH11255757A (en) 1999-09-21
JP3837461B2 true JP3837461B2 (en) 2006-10-25

Family

ID=12996472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05536598A Expired - Lifetime JP3837461B2 (en) 1998-03-06 1998-03-06 Diacetylene compound having crown ether structure and process for producing the same

Country Status (1)

Country Link
JP (1) JP3837461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710380B (en) * 2015-01-06 2017-08-08 南京工业大学 Vesica probe, preparation method and application for detecting lead ion

Also Published As

Publication number Publication date
JPH11255757A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4014856B2 (en) Method for producing dihalogenated adamantane
CN104592013A (en) Method for synthesizing p-fluorobenzoyl chloride
JP3837461B2 (en) Diacetylene compound having crown ether structure and process for producing the same
JP5283494B2 (en) Method for producing fluorene derivative
JPS59231082A (en) 4-chloro-4-methyl-5-methylene-1,3-dioxolan-2-one
EP0590539B1 (en) Processes for producing tetrathiafulvalene derivatives and their precursors
JPH0616656A (en) Production of fluorinated phthalic acid anhydride
KR20080037019A (en) Method of making aromatic dihydroxy diacid dihalides and precipitates resulting therefrom
JP3472800B2 (en) Alkadiin carboxylate
JP2970257B2 (en) Method for producing polysilane
JP2682972B2 (en) Interlocked polymer composed of bifunctional 2-catenan derivative
JP4542480B2 (en) Method for producing maleonitriles
JPH07300489A (en) Silol containing 2,5-reactive substituent group, silol polycondensate and their production
JP2004189949A (en) Electrically responding circular form molecule-recognizing material and production method thereof
JP3442087B2 (en) New disulfide compounds
JP3301132B2 (en) 1,2-Diphenylethane derivative and method for producing the same
JP2002327061A (en) Production method of ring-opening polymer
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JP2560242B2 (en) Diacetylene derivative and method for producing the same
JP3698573B2 (en) Polyhaloiminium salt
JP2671950B2 (en) Distanylene-containing polymer and method for producing the same
JPH0656703A (en) Production of perfluoroalkyl-substituted biphenyl derivative
JP2009263490A (en) Vinyl ether derivative polymer, its manufacturing method and use
JPS5835166A (en) Isethionic acid ester
JP3772263B2 (en) Process for producing 5-methoxyindoline derivative

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term