JP3836537B2 - Turbine accessory control device for nuclear power plant - Google Patents

Turbine accessory control device for nuclear power plant Download PDF

Info

Publication number
JP3836537B2
JP3836537B2 JP17113496A JP17113496A JP3836537B2 JP 3836537 B2 JP3836537 B2 JP 3836537B2 JP 17113496 A JP17113496 A JP 17113496A JP 17113496 A JP17113496 A JP 17113496A JP 3836537 B2 JP3836537 B2 JP 3836537B2
Authority
JP
Japan
Prior art keywords
steam
turbine
isolation valve
main steam
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17113496A
Other languages
Japanese (ja)
Other versions
JPH1018805A (en
Inventor
正 俊 小岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17113496A priority Critical patent/JP3836537B2/en
Publication of JPH1018805A publication Critical patent/JPH1018805A/en
Application granted granted Critical
Publication of JP3836537B2 publication Critical patent/JP3836537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原子力発電プラントのタービン補機制御装置に関する。
【0002】
【従来の技術】
原子力発電プラントの主蒸気および補助蒸気系統を図8を参照して説明する。原子炉1で発生した蒸気は主蒸気隔離弁2、主蒸気止め弁3および蒸気加減弁4を経て高圧蒸気タービン5に、さらに湿分分離加熱器6を経て低圧蒸気タービン7に導かれる。この蒸気は高圧蒸気タービン5および低圧蒸気タービン7内で膨張を遂げ、このとき発電機8が駆動されて電気出力が得られる。
【0003】
この高圧蒸気タービン5および低圧蒸気タービン7では蒸気タービン制御装置(図示せず)により蒸気加減弁4およびタービンバイパス弁9の開度を調節してタービン速度およびタービン入口圧力の制御が行われる。このため、タービン速度を検出する速度検出器10と、タービン入口圧力を検出する圧力検出器11とが備えられる。ちなみに、新型炉ではタービン入口圧力の代わりに圧力検出器12で原子炉ドーム圧力を検出して蒸気加減弁4およびタービンバイパス弁9の開度を調節してタービン速度およびタービン入口圧力の制御が行われる。
【0004】
また、主蒸気系統からは湿分分離加熱器6に加熱蒸気を供給する加熱蒸気系統、タービングランド蒸気蒸化器13に加熱蒸気を供給する加熱蒸気系統、原子炉給水ポンプ駆動用蒸気タービン14に駆動蒸気を供給する蒸気系統、空気抽出器15に駆動蒸気を供給する蒸気系統がそれぞれ分岐している。
【0005】
高圧蒸気タービン5と低圧蒸気タービン7との間に設けられる湿分分離加熱器6には高圧蒸気タービン5の抽気を熱源として用いる第1段加熱器16と、主蒸気系統の主蒸気を熱源として用いる第2段加熱器17とが備えられ、高圧蒸気タービン5の排気を加熱して低圧蒸気タービン7に導くようになっている。このうち、第2段加熱器17の加熱蒸気系統にはプラント出力に応じて変化する抽気を使用した第1段加熱器16の加熱蒸気に対し圧力一定の主蒸気を使用しているために加熱蒸気元弁18と、圧力調節弁19およびプラントの高負荷域で圧力調節弁19の圧力損失を低減するために全開で使用する圧力調節弁バイパス弁20とが備えられる。また、第1段加熱器16の抽気系統には加熱蒸気元弁21が備えられる。なお、図中符号22は原子炉格納容器を、また符号23は復水器を示している。
【0006】
【発明が解決しようとする課題】
ところで、原子炉格納容器22の内側ないし外側で何らかの事故が発生し、主蒸気隔離弁2が閉止されたとき、主蒸気系統内に主蒸気が残される。この残留蒸気は一部が第2段加熱器17に流れ、残りがタービングランド蒸気蒸化器13等に流れる。このとき、高圧蒸気タービン5および低圧蒸気タービン7は主蒸気の喪失により回転速度は降下して行くが、回転を続けており、タービングランド部を封じる蒸気がタービングランド蒸気蒸化器13から供給されねばならない。
【0007】
しかし、主蒸気経路内に残された主蒸気はそれ程多くなく、第2段加熱器17の加熱蒸気として多量に流れてしまうと、タービングランド蒸気蒸化器13には僅かな量の加熱蒸気しか流れない。供給される加熱蒸気が減少してしまうと、タービングランド蒸気蒸化器13では必要とする量の蒸気を生成することができなく、タービングランド部には十分な量の蒸気が流れなくなる。このとき、復水器23と通じている低圧蒸気タービン7内にはタービングランド部を通って外部の空気が多量に流入し、これが復水器23に流れて復水器23の真空度が急激に低下してしまう。また、外部の空気の流入により低圧蒸気タービン7内では羽根が空気と触れ、摩擦により羽根の温度が著しく高くなるなどの悪影響が生じる。
【0008】
そこで、本発明の目的は隔離弁の閉止時、主蒸気系統内の残留蒸気によりタービングランド蒸気蒸化器で必要とする加熱蒸気を確保することのできる原子力発電プラントのタービン補機制御装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に係る発明は
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも湿分分離加熱器の加熱器に導くように構成した原子力発電プラントにおいて、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、弁閉止信号を前記加熱器の加熱蒸気元弁に出力する回路と
さらに備えことを特徴とするものである。
【0010】
さらに、請求項2に係る発明は
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも原子炉給水ポンプ駆動用蒸気タービンに導くように構成した原子力発電プラントにおいて、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、原子炉給水ポンプ駆動用蒸気タービントリップ信号を前記原子炉給水ポンプ駆動用蒸気タービンのトリップ用ソレノイドに出力する回路と
さらに備えことを特徴とするものである。
【0011】
また、請求項3に係る発明は
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも空気抽出器に導くように構成した原子力発電プラントにおいて、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、空気抽出器停止信号を前記空気抽出器の空気抽出器停止回路に出力する回路と
さらに備えことを特徴とするものである。
【0012】
さらに、請求項4に係る発明は
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも湿分分離加熱器の加熱器に導くように構成した原子力発電プラントにおいて、
前記加熱器の加熱蒸気元弁よりも上流の該蒸気系統に設けられ、空気式駆動部を有する加熱蒸気遮断弁と、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、弁閉止信号を前記加熱蒸気遮断弁の該空気式駆動部に出力する回路と
さらに備えことを特徴とするものである。
【0013】
また、請求項5に係る発明は
前記加熱器のドレンタンクの実水位信号と設置値とに基づいて前記ドレンタンクの水位調節弁の開度を決める信号を出力する水位調節器と、
前記水位調節弁の開度を全開に保持する信号を出力する開度設定器と、
前記加熱器の加熱蒸気元弁が閉止したとき、加熱蒸気元弁閉止信号を出力する第2の動作検出手段と、
この動作検出手段から加熱蒸気元弁閉止信号が与えられたとき、前記水位調節弁への開度信号を前記水位調節器から前記開度設定器に切換える手段と
さらに備えることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1において、モータスイッチ31による始動信号および動作許可信号がAND回路32の入力端に加えられ、論理積に従い条件が満たされたとき、弁開放信号V1 が出力される。この弁開放信号V1 はモータ制御部33に入力され、その出力により電動式駆動部34が動作して加熱蒸気元弁18が開放するように構成されている。
【0015】
また、スイッチ31による停止信号、タービン負荷10%以下のとき出力される弁閉止信号、および主蒸気隔離弁2に設けられた主蒸気隔離弁閉動作検出器35から与えられる隔離弁閉止信号が隔離弁OR回路36の入力端に加えられ、論理和に従い条件が満たされたとき、弁閉止信号V2 が出力される。この弁閉止信号V2 はモータ制御部33に入力され、その出力により電動式駆動部34が動作して加熱蒸気元弁18が閉止するように構成されている。
【0016】
次に、上記構成による動作を説明する。原子炉格納容器22の内側ないし外側で何らかの事故が発生し、主蒸気隔離弁2が閉止したとき、主蒸気系統内に主蒸気が残される。主蒸気隔離弁2に設けられた主蒸気隔離弁閉動作検出器35はこの主蒸気隔離弁2が閉止したことを検出し、隔離弁閉止信号をOR回路36に出力する。隔離弁閉止信号がOR回路36に入力されると、弁閉止信号V2 が出力され、モータ制御部33を介して電動式駆動部34が加熱蒸気元弁18を開止する。
【0017】
かくして、加熱蒸気元弁18が閉止されるので、主蒸気系統内に残された主蒸気は第2段加熱器17には向かわず、全量がタービングランド蒸気蒸化器13等に流れる。タービングランド蒸気蒸化器13はサイクル蒸気を加熱する第2段加熱器17と比べて容量は小さく、第2段加熱器17へ流れる蒸気量で十分必要な量の加熱蒸気を確保することができる。
【0018】
特に、原子炉ドーム圧力制御機能を有するものでは主蒸気隔離弁2が閉止したとき、蒸気加減弁4が開方向に動作し、残留蒸気の一部が高圧蒸気タービン5に向かうため、加熱蒸気の不足が大きくなる懸念があるが、本実施の形態のものにおいては主蒸気隔離弁2の閉止後も継続して流れる加熱蒸気によりタービングランド蒸気を得ることができ、極めて有用である。
【0019】
さらに、本発明の他の実施の形態を図2を参照して説明する。スイッチ37による原子炉給水ポンプ駆動用蒸気タービントリップ信号、OR回路38からのタービントリップ信号、主蒸気隔離弁閉動作検出器35から与えられる隔離弁閉止信号がOR回路39の入力端に加えられ、論理和に従い条件が満たされたとき、原子炉給水ポンプ駆動用蒸気タービントリップ信号v3 が出力される。この原子炉給水ポンプ駆動用蒸気タービントリップ信号v3 はトリップ用ソレノイド40に出力され、原子炉給水ポンプ駆動用蒸気タービン14が停止するように構成されている。
【0020】
上記構成において、主蒸気隔離弁2が閉止したとき、主蒸気隔離弁閉動作検出器35がこれを検出し、隔離弁閉止信号をOR回路39に出力する。隔離弁閉止信号がOR回路39に入力されると、原子炉給水ポンプ駆動用蒸気タービントリップ信号v3 がトリップ用ソレノイド40に出力され、ソレノイド40の励磁により原子炉給水ポンプ駆動用蒸気タービン14が停止する。
【0021】
これにより、原子炉給水ポンプ駆動用蒸気タービン14へ向かう駆動蒸気の流れが止まり、主蒸気系統内に残された主蒸気はタービングランド蒸気蒸化器13等に流れる。すなわち、原子炉給水ポンプ駆動用蒸気タービン14へ流れる駆動蒸気がなくなる分、タービングランド蒸気蒸化器13において加熱蒸気を増すことができる。このように本実施の形態のものにおいても、主蒸気隔離弁2の閉止後も継続して流れる加熱蒸気を用いて必要な量のタービングランド蒸気を得ることが可能である。
【0022】
また、他の実施の形態を図3を参照して説明する。主蒸気隔離弁閉動作検出器35から与えられる隔離弁閉止信号は他の停止信号と共にOR回路41の入力端に加えられ、論理和に従い条件が満たされたとき、空気抽出器停止信号v4 が出力される。この空気抽出器停止信号v4 は空気抽出器停止回路42に出力され、空気抽出器15が停止するように構成されている。
【0023】
上記構成において、主蒸気隔離弁2が閉止したとき、主蒸気隔離弁閉動作検出器35がこれを検出し、隔離弁閉止信号をOR回路41に出力する。隔離弁閉止信号がOR回路41に入力されると、空気抽出器停止信号v4 が空気抽出器停止回路42に出力され、空気抽出器停止回路42が働いて空気抽出器15が停止する。これにより、空気抽出器15へ向かう駆動蒸気の流れが止まり、主蒸気系統内に残された主蒸気はタービングランド蒸気蒸化器13等に流れる。
【0024】
つまり、空気抽出器15へ流れる駆動蒸気がなくなる分、タービングランド蒸気蒸化器13において加熱蒸気を増すことができる。このように本実施の形態のものにおいても、上記他の実施の形態と同様に主蒸気隔離弁2の閉止後も継続して流れる加熱蒸気を用いて必要な量のタービングランド蒸気を得ることが可能である。
【0025】
さらに、他の実施の形態を図4および図5を参照して説明する。図4において、第2段加熱器17の加熱蒸気系統の加熱蒸気元弁18の上流側に加熱蒸気遮断弁43が設けられている。また、本実施の形態においては加熱蒸気遮断弁43を制御する次の回路が設けられる。図5において、スイッチ44による始動信号および動作許可信号はアンド回路45の入力端に加えられ、論理積に従い条件が満たされたとき、弁開放信号v5 が出力される。この弁開放信号v5 は空気式駆動部46に入力され、空気式駆動部46の動作により加熱蒸気遮断弁43が開放するようになっている。
【0026】
また、スイッチ44による停止信号および主蒸気隔離弁2に設けられた主蒸気隔離弁閉動作検出器35から与えられる隔離弁閉止信号はOR回路47の入力端に加えられ、論理和に従い条件が満たされたとき、弁閉止信号v6 が出力される。この弁閉止信号v6 は空気式駆動部46に入力され、空気式駆動部46の動作により加熱蒸気遮断弁43が閉止するようになっている。
【0027】
上記構成において、主蒸気隔離弁2が閉止したとき、主蒸気隔離弁閉動作検出器35がこれを検出し、隔離弁閉止信号をOR回路47に出力する。隔離弁閉止信号がOR回路47に入力されると、弁閉止信号v6 が出力され、空気式駆動部46が加熱蒸気遮断弁43を開止する。
【0028】
かくして、本実施の形態においても加熱蒸気遮断弁43が閉止されるので、主蒸気系統内に残された主蒸気の全量がタービングランド蒸気蒸化器13等に流れ、タービングランド蒸気蒸化器13は第2段加熱器17へ流れる蒸気量で必要な量の加熱蒸気を確保することができる。本実施の形態は空気式駆動部46を構成することで、動作時間を早めることができ、上記の実施の形態(図1)のものと比較してより多くの加熱蒸気を確保することが可能になる。
【0029】
このように本実施の形態のものにおいても、主蒸気隔離弁2の閉止後も継続して流れる加熱蒸気を用いて必要な量のタービングランド蒸気を得ることが可能である。
【0030】
また、他の実施の形態を図6および図7を参照して説明する。図6において、第2段加熱器17は器内で生じるドレンを回収するドレンタンク48と結ばれている。このドレンタンク48には水位調節弁49が設けられている。この水位調節弁49はドレン水位を検出する水位検出器50およびドレン水位を調節する水位調節器51と結ばれている。
【0031】
また、本実施の形態においては水位調節弁49を制御する次の回路が設けられる。図7において、加熱蒸気元弁18に設けられた加熱蒸気元弁閉動作検出器52から与えられる加熱蒸気元弁閉止信号が信号切換え器53に入力される。加熱蒸気元弁閉止信号が入力されると、信号切換え器53は切換え信号を接点54に出力し、接点54が切換わるようになっている。また、開度設定器55からの全開信号は水位調節器51から出力される信号と共に接点54を介して水位調節弁49に出力されるようになっている。
【0032】
上記構成による作用を説明する。通常、水位調節弁49はプラント起動、停止時の配管におけるウオータハンマを防止するために低負荷信号により強制的に全開するようにしているが、加熱蒸気元弁18が全開するよりも前に水位調節弁49が全開すると、ドレンタンク48からドレンが流出し、このとき主蒸気系統から加熱蒸気が第2段加熱器17に流れる可能性がある。そこで、本実施の形態では水位調節弁49の全開を遅らせるようにして第2段加熱器17に流れる加熱蒸気量を制限する。
【0033】
プラントの運転中は水位調節器51からの信号で水位調節弁49を制御するように接点54が閉路している。このとき、ドレンタンク48から流出するドレンは水位調節器51からの開度信号で適正に保たれている。一方、主蒸気隔離弁2が閉止したときに、加熱蒸気元弁18が全閉される。たとえば、これは上記の実施の形態(図1)の制御により実施する。加熱蒸気元弁18が全閉されると、加過熱蒸気元弁閉動作検出器52から加熱蒸気元弁閉止信号が信号切換え器53に入力され、信号切換え器53が切換え信号を接点54に出力する。このとき、接点54が切換わり、開度設定器55からの全開信号が水位調節弁49に入力される。
【0034】
水位調節弁49は全開し、それまで水位調節器51からの信号で適正に保たれていたドレン流量よりも大量のドレンが流出する。すなわち、水位調節弁49の全開を一時的に遅らせることができ、第2段加熱器17に流れる加熱蒸気量を減少させることが可能になる。
【0035】
【発明の効果】
以上説明したように請求項1に係る発明は主蒸気隔離弁の動作検出手段から与えられる隔離弁閉止信号によって第2段加熱器の加熱蒸気元弁を閉止するようにしたので、主蒸気系統内の残留蒸気によりタービングランド蒸気蒸化器で必要とする加熱蒸気を確保することができる。
【0036】
さらに、請求項2に係る発明は主蒸気隔離弁の動作検出手段から与えられる隔離弁閉止信号によって原子炉給水ポンプ駆動用蒸気タービンのトリップ用ソレノイドを励磁させて原子炉給水ポンプ駆動用蒸気タービンを停止するようにしたので、主蒸気系統内の残留蒸気によりタービングランド蒸気蒸化器で必要とする加熱蒸気を確保することができる。
【0037】
また、請求項3に係る発明は主蒸気隔離弁の動作検出手段から与えられる隔離弁閉止信号によって空気抽出器の空気抽出器停止回路を動作させて空気抽出器を停止するようにしたので、主蒸気系統内の残留蒸気によりタービングランド蒸気蒸化器で必要とする加熱蒸気を確保することができる。
【0038】
さらに、請求項4に係る発明は加熱蒸気元弁の上流側の蒸気系統に加熱蒸気遮断弁を設け、主蒸気隔離弁の動作検出手段から与えられる隔離弁閉止信号によって加熱蒸気遮断弁を閉止するようにしたので、主蒸気系統内の残留蒸気によりタービングランド蒸気蒸化器で必要とする加熱蒸気を確保することができる。
【0039】
また、請求項5に係る発明は加熱蒸気元弁の動作検出手段から与えられる加熱蒸気元弁閉止信号によって第2段加熱器のドレンタンクの水位調節弁への開度信号を水位調節器から全開に保持する開度設定器に切換えるようにしたので、主蒸気系統内の残留蒸気によりタービングランド蒸気蒸化器で必要とする加熱蒸気を確保することができる。
【図面の簡単な説明】
【図1】 本発明によるタービン補機制御装置の実施の形態を示す構成図。
【図2】 本発明の他の実施の形態を示す構成図。
【図3】 本発明の他の実施の形態を示す構成図。
【図4】 本発明の他の実施の形態を示す系統図。
【図5】 本発明の他の実施の形態を示す構成図。
【図6】 本発明の他の実施の形態を示す系統図。
【図7】 本発明の他の実施の形態を示す構成図。
【図8】従来の原子力発電プラントを示す系統図。
【符号の説明】
1 原子炉
2 主蒸気隔離弁
6 湿分分離加熱器
14 原子炉給水ポンプ駆動用蒸気タービン
15 空気抽出器
17 第2段加熱器
18 加熱蒸気元弁
35 主蒸気隔離閉動作検出器
36,38,41 OR回路
43 加熱蒸気遮断弁
48 ドレンタンク
49 水位調節弁
52 加熱蒸気元弁閉動作検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbine accessory control device for a nuclear power plant.
[0002]
[Prior art]
The main steam and auxiliary steam system of the nuclear power plant will be described with reference to FIG. Steam generated in the nuclear reactor 1 is guided to the high-pressure steam turbine 5 through the main steam isolation valve 2, the main steam stop valve 3, and the steam control valve 4, and further to the low-pressure steam turbine 7 through the moisture separation heater 6. This steam expands in the high-pressure steam turbine 5 and the low-pressure steam turbine 7, and at this time, the generator 8 is driven to obtain an electrical output.
[0003]
In the high-pressure steam turbine 5 and the low-pressure steam turbine 7, the steam speed and the turbine inlet pressure are controlled by adjusting the openings of the steam control valve 4 and the turbine bypass valve 9 by a steam turbine control device (not shown). For this reason, a speed detector 10 for detecting the turbine speed and a pressure detector 11 for detecting the turbine inlet pressure are provided. By the way, in the new type reactor, instead of the turbine inlet pressure, the pressure detector 12 detects the reactor dome pressure and adjusts the opening of the steam control valve 4 and the turbine bypass valve 9 to control the turbine speed and the turbine inlet pressure. Is called.
[0004]
In addition, a heating steam system for supplying heating steam to the moisture separation heater 6 from the main steam system, a heating steam system for supplying heating steam to the turbine ground steam evaporator 13, and a steam turbine 14 for driving a reactor water pump are provided. A steam system for supplying driving steam and a steam system for supplying driving steam to the air extractor 15 are branched.
[0005]
The moisture separation heater 6 provided between the high-pressure steam turbine 5 and the low-pressure steam turbine 7 includes a first stage heater 16 that uses the extraction of the high-pressure steam turbine 5 as a heat source, and the main steam of the main steam system as a heat source. The second stage heater 17 to be used is provided, and the exhaust of the high pressure steam turbine 5 is heated and led to the low pressure steam turbine 7. Among them, the heating steam system of the second stage heater 17 is heated because the main steam having a constant pressure is used for the heating steam of the first stage heater 16 using the extraction gas that changes in accordance with the plant output. A steam source valve 18, a pressure control valve 19, and a pressure control valve bypass valve 20 that is used in a fully open state to reduce the pressure loss of the pressure control valve 19 in a high load region of the plant are provided. The extraction system of the first stage heater 16 is provided with a heating steam source valve 21. In the figure, reference numeral 22 denotes a reactor containment vessel, and reference numeral 23 denotes a condenser.
[0006]
[Problems to be solved by the invention]
By the way, when some accident occurs inside or outside the reactor containment vessel 22 and the main steam isolation valve 2 is closed, the main steam is left in the main steam system. A part of the residual steam flows to the second stage heater 17 and the rest flows to the turbine ground steam evaporator 13 and the like. At this time, the rotation speed of the high-pressure steam turbine 5 and the low-pressure steam turbine 7 decreases due to the loss of the main steam, but continues to rotate, and the steam that seals the turbine ground portion is supplied from the turbine ground steam evaporator 13. I have to.
[0007]
However, there is not much main steam left in the main steam path, and if a large amount of steam flows as the heating steam of the second stage heater 17, only a small amount of heating steam is present in the turbine ground steam evaporator 13. Not flowing. If the supplied heating steam decreases, the turbine ground steam evaporator 13 cannot generate a necessary amount of steam, and a sufficient amount of steam does not flow in the turbine ground portion. At this time, a large amount of external air flows into the low-pressure steam turbine 7 communicating with the condenser 23 through the turbine gland portion, and this flows into the condenser 23 and the vacuum degree of the condenser 23 is suddenly increased. It will drop to. Further, the inflow of external air causes adverse effects such as the blades coming into contact with the air in the low-pressure steam turbine 7 and the temperature of the blades becoming extremely high due to friction.
[0008]
Therefore, an object of the present invention is to provide a turbine auxiliary equipment control device for a nuclear power plant that can secure heating steam required by a turbine ground steam evaporator by residual steam in a main steam system when an isolation valve is closed. There is to do.
[0009]
[Means for Solving the Problems]
The invention according to claim 1,
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the nuclear reactor is led to the steam turbine through the main steam system , and the turbine ground steam evaporator and the heater of at least the moisture separation heater are passed through the steam system branched downstream of the main steam isolation valve . In a nuclear power plant configured to lead to
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
When the isolation valve closure signal is given from the operation detecting means, and a circuit for outputting a valve closing signal to the heating steam source valve of the heater,
It is characterized in that the Ru further comprising a.
[0010]
Further, the invention according to claim 2,
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the reactor is guided to the steam turbine through the main steam system , and the turbine ground steam evaporator and the steam turbine for driving at least the reactor feed water pump through the steam system branched downstream of the main steam isolation valve. In a nuclear power plant configured to lead to
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
A circuit for outputting from the operation detecting means when the isolation valve closure signal is supplied, the steam turbine trip signal for the reactor feedwater pump driven trip solenoid of the reactor feedwater pump driving steam turbine,
It is characterized in that the Ru further comprising a.
[0011]
The invention according to claim 3,
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the reactor is guided to the steam turbine through the main steam system, and is guided to a turbine ground steam evaporator and at least an air extractor through a steam system branched downstream of the main steam isolation valve. In the nuclear power plant
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
When said isolation valve closing signal from the operation detecting means is provided, and a circuit for outputting the air extractor stop signal to the air ejector stop circuit of the air ejector,
It is characterized in that the Ru further comprising a.
[0012]
Further, the invention according to claim 4,
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the nuclear reactor is led to the steam turbine through the main steam system , and the turbine ground steam evaporator and the heater of at least the moisture separation heater are passed through the steam system branched downstream of the main steam isolation valve . In a nuclear power plant configured to lead to
Than said heating steam source valve of the heater provided upstream of the steam system, a heating steam shut-off valve having a pneumatic drive unit,
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
When said isolation valve closing signal from the operation detecting means is provided, and a circuit for outputting a valve closing signal to the air drive part of the heating steam shut-off valve,
It is characterized in that the Ru further comprising a.
[0013]
The invention according to claim 5,
A water level control unit for outputting a signal for determining the opening of the water level control valve of the drain tank based on the actual water level signal and installation value of the drain tank of the heater,
An opening setting device for outputting a signal for holding the opening of the water level control valve fully open;
When the heater heating steam source valve is closed, and the second movement detecting means for outputting a heating steam source valve closed signal,
Means for switching the opening signal to the water level control valve from the water level regulator to the opening degree setter when a heating steam source valve closing signal is given from the operation detecting means ;
Is further provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a start signal and an operation permission signal by the motor switch 31 are added to the input terminal of the AND circuit 32, and when the condition is satisfied according to the logical product, the valve opening signal V1 is output. The valve opening signal V1 is input to the motor control unit 33, and the electric drive unit 34 is operated by the output to open the heating steam source valve 18.
[0015]
Further, the stop signal from the switch 31, the valve closing signal output when the turbine load is 10% or less, and the isolation valve closing signal supplied from the main steam isolation valve closing operation detector 35 provided in the main steam isolation valve 2 are isolated. A valve closing signal V2 is output when the condition is satisfied in accordance with a logical sum applied to the input terminal of the valve OR circuit 36. This valve closing signal V2 is input to the motor control unit 33, and the electric drive unit 34 is operated by the output to close the heating steam source valve 18.
[0016]
Next, the operation according to the above configuration will be described. When some accident occurs inside or outside the reactor containment vessel 22 and the main steam isolation valve 2 is closed, the main steam is left in the main steam system. A main steam isolation valve closing operation detector 35 provided in the main steam isolation valve 2 detects that the main steam isolation valve 2 is closed, and outputs an isolation valve closing signal to the OR circuit 36. When the isolation valve closing signal is input to the OR circuit 36, the valve closing signal V2 is output, and the electric drive unit 34 opens the heating steam source valve 18 via the motor control unit 33.
[0017]
Thus, since the steam source valve 18 is closed, the main steam remaining in the main steam system does not go to the second stage heater 17, and the entire amount flows to the turbine ground steam evaporator 13 and the like. The turbine ground steam evaporator 13 has a smaller capacity than the second stage heater 17 that heats the cycle steam, and a sufficient amount of heated steam can be secured by the amount of steam flowing to the second stage heater 17. .
[0018]
In particular, in a reactor having a reactor dome pressure control function, when the main steam isolation valve 2 is closed, the steam control valve 4 operates in the opening direction, and a part of the residual steam is directed to the high-pressure steam turbine 5. Although there is a concern that the shortage becomes large, in the present embodiment, turbine ground steam can be obtained by the heated steam that flows continuously even after the main steam isolation valve 2 is closed, which is extremely useful.
[0019]
Furthermore, another embodiment of the present invention will be described with reference to FIG. A steam turbine trip signal for driving the reactor water pump by the switch 37, a turbine trip signal from the OR circuit 38, and an isolation valve closing signal provided from the main steam isolation valve closing operation detector 35 are applied to the input terminal of the OR circuit 39, When the condition is satisfied according to the logical sum, the steam turbine trip signal v3 for driving the reactor water pump is output. The reactor water pump driving steam turbine trip signal v3 is output to the trip solenoid 40, and the reactor water pump driving steam turbine 14 is stopped.
[0020]
In the above configuration, when the main steam isolation valve 2 is closed, the main steam isolation valve closing operation detector 35 detects this and outputs an isolation valve closing signal to the OR circuit 39. When the isolation valve closing signal is input to the OR circuit 39, the reactor feedwater pump drive steam turbine trip signal v3 is output to the trip solenoid 40, and the reactor feedwater pump drive steam turbine 14 is stopped by excitation of the solenoid 40. To do.
[0021]
As a result, the flow of the driving steam toward the reactor feed water pump driving steam turbine 14 stops, and the main steam remaining in the main steam system flows to the turbine ground steam evaporator 13 and the like. That is, heating steam can be increased in the turbine ground steam evaporator 13 as much as the driving steam flowing to the reactor feedwater pump driving steam turbine 14 disappears. As described above, also in the present embodiment, it is possible to obtain a necessary amount of turbine ground steam using the heating steam that flows continuously even after the main steam isolation valve 2 is closed.
[0022]
Another embodiment will be described with reference to FIG. The isolation valve closing signal provided from the main steam isolation valve closing operation detector 35 is added to the input terminal of the OR circuit 41 together with other stop signals, and when the condition is satisfied according to the logical sum, the air extractor stop signal v4 is output. Is done. The air extractor stop signal v4 is output to the air extractor stop circuit 42, and the air extractor 15 is stopped.
[0023]
In the above configuration, when the main steam isolation valve 2 is closed, the main steam isolation valve closing operation detector 35 detects this and outputs an isolation valve closing signal to the OR circuit 41. When the isolation valve closing signal is input to the OR circuit 41, the air extractor stop signal v4 is output to the air extractor stop circuit 42, and the air extractor stop circuit 42 is activated to stop the air extractor 15. Thereby, the flow of the driving steam toward the air extractor 15 is stopped, and the main steam remaining in the main steam system flows to the turbine ground steam evaporator 13 and the like.
[0024]
That is, the heating steam can be increased in the turbine ground steam evaporator 13 as much as the driving steam flowing to the air extractor 15 disappears. As described above, in the present embodiment as well, the required amount of turbine ground steam can be obtained using the heated steam that flows continuously even after the main steam isolation valve 2 is closed, as in the other embodiments described above. Is possible.
[0025]
Furthermore, another embodiment will be described with reference to FIGS. In FIG. 4, a heating steam cutoff valve 43 is provided on the upstream side of the heating steam source valve 18 of the heating steam system of the second stage heater 17. Moreover, in this Embodiment, the following circuit which controls the heating steam cutoff valve 43 is provided. In FIG. 5, the start signal and the operation permission signal by the switch 44 are added to the input terminal of the AND circuit 45, and when the condition is satisfied according to the logical product, the valve opening signal v5 is output. This valve opening signal v5 is input to the pneumatic drive unit 46, and the operation of the pneumatic drive unit 46 opens the heating steam cutoff valve 43.
[0026]
Further, the stop signal from the switch 44 and the isolation valve closing signal provided from the main steam isolation valve closing operation detector 35 provided in the main steam isolation valve 2 are applied to the input terminal of the OR circuit 47, and the condition is satisfied according to the logical sum. When this is done, the valve closing signal v6 is output. This valve closing signal v <b> 6 is input to the pneumatic drive unit 46, and the heating steam cutoff valve 43 is closed by the operation of the pneumatic drive unit 46.
[0027]
In the above configuration, when the main steam isolation valve 2 is closed, the main steam isolation valve closing operation detector 35 detects this and outputs an isolation valve closing signal to the OR circuit 47. When the isolation valve closing signal is input to the OR circuit 47, the valve closing signal v 6 is output, and the pneumatic drive unit 46 opens the heating steam cutoff valve 43.
[0028]
Thus, since the heating steam shutoff valve 43 is also closed in the present embodiment, the entire main steam remaining in the main steam system flows to the turbine ground steam evaporator 13 and the like, and the turbine ground steam evaporator 13 Can secure the necessary amount of heating steam by the amount of steam flowing to the second stage heater 17. In the present embodiment, by configuring the pneumatic drive unit 46, the operation time can be shortened, and more heating steam can be secured as compared with that of the above-described embodiment (FIG. 1). become.
[0029]
As described above, also in the present embodiment, it is possible to obtain a necessary amount of turbine ground steam using the heating steam that flows continuously even after the main steam isolation valve 2 is closed.
[0030]
Another embodiment will be described with reference to FIGS. In FIG. 6, the second stage heater 17 is connected to a drain tank 48 that collects the drain generated in the container. The drain tank 48 is provided with a water level adjustment valve 49. The water level control valve 49 is connected to a water level detector 50 that detects the drain water level and a water level controller 51 that adjusts the drain water level.
[0031]
In the present embodiment, the following circuit for controlling the water level adjustment valve 49 is provided. In FIG. 7, the heating steam source valve closing signal provided from the heating steam source valve closing operation detector 52 provided in the heating steam source valve 18 is input to the signal switch 53. When the heating steam source valve closing signal is input, the signal switching unit 53 outputs a switching signal to the contact 54, and the contact 54 is switched. In addition, the fully open signal from the opening setting device 55 is output to the water level control valve 49 through the contact 54 together with the signal output from the water level controller 51.
[0032]
The operation of the above configuration will be described. Normally, the water level control valve 49 is forcibly fully opened by a low load signal in order to prevent water hammer in the piping at the time of starting and stopping of the plant, but the water level is adjusted before the heating steam source valve 18 is fully opened. When the control valve 49 is fully opened, the drain flows out from the drain tank 48, and at this time, the heating steam may flow from the main steam system to the second stage heater 17. Therefore, in the present embodiment, the amount of heating steam flowing through the second stage heater 17 is limited by delaying the full opening of the water level adjustment valve 49.
[0033]
During the operation of the plant, the contact 54 is closed so as to control the water level control valve 49 with a signal from the water level controller 51. At this time, the drain flowing out from the drain tank 48 is properly maintained by the opening signal from the water level adjuster 51. On the other hand, when the main steam isolation valve 2 is closed, the heating steam source valve 18 is fully closed. For example, this is performed by the control of the above embodiment (FIG. 1). When the heating steam source valve 18 is fully closed, a heating steam source valve closing signal is input to the signal switching unit 53 from the superheated steam source valve closing operation detector 52, and the signal switching unit 53 outputs a switching signal to the contact 54. To do. At this time, the contact 54 is switched, and a fully open signal from the opening setting device 55 is input to the water level adjustment valve 49.
[0034]
The water level control valve 49 is fully opened, and a larger amount of drain flows out than the drain flow rate that has been properly maintained by the signal from the water level controller 51 until then. That is, the full opening of the water level adjustment valve 49 can be temporarily delayed, and the amount of heated steam flowing through the second stage heater 17 can be reduced.
[0035]
【The invention's effect】
As described above, the invention according to claim 1 is configured to close the heating steam source valve of the second stage heater by the isolation valve closing signal given from the operation detecting means of the main steam isolation valve. The remaining steam can secure the heating steam required in the turbine ground steam evaporator.
[0036]
Furthermore, the invention according to claim 2 excites the trip water solenoid of the reactor water pump driving steam turbine by the isolation valve closing signal given from the operation detecting means of the main steam isolation valve to Since the operation is stopped, the heating steam required in the turbine ground steam evaporator can be secured by the residual steam in the main steam system.
[0037]
Further, in the invention according to claim 3, the air extractor is stopped by operating the air extractor stop circuit of the air extractor by the isolation valve closing signal given from the operation detecting means of the main steam isolation valve. The residual steam in the steam system can secure the heating steam required by the turbine ground steam evaporator.
[0038]
Furthermore, the invention according to claim 4 is provided with a heating steam cutoff valve in the steam system upstream of the heating steam source valve, and the heating steam cutoff valve is closed by an isolation valve closing signal given from the operation detection means of the main steam isolation valve. Since it did in this way, the heating steam required by a turbine ground steam evaporator can be ensured with the residual steam in the main steam system.
[0039]
In the invention according to claim 5, the opening signal to the water level control valve of the drain tank of the second stage heater is fully opened from the water level controller by the heating steam source valve closing signal given from the operation detecting means of the heating steam source valve. Therefore, the steam required for the turbine ground steam evaporator can be secured by the residual steam in the main steam system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a turbine accessory control apparatus according to the present invention.
FIG. 2 is a configuration diagram showing another embodiment of the present invention.
FIG. 3 is a configuration diagram showing another embodiment of the present invention.
FIG. 4 is a system diagram showing another embodiment of the present invention.
FIG. 5 is a configuration diagram showing another embodiment of the present invention.
FIG. 6 is a system diagram showing another embodiment of the present invention.
FIG. 7 is a configuration diagram showing another embodiment of the present invention.
FIG. 8 is a system diagram showing a conventional nuclear power plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Main steam isolation valve 6 Moisture separation heater 14 Steam turbine 15 for driving a reactor feed water pump Air extractor 17 Second stage heater 18 Steam source valve 35 Main steam isolation closing operation detectors 36, 38, 41 OR circuit 43 Heating steam shutoff valve 48 Drain tank 49 Water level control valve 52 Heating steam source valve closing operation detector

Claims (5)

原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも湿分分離加熱器の加熱器に導くように構成した原子力発電プラントにおいて、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、弁閉止信号を前記加熱器の加熱蒸気元弁に出力する回路と
さらに備えことを特徴とする原子力発電プラントのタービン補機制御装置。
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the nuclear reactor is led to the steam turbine through the main steam system , and the turbine ground steam evaporator and the heater of at least the moisture separation heater are passed through the steam system branched downstream of the main steam isolation valve . In a nuclear power plant configured to lead to
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
When the isolation valve closure signal is given from the operation detecting means, and a circuit for outputting a valve closing signal to the heating steam source valve of the heater,
The Ru further comprising a turbine auxiliary control device of a nuclear power plant, characterized in.
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも原子炉給水ポンプ駆動用蒸気タービンに導くように構成した原子力発電プラントにおいて、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、原子炉給水ポンプ駆動用蒸気タービントリップ信号を前記原子炉給水ポンプ駆動用蒸気タービンのトリップ用ソレノイドに出力する回路と
さらに備えことを特徴とする原子力発電プラントのタービン補機制御装置。
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the reactor is guided to the steam turbine through the main steam system , and the turbine ground steam evaporator and the steam turbine for driving at least the reactor feed water pump through the steam system branched downstream of the main steam isolation valve. In a nuclear power plant configured to lead to
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
A circuit for outputting from the operation detecting means when the isolation valve closure signal is supplied, the steam turbine trip signal for the reactor feedwater pump driven trip solenoid of the reactor feedwater pump driving steam turbine,
The Ru further comprising a turbine auxiliary control device of a nuclear power plant, characterized in.
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも空気抽出器に導くように構成した原子力発電プラントにおいて、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、空気抽出器停止信号を前記空気抽出器の空気抽出器停止回路に出力する回路と
さらに備えことを特徴とする原子力発電プラントのタービン補機制御装置。
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the reactor is guided to the steam turbine through the main steam system, and is guided to a turbine ground steam evaporator and at least an air extractor through a steam system branched downstream of the main steam isolation valve. In the nuclear power plant
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
When said isolation valve closing signal from the operation detecting means is provided, and a circuit for outputting the air extractor stop signal to the air ejector stop circuit of the air ejector,
The Ru further comprising a turbine auxiliary control device of a nuclear power plant, characterized in.
原子炉から蒸気タービンにかけて結ばれる主蒸気系統に主蒸気隔離弁を備え、
前記原子炉から流れる主蒸気を前記主蒸気系統を通して前記蒸気タービンに導くと共に、前記主蒸気隔離弁の下流側で分岐する蒸気系統を通してタービングランド蒸気蒸化器および少なくとも湿分分離加熱器の加熱器に導くように構成した原子力発電プラントにおいて、
前記加熱器の加熱蒸気元弁よりも上流の該蒸気系統に設けられ、空気式駆動部を有する加熱蒸気遮断弁と、
前記主蒸気隔離弁が閉止したとき隔離弁閉止信号を出力する動作検出手段と、
この動作検出手段から前記隔離弁閉止信号が与えられたとき、弁閉止信号を前記加熱蒸気遮断弁の該空気式駆動部に出力する回路と
さらに備えことを特徴とする原子力発電プラントのタービン補機制御装置。
The main steam system connected from the reactor to the steam turbine has a main steam isolation valve,
The main steam flowing from the nuclear reactor is led to the steam turbine through the main steam system , and the turbine ground steam evaporator and the heater of at least the moisture separation heater are passed through the steam system branched downstream of the main steam isolation valve . In a nuclear power plant configured to lead to
Than said heating steam source valve of the heater provided upstream of the steam system, a heating steam shut-off valve having a pneumatic drive unit,
Operation detecting means for outputting an isolation valve closing signal when the main steam isolation valve is closed;
When said isolation valve closing signal from the operation detecting means is provided, and a circuit for outputting a valve closing signal to the air drive part of the heating steam shut-off valve,
The Ru further comprising a turbine auxiliary control device of a nuclear power plant, characterized in.
前記加熱器のドレンタンクの実水位信号と設置値とに基づいて前記ドレンタンクの水位調節弁の開度を決める信号を出力する水位調節器と、
前記水位調節弁の開度を全開に保持する信号を出力する開度設定器と、
前記加熱器の加熱蒸気元弁が閉止したとき、加熱蒸気元弁閉止信号を出力する第2の動作検出手段と、
この第2の動作検出手段から加熱蒸気元弁閉止信号が与えられたとき、前記水位調節弁への開度信号を前記水位調節器から前記開度設定器に切換える手段と
さらに備えることを特徴とする請求項1記載の原子力発電プラントのタービン補機制御装置。
A water level control unit for outputting a signal for determining the opening of the water level control valve of the drain tank based on the actual water level signal and installation value of the drain tank of the heater,
An opening setting device for outputting a signal for holding the opening of the water level control valve fully open;
When the heater heating steam source valve is closed, and the second movement detecting means for outputting a heating steam source valve closed signal,
Means for switching an opening signal to the water level control valve from the water level regulator to the opening degree setter when a heating steam source valve closing signal is given from the second operation detecting means ;
The turbine auxiliary equipment control device for a nuclear power plant according to claim 1, further comprising:
JP17113496A 1996-07-01 1996-07-01 Turbine accessory control device for nuclear power plant Expired - Lifetime JP3836537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17113496A JP3836537B2 (en) 1996-07-01 1996-07-01 Turbine accessory control device for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17113496A JP3836537B2 (en) 1996-07-01 1996-07-01 Turbine accessory control device for nuclear power plant

Publications (2)

Publication Number Publication Date
JPH1018805A JPH1018805A (en) 1998-01-20
JP3836537B2 true JP3836537B2 (en) 2006-10-25

Family

ID=15917622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17113496A Expired - Lifetime JP3836537B2 (en) 1996-07-01 1996-07-01 Turbine accessory control device for nuclear power plant

Country Status (1)

Country Link
JP (1) JP3836537B2 (en)

Also Published As

Publication number Publication date
JPH1018805A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JPH0735309A (en) Feed water device of power-plant
CA1218700A (en) Initial steam flow regulator for steam turbine start- up
JP4982507B2 (en) Turbine ground seal steam temperature reduction control device and plant control method in steam turbine power generation facility
JP3132834B2 (en) Gas turbine combustor steam cooling system
JP3836537B2 (en) Turbine accessory control device for nuclear power plant
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JPH07158406A (en) Power generating radial turbine stop device
JPH07293809A (en) Method and device for controlling injection of water to desuperheater
JPS63117106A (en) Stoppage controlling method and device for turbine plant
JPH06330706A (en) Back pressure steam turbine system
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JP3697288B2 (en) Moisture separation heater controller
JP2001221010A (en) Load control method and apparatus of electric power plant
JPH0734809A (en) Temperature control device of extraction steam turbine
JP2988213B2 (en) Multi-pressure steam turbine protection device
JPH05196208A (en) Control of moisture separation heater
JPS5847269Y2 (en) Kiyusuipumpkanetsuboshijiyunkanriyuuriyouseigiyosouchi
JPH0777013A (en) Method of controlling steam bleed valve of pressurized floating-floor boiler
JPH1163403A (en) Steam delivering unit at start up of boiler
JP2585204B2 (en) Feed water pump recirculation valve controller
JP2000130104A (en) Gland steam pressure controller of steam turbine
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPS63223309A (en) Warming device for turbine steam regulation valve
JPH11351503A (en) Pressure control valve for boiler and device therefor
JPS63113103A (en) Leak preventing device for steam valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

EXPY Cancellation because of completion of term