JP3836989B2 - Polygon scanner - Google Patents

Polygon scanner Download PDF

Info

Publication number
JP3836989B2
JP3836989B2 JP745799A JP745799A JP3836989B2 JP 3836989 B2 JP3836989 B2 JP 3836989B2 JP 745799 A JP745799 A JP 745799A JP 745799 A JP745799 A JP 745799A JP 3836989 B2 JP3836989 B2 JP 3836989B2
Authority
JP
Japan
Prior art keywords
outer peripheral
polygon mirror
rotating sleeve
protrusion
metal outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP745799A
Other languages
Japanese (ja)
Other versions
JP2000206439A (en
Inventor
光夫 鈴木
幸男 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP745799A priority Critical patent/JP3836989B2/en
Publication of JP2000206439A publication Critical patent/JP2000206439A/en
Application granted granted Critical
Publication of JP3836989B2 publication Critical patent/JP3836989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光源から照射されたビーム光をポリゴンミラーの反射面により偏向走査するポリゴンスキャナに関する。
【0002】
【従来の技術】
まず、従来例について説明する。図4は動圧空気軸受型のポリゴンスキャナの内部構造を示す縦断側面図である。図中、1はハウジングである。このハウジング1にはプリント基板2と、このプリント基板2の上部空間を覆うカバー3とが取り付けられている。このカバー3の一部には、ビームを通す窓3aが形成されている。また、ハウジング1の中央部に形成された環状壁4にはセラミック製の固定軸5が固定的に嵌合されている。
【0003】
6は回転体である。この回転体6は、回転スリーブ7に金属製外周部材8とポリゴンミラー9とを焼き嵌め又は圧入等の方法により固定的に嵌合することにより形成されている。ポリゴンミラー9の外周には複数の反射面9aが形成されている。固定軸5の外周面には回転スリーブ7の内周面との間で動圧空気軸受10を構成するヘリングボーン状の動圧発生溝10aが形成されている。このような回転体6には高速回転時にも振動が発生しないように上下にバランス修正をするための溝(図示せず)が形成されている。
【0004】
そして、金属製外周部材8により保持されたロータ磁石11と、ハウジング1に設けられたステータ12とによりアウターロータ型のモータ13が構成されている。このモータ13は、プリント基板2に設けたホール素子14から出力される信号を位置信号として認識し、ステータ巻線15の励磁切り替え制御をすることにより回転体6を回転駆動するものである。
【0005】
円筒形状に形成された固定軸5の上部内周面にはスペーサ部材16により支えられた永久磁石組立体17が設けられ、ポリゴンミラー9の中心には磁性体18が設けられ、これらの永久磁石組立体17と磁性体18とにより磁気軸受19が形成されている。磁性体18の下端には微細孔19aが形成され、周囲には空気溜り19bが形成されている。
【0006】
このようなポリゴンスキャナでは、モータ13により回転体6を回転させ、窓3aから入射されたビームをポリゴンミラー9の反射面9aにより偏向する。この場合、動圧空気軸受10は、固定軸5と回転スリーブ7との間に数μmの隙間をもち、回転スリーブ7は固定軸5に対して非接触状態で回転するが、回転が安定するまでの過程で固定軸5に接触するため、摩耗粉が生じないように固定軸5と回転スリーブ7とをセラミックにより形成することが知られている。
【0007】
【発明が解決しようとする課題】
上記構成のポリゴンスキャナにおいて、ポリゴンミラー9や金属製外周部材8は軽量化を図るとともに剛性を保つためにアルミ合金を用いることが多い。この場合、回転スリーブ7の材料であるセラミック(アルミナの場合)の熱膨張率は0.7×10-5/℃であり、ポリゴンミラー9や金属製外周部材8の材料であるアルミ合金の熱膨張率は2.3×10-5/℃であり、両者の熱膨張率の差が大きい。これにより、回転スリーブ7を高速回転(約30000rpm)させると温度が約100℃にも達するが、回転スリーブ7にポリゴンミラー9や金属製外周部材8を焼き嵌め又は圧入により嵌合する場合、高温時の状態を考慮し、焼き嵌め代或いは圧入代を10数μm程度に定めることが必要である。この結果、回転スリーブ7の内径の精度が数μmほど悪化してしまう。これにより、図4に示すように、ポリゴンミラー9は反射面9aの裏側の近傍で温度上昇時の歪みの影響を受けるので、ビームの偏向機能が低下する問題がある。
【0008】
この場合、回転スリーブ7の内面を仕上げ加工しても、或いは、特開平7−190047号公報に記載されているように、回転精度を高めるために回転スリーブ7の内面をつづみ状に加工しても、回転スリーブ7の外周に熱膨張率の異なるポリゴンミラー9を焼き嵌め又は圧入した構成では、温度上昇により両者の嵌合部に熱応力による歪みが生じ、その歪みによりポリゴンミラー9の反射面9aの面精度が狂ってしまう。反射面9aの面精度は100nmのレベルが要求されるため、僅かな歪みでも問題となる。
【0009】
このようなことから、回転スリーブにポリゴンミラーを接着により固定する方法が提案されている。この場合には回転スリーブの内径が変化する影響を少なくすることができる。しかし、回転スリーブとポリゴンミラーとの熱膨張率に差がある場合には、温度上昇時に接着層に多大なせん断力が発生し、接着部の固着力が低下する。その結果、回転体としてのバランスが変化することになり、ポリゴンスキャナの振動が増大する。
【0010】
特開平6−110007号公報には、回転軸(回転スリーブに相当)に台座(金属製外周部材に相当)を圧入又は焼き嵌めし、回転軸にポリゴンミラーを嵌合して台座に当接させ、回転軸とポリゴンミラーとの間に形成される5ないし50μmの隙間に、樹脂材料及び溶剤を含む液体を注入し、この液体を乾燥し溶剤を蒸発させ、残る微粒状物により回転軸とポリゴンミラーとの隙間を埋める内容が記載されているが、この場合も高温時には回転軸とポリゴンミラーとの嵌合部分に熱応力による歪みが発生し、回転バランスが狂うおそれがある。
【0011】
本発明はこのような点に鑑みなされたもので、動圧空気軸受により回転可能に支持される回転スリーブにポリゴンミラーを装着する型式のポリゴンスキャナにおいて、高速回転による温度上昇時においても、ポリゴンミラーの反射面に熱応力による歪みの影響を与えることなく高精度の偏向機能を得ることができるポリゴンスキャナを提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1記載の発明は、動圧空気軸受により回転可能に支持されてモータにより回転駆動されるセラミック製の回転スリーブと、前記回転スリーブ端部から軸方向に突出する筒状突部を有して前記回転スリーブの軸方向端部外周に焼き嵌め又は圧入された環状の金属製外周部材と、熱膨張率が前記金属製外周部材の熱膨張率と略一致する材料により形成され、外周部に配列された反射面よりも半径方向内側において軸方向に突出されたボス状突部を有し、前記ボス状突部の外周面が前記金属製外周部材の前記筒状突部の内周面で焼き嵌め又は圧入によって固定的に嵌合されたポリゴンミラーと、を備える。
【0013】
したがって、温度上昇時に回転スリーブと金属製外周部材との嵌合部に歪みが発生した場合、その歪みは半径方向に大きく作用しても金属製外周部材の回転スリーブ端部から軸方向に突出する筒状突部に与える影響は少ない。具体的には、高速回転により回転体に温度上昇が発生した場合、回転スリーブと金属製外周部材の熱膨張率の差により、回転スリーブと金属製外周部材の嵌合部(軸方向に回転スリーブと金属製外周部材とが重なる部分、すなわち回転スリーブの半径方向)では、熱応力による歪みが生じることになるが、回転スリーブ端部から軸方向に突出する金属製外周部材の筒状突部では回転スリーブとは嵌合していないため、温度上昇に起因する歪みの影響は少ないためである。この歪みの影響の少ない筒状突部の内周面にポリゴンミラーの軸方向から突出するボス状突部の外周面が固定的に嵌合される。さらに、金属製外周部材とポリゴンミラーとは熱膨張率が略一致する材料により形成されているため両者の嵌合部における歪みは少ない。さらに、ボス状突部は軸方向に突出し外周面が金属製外周部材の筒状突部に嵌合されるため、その嵌合部からポリゴンミラーの反射面までの歪みの伝達径路を長くすることが可能となり、したがって、温度上昇時に反射面に作用する歪みを無視できる程度に小さくすることが可能となる。
【0016】
請求項記載の発明は、請求項1記載の発明において、前記ポリゴンミラーの前記反射面は、前記回転スリーブと前記金属製外周部材と前記ポリゴンミラーとを組み立てたのち、前記回転スリーブの軸方向に対して角度0°に定められて鏡面加工されている。
【0017】
したがって、回転スリーブと金属製外周部材とポリゴンミラーとの三者を組み立てる前に、それら三者を高精度に加工する必要がないとともに、ポリゴンミラーの回転に伴う走査ビームを回転スリーブの軸と直角に定めて使用することが可能となる。
【0022】
【発明の実施の形態】
本発明の一実施の形態を図1及び第2図に基づいて説明する。図4において説明した部分と同一部分は同一符号を用い説明も省略する。図1は動圧空気軸受型のポリゴンスキャナの内部構造を示す縦断側面図、図2は回転体の構成を分解して示す縦断側面図である。
【0023】
本実施の形態における回転体20は、回転スリーブ7と、この回転スリーブ7に焼き嵌め又は圧入された金属製外周部材21と、この金属製外周部材21に固定的に嵌合されたポリゴンミラー22とにより形成されている。この例では、金属製外周部材21は、ポリゴンミラー22が固定的に嵌合された第一のフランジ部材23と、ロータ磁石11を保持する第二のフランジ部材24とを固定的に嵌合することにより構成されている。ポリゴンミラー22の外周には複数の反射面22aが形成されている。動圧空気軸受10により回転可能に支持された回転スリーブ7はセラミックにより形成され、ポリゴンミラー22と第一、第二のフランジ部材23,24とはアルミ合金により形成されている。
【0024】
図2に示すように、回転スリーブ7に焼き嵌め又は圧入される第一のフランジ部材23は軸方向に突出する筒状突部25を有し、第二のフランジ部材24には内周面が第一のフランジ部材23の外周面に焼き嵌め又は圧入される嵌合突部26が形成されている。そして、ポリゴンミラー22には、その下端面に環状溝27を形成することにより、反射面22aよりも半径方向内側において軸方向に突出されたボス状突部28が形成されている。
【0025】
したがって、第一のフランジ部材23の外周面にロータ磁石11を保持する第二のフランジ部材24の嵌合突部26の内周面を焼き嵌め又は圧入することにより金属製外周部材21が形成される。そして、回転スリーブ7の外周面に金属製外周部材21を焼き嵌め又は圧入し、金属製外周部材21の筒状突部25の内周面にポリゴンミラー22のボス状突部28の外周面を焼き嵌め又は圧入することにより、回転体20が組み立てられる。他の構成は図4で示した構成と同様である。
【0026】
このような構成において、モータ13を駆動することで回転体20を回転させるが、高速回転により回転体20の温度が上昇する。この場合、セラミック製の回転スリーブ7とアルミ合金製の第一のフランジ部材23との嵌合部に温度上昇に伴う歪みが発生するが、その歪みは半径方向に大きく作用しても軸方向に突出する筒状突部25に与える影響は少ない。具体的には、高速回転により回転体20に温度上昇が発生した場合、回転スリーブ7と第一のフランジ部材23の熱膨張率の差により、回転スリーブ7と第一のフランジ部材23の嵌合部(図1の軸方向に回転スリーブ7と第一のフランジ部材23とが重なる部分、すなわち回転スリーブ7の半径方向)では、膨張または収縮による熱応力による歪みが生じることになるが、回転スリーブ7の端部から軸方向に突出する第一のフランジ部材23の筒状突部25では回転スリーブ7とは嵌合していないため、温度上昇に起因する歪みの影響は少ないためである。この歪みの影響の少ない筒状突部25の内周面にポリゴンミラー22の軸方向から突出するボス状突部28の外周面が固定的に嵌合され、さらに、ポリゴンミラー22と第一のフランジ部材23とは熱膨張率が略一致する材料(アルミ合金)により形成されているため両者の嵌合部における歪みは少ない。さらに、ボス状突部28の外周面と筒状突部25の内周面との嵌合部から反射面22aまでの歪みの伝達径路を長くすることができる。したがって、温度上昇時に反射面22aに作用する歪みを無視できる程度に小さくすることができる。
【0027】
この場合、ポリゴンミラー22の環状溝27の外側の壁面は反射面22aに近いので、その環状溝27の外側の壁面に筒状突部25の外周面が当接しないように、環状溝27の幅を広くすることが望ましい。
【0028】
また、ポリゴンミラー22の反射面22aを、回転スリーブ7の軸方向に対して定められた角度をもって鏡面加工することにより、回転スリーブ7と金属製外周部材21とポリゴンミラー22との三者を組み立てる前に、それら三者を高精度に加工する必要がない。本実施の形態では、回転スリーブ7の軸方向に対して反射面22aを鏡面加工する角度は0°に定められている。したがって、ポリゴンミラー22の回転に伴う走査ビームを回転スリーブ7の軸と直角に定めて使用することができる。もちろん、回転スリーブ7の軸方向に対して反射面22aを鏡面加工する角度を任意に定めてもよい。
【0029】
さらに、本実施の形態においては、金属製外周部材21は、筒状突部25を有する第一のフランジ部材23と、モータ13のロータ磁石11を保持する第二のフランジ部材24とに分けて設けられ、これらの第一、第二のフランジ部材23,24は熱膨張率が略一致する材料により形成されているので、両者の嵌合部に熱応力による歪みが発生することはない。また、ロータ磁石11を保持する第二のフランジ部材24を第一のフランジ部材23に嵌合固定する前に、ポリゴンミラー22の反射面22aの鏡面加工を行なっても温度上昇時の回転バランスの変化を防止することができる。もちろん、第一、第二のフランジ部材23,24を一体に形成して部品点数を少なくするようにしてもよい。
【0030】
さらに、ロータ磁石11を保持する第二のフランジ部材24の半径を、ポリゴンミラー22の反射面22aの半径よりも大きな値に定めることにより、アウターロータ型やアキシャルギャップ型の比較的大径のモータ13を実装することができる。これにより、モータ13のトルクを高くし、起動時間を短縮することができる。
【0031】
なお、本実施の形態(図2参照)では、ポリゴンミラー22の下面に環状溝を27を形成し、その環状溝27の内側をボス状突部28としたが、図3に示すように、ポリゴンミラー22の下面を下方に突出させてボス状突部29を形成してもよい。
【0032】
【発明の効果】
請求項1記載の発明によれば、動圧空気軸受により支持されるセラミック製の回転スリーブの軸方向端部外周に焼き嵌め又は圧入される金属製外周部材に回転スリーブ端部から軸方向に突出する筒状突部を形成し、金属製外周部材と熱膨張率が略一致するポリゴンミラーに、その反射面よりも半径方向内側において軸方向に突出するボス状突部を形成し、このボス状突部の外周面を筒状突部の内周面に焼き嵌め又は圧入によって固定的に嵌合する構成とすることにより、温度上昇時に、熱膨張率が異なる回転スリーブと金属製外周部材との嵌合部に歪みが発生しても、ポリゴンミラーの反射面に作用する歪みを無視できる程度に小さくすることができる。これにより、ビームの偏向機能を高精度に維持することができる。
【0034】
請求項記載の発明によれば、ポリゴンミラーの反射面は、回転スリーブの軸方向に対して定められた角度をもって鏡面加工されているので、回転スリーブと金属製外周部材とポリゴンミラーとの三者を組み立てる前に、それら三者を高精度に加工する必要がない。また、反射面を鏡面加工する角度は、回転スリーブの軸方向に対して0°に定められているので、ポリゴンミラーの反射面におけるビームの入射角及び反射角を回転スリーブの軸と直角に定めて使用することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における動圧空気軸受のポリゴンスキャナの内部構造を示す縦断側面図である。
【図2】回転体の構成を分解して示す縦断側面図である。
【図3】ポリゴンミラーに形成するボス状突部の変形例を示す縦断側面図である。
【図4】従来の動圧空気軸受のポリゴンスキャナの内部構造を示す縦断側面図である。
【符号の説明】
7 回転スリーブ
10 動圧空気軸受
11 ロータ磁石
13 モータ
21 金属製外周部材
23 第一のフランジ部材
24 第二のフランジ部材
25 筒状突部
28,29 環状突部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polygon scanner that deflects and scans beam light emitted from a light source by a reflecting surface of a polygon mirror.
[0002]
[Prior art]
First, a conventional example will be described. FIG. 4 is a longitudinal side view showing the internal structure of a dynamic pressure air bearing type polygon scanner. In the figure, 1 is a housing. A printed circuit board 2 and a cover 3 that covers the upper space of the printed circuit board 2 are attached to the housing 1. A window 3a through which the beam passes is formed in a part of the cover 3. Further, a fixed shaft 5 made of ceramic is fixedly fitted to the annular wall 4 formed in the central portion of the housing 1.
[0003]
Reference numeral 6 denotes a rotating body. The rotating body 6 is formed by fixedly fitting a metal outer peripheral member 8 and a polygon mirror 9 to a rotating sleeve 7 by a method such as shrink fitting or press fitting. A plurality of reflecting surfaces 9 a are formed on the outer periphery of the polygon mirror 9. A herringbone-shaped dynamic pressure generating groove 10 a constituting the dynamic pressure air bearing 10 is formed between the outer peripheral surface of the fixed shaft 5 and the inner peripheral surface of the rotary sleeve 7. Such a rotating body 6 is formed with a groove (not shown) for correcting the balance up and down so that vibration does not occur even during high-speed rotation.
[0004]
The rotor magnet 11 held by the metal outer peripheral member 8 and the stator 12 provided in the housing 1 constitute an outer rotor type motor 13. The motor 13 recognizes a signal output from the Hall element 14 provided on the printed circuit board 2 as a position signal, and rotates the rotating body 6 by controlling excitation switching of the stator winding 15.
[0005]
A permanent magnet assembly 17 supported by a spacer member 16 is provided on the upper inner peripheral surface of the fixed shaft 5 formed in a cylindrical shape, and a magnetic body 18 is provided in the center of the polygon mirror 9, and these permanent magnets. A magnetic bearing 19 is formed by the assembly 17 and the magnetic body 18. A fine hole 19 a is formed at the lower end of the magnetic body 18, and an air reservoir 19 b is formed around it.
[0006]
In such a polygon scanner, the rotating body 6 is rotated by the motor 13, and the beam incident from the window 3 a is deflected by the reflecting surface 9 a of the polygon mirror 9. In this case, the dynamic pressure air bearing 10 has a gap of several μm between the fixed shaft 5 and the rotating sleeve 7, and the rotating sleeve 7 rotates in a non-contact state with respect to the fixed shaft 5, but the rotation is stabilized. It is known that the fixed shaft 5 and the rotating sleeve 7 are formed of ceramic so as not to generate wear powder because they contact the fixed shaft 5 in the process up to this point.
[0007]
[Problems to be solved by the invention]
In the polygon scanner configured as described above, the polygon mirror 9 and the metal outer peripheral member 8 are often made of an aluminum alloy in order to reduce the weight and maintain rigidity. In this case, the thermal expansion coefficient of the ceramic (in the case of alumina) that is the material of the rotating sleeve 7 is 0.7 × 10 −5 / ° C., and the heat of the aluminum alloy that is the material of the polygon mirror 9 and the metal outer peripheral member 8. The expansion coefficient is 2.3 × 10 −5 / ° C., and the difference in thermal expansion coefficient between the two is large. Accordingly, when the rotating sleeve 7 is rotated at a high speed (about 30000 rpm), the temperature reaches about 100 ° C. However, when the polygon mirror 9 or the metal outer peripheral member 8 is fitted to the rotating sleeve 7 by shrink fitting or press fitting, the temperature is high. In consideration of the situation at the time, it is necessary to set the shrinkage allowance or press-fitting allowance to about 10 or more μm. As a result, the accuracy of the inner diameter of the rotating sleeve 7 is deteriorated by several μm. As a result, as shown in FIG. 4, the polygon mirror 9 is affected by the distortion when the temperature rises in the vicinity of the back surface of the reflecting surface 9a, so that there is a problem that the beam deflection function is lowered.
[0008]
In this case, even if the inner surface of the rotating sleeve 7 is finished, or as described in JP-A-7-190047, the inner surface of the rotating sleeve 7 is processed into a continuous shape in order to improve the rotation accuracy. However, in the configuration in which the polygon mirror 9 having a different thermal expansion coefficient is shrink-fitted or press-fitted around the outer periphery of the rotating sleeve 7, distortion due to thermal stress occurs in the fitting portion of both due to temperature rise, and the reflection of the polygon mirror 9 is caused by the distortion. The surface accuracy of the surface 9a will be out of order. Since the surface accuracy of the reflecting surface 9a is required to be a level of 100 nm, even a slight distortion causes a problem.
[0009]
For this reason, a method for fixing the polygon mirror to the rotating sleeve by bonding has been proposed. In this case, the influence of changing the inner diameter of the rotating sleeve can be reduced. However, when there is a difference in the thermal expansion coefficient between the rotating sleeve and the polygon mirror, a great shearing force is generated in the adhesive layer when the temperature rises, and the adhesive force of the adhesive part is reduced. As a result, the balance as a rotating body changes, and the vibration of the polygon scanner increases.
[0010]
In JP-A-6-110007, a pedestal (corresponding to a metal outer peripheral member) is press-fitted or shrink-fitted to a rotating shaft (corresponding to a rotating sleeve), and a polygon mirror is fitted to the rotating shaft so as to contact the pedestal. A liquid containing a resin material and a solvent is injected into a gap of 5 to 50 μm formed between the rotary shaft and the polygon mirror, and the liquid is dried to evaporate the solvent. Although the content of filling the gap with the mirror is described, in this case as well, distortion due to thermal stress occurs at the fitting portion between the rotating shaft and the polygon mirror at high temperatures, and there is a possibility that the rotational balance will be out of order.
[0011]
The present invention has been made in view of the above points. In a polygon scanner of the type in which a polygon mirror is mounted on a rotating sleeve that is rotatably supported by a dynamic pressure air bearing, the polygon mirror can be used even when the temperature rises due to high-speed rotation. It is an object of the present invention to provide a polygon scanner capable of obtaining a highly accurate deflection function without affecting the reflection surface of the lens by distortion caused by thermal stress.
[0012]
[Means for Solving the Problems]
The invention described in claim 1 has a ceramic rotating sleeve that is rotatably supported by a dynamic pressure air bearing and is driven to rotate by a motor, and a cylindrical protrusion that protrudes axially from the end of the rotating sleeve. And an annular metal outer peripheral member that is shrink-fitted or press-fitted to the outer periphery of the axial end portion of the rotating sleeve, and a material whose thermal expansion coefficient substantially matches the thermal expansion coefficient of the metal outer peripheral member. It has a boss-like protrusion that protrudes in the axial direction radially inward of the arranged reflecting surfaces, and the outer peripheral surface of the boss-like protrusion is the inner peripheral surface of the cylindrical protrusion of the metal outer peripheral member. A polygon mirror fixedly fitted by shrink fitting or press fitting.
[0013]
Therefore, when distortion occurs in the fitting portion between the rotating sleeve and the metal outer peripheral member when the temperature rises, the distortion protrudes in the axial direction from the end of the rotating sleeve of the metal outer peripheral member even if the distortion acts largely in the radial direction. There is little influence on the cylindrical protrusion. Specifically, when a temperature rise occurs in the rotating body due to high-speed rotation, a fitting portion (rotating sleeve in the axial direction) of the rotating sleeve and the metal outer member is caused by a difference in thermal expansion coefficient between the rotating sleeve and the metal outer member. In the portion where the outer peripheral member and the metal outer peripheral member overlap, that is, in the radial direction of the rotating sleeve, distortion due to thermal stress occurs, but in the cylindrical protruding portion of the outer peripheral metal member protruding in the axial direction from the end of the rotating sleeve. This is because it is not fitted with the rotating sleeve, so that the influence of distortion due to temperature rise is small. The outer peripheral surface of the boss-like protrusion protruding from the axial direction of the polygon mirror is fixedly fitted to the inner peripheral surface of the cylindrical protrusion that is less affected by the distortion. Furthermore, since the metal outer peripheral member and the polygon mirror are formed of a material having substantially the same coefficient of thermal expansion, there is little distortion at the fitting portion between them. Furthermore, since the boss-like protrusion protrudes in the axial direction and the outer peripheral surface is fitted to the cylindrical protrusion of the metal outer peripheral member, the strain transmission path from the fitting part to the reflection surface of the polygon mirror is lengthened. Therefore, the distortion acting on the reflecting surface when the temperature rises can be reduced to a negligible level.
[0016]
According to a second aspect of the invention, in the invention according to the first SL mounting, the reflecting surface of the polygon mirror, after the assembly of the said rotating sleeve and said metallic outer peripheral member and the polygon mirror, the axis of the rotary sleeve It is mirror-finished at an angle of 0 ° with respect to the direction.
[0017]
Therefore, before assembling the three parts of the rotating sleeve, the metal outer peripheral member, and the polygon mirror, it is not necessary to process the three members with high accuracy, and the scanning beam accompanying the rotation of the polygon mirror is perpendicular to the axis of the rotating sleeve. It is possible to use it as defined in
[0022]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. 1 and FIG. The same parts as those described with reference to FIG. FIG. 1 is a longitudinal side view showing the internal structure of a dynamic pressure air bearing type polygon scanner, and FIG. 2 is an exploded side view showing the structure of a rotating body.
[0023]
The rotating body 20 in the present embodiment includes a rotating sleeve 7, a metal outer peripheral member 21 that is shrink-fitted or press-fitted into the rotating sleeve 7, and a polygon mirror 22 that is fixedly fitted to the metal outer peripheral member 21. And is formed by. In this example, the metal outer peripheral member 21 fixedly fits the first flange member 23 to which the polygon mirror 22 is fixedly fitted and the second flange member 24 holding the rotor magnet 11. It is constituted by. A plurality of reflecting surfaces 22 a are formed on the outer periphery of the polygon mirror 22. The rotary sleeve 7 rotatably supported by the dynamic pressure air bearing 10 is made of ceramic, and the polygon mirror 22 and the first and second flange members 23 and 24 are made of an aluminum alloy.
[0024]
As shown in FIG. 2, the first flange member 23 that is shrink-fitted or press-fitted into the rotary sleeve 7 has a cylindrical protrusion 25 that protrudes in the axial direction, and the second flange member 24 has an inner peripheral surface. A fitting protrusion 26 is formed on the outer peripheral surface of the first flange member 23 to be shrink-fitted or press-fitted. The polygon mirror 22 is formed with a boss-like protrusion 28 that protrudes in the axial direction on the radially inner side of the reflecting surface 22a by forming an annular groove 27 on the lower end surface thereof.
[0025]
Therefore, the metal outer peripheral member 21 is formed by shrink fitting or press fitting the inner peripheral surface of the fitting protrusion 26 of the second flange member 24 holding the rotor magnet 11 on the outer peripheral surface of the first flange member 23. The Then, the metal outer peripheral member 21 is shrink-fitted or press-fitted into the outer peripheral surface of the rotating sleeve 7, and the outer peripheral surface of the boss-shaped protrusion 28 of the polygon mirror 22 is attached to the inner peripheral surface of the cylindrical protrusion 25 of the metal outer peripheral member 21. The rotary body 20 is assembled by shrink fitting or press fitting. Other configurations are the same as those shown in FIG.
[0026]
In such a configuration, the rotating body 20 is rotated by driving the motor 13, but the temperature of the rotating body 20 rises due to high-speed rotation. In this case, a distortion due to a temperature rise occurs in the fitting portion between the ceramic rotary sleeve 7 and the first flange member 23 made of aluminum alloy. There is little influence on the protruding cylindrical protrusion 25. Specifically, when a temperature rise occurs in the rotating body 20 due to high-speed rotation, the engagement between the rotating sleeve 7 and the first flange member 23 is caused by the difference in thermal expansion coefficient between the rotating sleeve 7 and the first flange member 23. 1 (part where the rotary sleeve 7 and the first flange member 23 overlap in the axial direction of FIG. 1, ie, the radial direction of the rotary sleeve 7), distortion due to thermal stress due to expansion or contraction occurs. This is because the cylindrical protrusion 25 of the first flange member 23 that protrudes in the axial direction from the end portion 7 is not fitted to the rotating sleeve 7 and is therefore less affected by distortion due to temperature rise. The outer peripheral surface of the boss-shaped protrusion 28 protruding from the axial direction of the polygon mirror 22 is fixedly fitted to the inner peripheral surface of the cylindrical protrusion 25 that is less affected by the distortion. Since the flange member 23 is made of a material (aluminum alloy) having substantially the same thermal expansion coefficient, there is little distortion at the fitting portion between them. Further, the strain transmission path from the fitting portion between the outer peripheral surface of the boss-like protrusion 28 and the inner peripheral surface of the cylindrical protrusion 25 to the reflecting surface 22a can be lengthened. Therefore, the distortion acting on the reflecting surface 22a when the temperature rises can be reduced to a negligible level.
[0027]
In this case, the outer wall surface of the annular groove 27 of the polygon mirror 22 is close to the reflecting surface 22a, so that the outer circumferential surface of the cylindrical protrusion 25 does not come into contact with the outer wall surface of the annular groove 27. It is desirable to increase the width.
[0028]
Further, the reflecting surface 22a of the polygon mirror 22 is mirror-finished at an angle determined with respect to the axial direction of the rotating sleeve 7, thereby assembling the rotating sleeve 7, the metal outer peripheral member 21, and the polygon mirror 22. There is no need to process these three parts with high accuracy before. In the present embodiment, the angle at which the reflecting surface 22a is mirror-finished with respect to the axial direction of the rotating sleeve 7 is set to 0 °. Therefore, the scanning beam accompanying the rotation of the polygon mirror 22 can be determined and used at right angles to the axis of the rotating sleeve 7. Of course, the angle at which the reflecting surface 22a is mirror-finished with respect to the axial direction of the rotating sleeve 7 may be arbitrarily determined.
[0029]
Further, in the present embodiment, the metal outer peripheral member 21 is divided into a first flange member 23 having a cylindrical protrusion 25 and a second flange member 24 that holds the rotor magnet 11 of the motor 13. Since these first and second flange members 23 and 24 are formed of a material having substantially the same thermal expansion coefficient, distortion due to thermal stress does not occur in the fitting portion between them. Even if the mirror surface of the reflecting surface 22a of the polygon mirror 22 is mirror-processed before the second flange member 24 holding the rotor magnet 11 is fitted and fixed to the first flange member 23, the rotational balance at the time of temperature rise is maintained. Changes can be prevented. Of course, the first and second flange members 23 and 24 may be integrally formed to reduce the number of parts.
[0030]
Further, by setting the radius of the second flange member 24 holding the rotor magnet 11 to a value larger than the radius of the reflection surface 22a of the polygon mirror 22, a motor having a relatively large diameter such as an outer rotor type or an axial gap type. 13 can be implemented. Thereby, the torque of the motor 13 can be increased and the startup time can be shortened.
[0031]
In the present embodiment (see FIG. 2), an annular groove 27 is formed on the lower surface of the polygon mirror 22, and the inside of the annular groove 27 is a boss-shaped protrusion 28. As shown in FIG. The lower surface of the polygon mirror 22 may be protruded downward to form the boss-shaped protrusion 29.
[0032]
【The invention's effect】
According to the first aspect of the invention, the metal outer peripheral member that is shrink-fitted or press-fitted to the outer periphery of the axial end of the ceramic rotary sleeve supported by the hydrodynamic air bearing protrudes axially from the end of the rotary sleeve. A cylindrical boss is formed, and a boss-like protrusion that protrudes in the axial direction radially inward of the reflective surface is formed on the polygon mirror whose thermal expansion coefficient substantially matches that of the metal outer peripheral member. By adopting a configuration in which the outer peripheral surface of the protrusion is fixedly fitted to the inner peripheral surface of the cylindrical protrusion by shrink fitting or press-fitting, when the temperature rises, the rotation sleeve and the metal outer member having different thermal expansion coefficients are different. Even if the fitting portion is distorted, the distortion acting on the reflection surface of the polygon mirror can be reduced to a negligible level. As a result, the beam deflection function can be maintained with high accuracy.
[0034]
According to the second aspect of the present invention, since the reflecting surface of the polygon mirror is mirror-finished at an angle determined with respect to the axial direction of the rotating sleeve, the three surfaces of the rotating sleeve, the metal outer peripheral member, and the polygon mirror are provided. It is not necessary to process these three parts with high accuracy before assembling them. In addition, since the angle at which the reflecting surface is mirror-finished is set to 0 ° with respect to the axial direction of the rotating sleeve, the incident angle and the reflecting angle of the beam on the reflecting surface of the polygon mirror are determined at right angles to the axis of the rotating sleeve. Can be used.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an internal structure of a polygon scanner of a dynamic pressure air bearing in an embodiment of the present invention.
FIG. 2 is an exploded side view showing a structure of a rotating body in an exploded manner.
FIG. 3 is a longitudinal side view showing a modified example of a boss-like protrusion formed on a polygon mirror.
FIG. 4 is a longitudinal side view showing an internal structure of a polygon scanner of a conventional dynamic pressure air bearing.
[Explanation of symbols]
7 Rotating sleeve 10 Hydrodynamic air bearing 11 Rotor magnet 13 Motor 21 Metal outer peripheral member 23 First flange member 24 Second flange member 25 Cylindrical protrusions 28 and 29 Annular protrusion

Claims (2)

動圧空気軸受により回転可能に支持されてモータにより回転駆動されるセラミック製の回転スリーブと、
前記回転スリーブ端部から軸方向に突出する筒状突部を有して前記回転スリーブの軸方向端部外周に焼き嵌め又は圧入された環状の金属製外周部材と、
熱膨張率が前記金属製外周部材の熱膨張率と略一致する材料により形成され、外周部に配列された反射面よりも半径方向内側において軸方向に突出されたボス状突部を有し、前記ボス状突部の外周面が前記金属製外周部材の前記筒状突部の内周面で焼き嵌め又は圧入によって固定的に嵌合されたポリゴンミラーと、
を備えるポリゴンスキャナ。
A ceramic rotating sleeve rotatably supported by a hydrodynamic air bearing and driven by a motor;
A shrink fit or press-fit annular metallic peripheral member in the axial end outer periphery of the rotary sleeve having a tubular projection which projects axially from said rotating sleeve end,
A coefficient of thermal expansion is formed of a material that substantially matches the coefficient of thermal expansion of the metal outer peripheral member, and has a boss-like protrusion that protrudes in the axial direction radially inward from the reflecting surface arranged on the outer periphery. A polygon mirror in which the outer peripheral surface of the boss-like protrusion is fixedly fitted by shrink fitting or press-fitting on the inner peripheral surface of the cylindrical protrusion of the metal outer peripheral member;
Polygon scanner with
前記ポリゴンミラーの前記反射面は、前記回転スリーブと前記金属製外周部材と前記ポリゴンミラーとを組み立てたのち、前記回転スリーブの軸方向に対して角度0°に定められて鏡面加工されている、
請求項1記載のポリゴンスキャナ。
The reflection surface of the polygon mirror is mirror-finished at an angle of 0 ° with respect to the axial direction of the rotary sleeve after assembling the rotary sleeve, the metal outer peripheral member, and the polygon mirror.
Claim 1 Symbol placing of the polygon scanner.
JP745799A 1999-01-14 1999-01-14 Polygon scanner Expired - Fee Related JP3836989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP745799A JP3836989B2 (en) 1999-01-14 1999-01-14 Polygon scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP745799A JP3836989B2 (en) 1999-01-14 1999-01-14 Polygon scanner

Publications (2)

Publication Number Publication Date
JP2000206439A JP2000206439A (en) 2000-07-28
JP3836989B2 true JP3836989B2 (en) 2006-10-25

Family

ID=11666362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP745799A Expired - Fee Related JP3836989B2 (en) 1999-01-14 1999-01-14 Polygon scanner

Country Status (1)

Country Link
JP (1) JP3836989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121575A1 (en) * 2004-06-11 2005-12-22 Seiko Instruments Inc. Fluid dynamic pressure bearing, motor, and recording medium drive device
JP4488862B2 (en) * 2004-10-13 2010-06-23 株式会社リコー Optical deflector, optical scanning device, and image forming apparatus

Also Published As

Publication number Publication date
JP2000206439A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
JP3836989B2 (en) Polygon scanner
JP3607482B2 (en) Rotating polygon mirror drive
KR20010098786A (en) Method of fixing polygon mirror and polygon scanner motor
JP4488437B2 (en) Sealed polygon scanner
KR100611975B1 (en) Polygonal mirror apparatus
JPH04244768A (en) Optical scanner
JP3087482B2 (en) Rotating polygon mirror drive
JP3313941B2 (en) Deflection scanning device
JP2002341282A (en) Rotary polygon mirror driving device
KR100311629B1 (en) Polygon scanning motor assembly
JP2000089151A (en) Polygon mirror scanner motor
JP3311231B2 (en) Light deflection device
JP4360508B2 (en) Rotating body for polygon scanner and method for manufacturing the same, polygon scanner, optical scanning device, and image forming apparatus
JP3730036B2 (en) Rotating body
JPH10186265A (en) Polygon mirror type optical deflector
JP2002267993A (en) Polygon scanner
JP2002267992A (en) Deflection scanner
JP2001166246A (en) Optical deflecting device and writing optical device
JP2003222816A (en) Optical deflector
JP2001193732A (en) Dynamic pressure bearing and optical scanning device using the same
JPH1010458A (en) Optical deflection scanning device
JP2001174743A (en) Optical deflector
JPH0980346A (en) Polygon mirror scanner motor
JPH0990258A (en) Light deflector
JPH0442118A (en) Dynamic pressure air bearing type polygon scanner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees