JP3836520B2 - Catheter tube and method and apparatus for manufacturing the same - Google Patents

Catheter tube and method and apparatus for manufacturing the same Download PDF

Info

Publication number
JP3836520B2
JP3836520B2 JP15832795A JP15832795A JP3836520B2 JP 3836520 B2 JP3836520 B2 JP 3836520B2 JP 15832795 A JP15832795 A JP 15832795A JP 15832795 A JP15832795 A JP 15832795A JP 3836520 B2 JP3836520 B2 JP 3836520B2
Authority
JP
Japan
Prior art keywords
flare
tube
molding
conical
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15832795A
Other languages
Japanese (ja)
Other versions
JPH08322940A (en
Inventor
稔 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP15832795A priority Critical patent/JP3836520B2/en
Publication of JPH08322940A publication Critical patent/JPH08322940A/en
Application granted granted Critical
Publication of JP3836520B2 publication Critical patent/JP3836520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、熱可塑性合成樹脂からなり、一端に円錐状のフレアー部を有するカテーテル用チューブ並びにその製造方法及び製造装置に関する。
【0002】
【従来の技術】
通常、医療用カテーテルの多くは内外二重のチューブからなっており、各チューブにはそれらの一端に設けた円錐状のフレアー部を介して薬剤や造影剤等を供給するチューブが接続される。従って、チューブの接続には確実性や良好なシール性が必要とされ、そのためにフレアー部には高品質、高精度が要求される。そして、このようなフレアー部の加工には、従来より次の2方法が採用されている。
【0003】
その第1のフレアー加工方法は、図10に示すように、フレアー拡張体1の先端に設けた円錐状のフレアー成形面2にスライドテーブル3により熱可塑性合成樹脂からなるチューブ4の一端を押し付け、フレアー拡張体1の内部に埋設されたチューブ加熱用ヒーター5及び加熱温度調節用センサー6によりチューブ4の一端を適度に加熱軟化させ、フレアー成形面2に沿って円錐状に拡張させることによりフレアー部7を成形する方法である。この方法は、装置が簡単なため生産コストが低く、またチューブ4の一端にフレアー部7を一体的に成形するために信頼性が高いものである。
【0004】
また、第2のフレアー加工方法は、図示を省略したが、射出成形方法を利用したもので、ペレット状の熱可塑性合成樹脂を溶融させ、それを射出成形用金型内に高圧で送り込んでフレアーパーツを成形した後、該フレアーパーツをチューブの一端に接着剤又は熱溶着により接続する方法である。この方法は、金型の形状により所望のフレアー形状物が精度良く得られるので、フレアーの外観の形状が複雑な場合や、外観の品質が重視される場合に適している。
【0005】
【発明が解決しようとする課題】
しかし、上記従来のフレアー加工方法には次のような問題点がある。
第1のフレアー加工方法においては、まず、フレアー部7の成形温度条件が非常に狭いという問題がある。これを表1に示すポリエチレン製チューブを用いたフレアー加工実験結果に基づいて説明する。
【0006】
【表1】

Figure 0003836520
【0007】
設定温度が70℃未満の場合には軟化しないため拡張が不可能であり、70〜85℃の場合には軟化が不十分なため拡張時に亀裂が発生する。反対に、設定温度が115℃を越えると、フレアー拡張体1に触れた先から半溶融状態になって拡張せず、その場で団子状態になってしまう。
従って、フレアー加工可能領域は約87〜115℃となるが、87℃及び115℃付近の温度は実際上は不安定領域であり、安定してフレアー加工できる温度範囲は90〜105℃である。更に、90〜103℃で成形したフレアー部7は、離型時に残留応力のために収縮し、成形時の形状を完全に保てない欠点がある。従って、ある程度満足のいくフレアー部7を得るための温度範囲は約104〜105℃となるが、この場合でも僅かながら収縮が生じた。
【0008】
上記のように、成形温度条件が極めて狭く、また離型時の収縮が避けられないという問題は、結晶性の高い樹脂、即ち温度上昇に対し融点付近で急に軟化し溶融する特性を示す樹脂、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビニルアルコール、ポリアミド等において、より顕著に現れる。
【0009】
次に、成形されたフレアー部7の外観形状の品質が必ずしも十分ではないという問題がある。即ち、この第1の方法では、図10に示したように、一定肉厚のチューブ4の一端をフレアー拡張体1により強制的に円錐状に拡張させるので、表面積の拡大によりフレアー部7の肉厚は図11(従来品)に示すようにフレアー拡張始端Aから末端Bに向かって薄肉化が生じるとともに、図14に示すようにフレアー部7の先端に丸味8が形成される。尚、従来のカテーテル用チューブのフレアー拡張始端A及び末端Bを図12に図示した。
【0010】
前記肉厚の薄肉化により、図14に示すように、フレアー部7の外側円錐面の円錐角αが内側円錐面の円錐角βよりも小さくなるので、チューブ接続用締め付け金具9、10の間でのフレアー部7の締め付けにむらを生じ、シール性が低下する。
【0011】
また、前記フレアー部7の先端の丸味8により、図15に示すように、両締め付け金具9、10により挟まれる面積fが、台形エツジ状のフレアー部(図中の点線で示す)の面積Fよりも減少し、より一層シール性が低下する。
【0012】
更に、フレアー部7の肉厚の変化量や先端の丸味8は制御されて成形されているわけではないので、同一条件下で成形されてもフレアー部の形状は微妙に異なり、安定した形状のものを得にくい。そのため、締め付け金具9、10による対応が困難である。
【0013】
次に、第2のフレアー加工方法においては、射出成形機の金型部分が高価であり、装置も大がかりとなるので生産コストが飛躍的に増大する上、フレアー部がパーツ化されるのでチューブとの接続工程が必要になるという問題がある。
特に、チューブとの接続については、材質により接着が困難な場合があり、例えば材質がポリエチレンの場合には、良好な接着剤がないために熱溶着による接続方法が採られている。しかし、架橋のかかったチューブや、アイオノマーのようなイオン基による凝集力の強い樹脂においては、熱溶着でも十分な接着力が得られにくく、パーツ化されたフレアー部をチューブに接続するのは容易ではない。また、何らかの方法で接続できたとしても、前記第1のフレアー加工方法によりチューブの一端にフレアー部を一体的に成形したものに比べて、接続個所の信頼性に劣ることは避けられない。
【0014】
本発明は、以上のような従来の技術の問題点を解決して、低コストで信頼性が高く、しかもフレアー部の外観形状の品質が高いカテーテル用チューブを提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、第1の発明のカテーテル用チューブは、熱可塑性合成樹脂からなり、チューブの一端に円錐状のフレアー部を有するカテーテル用チューブにおいて、前記フレアー部が均一の厚さに且つその内外両円錐面が互いに平行に形成され、その断面形状は台形エッジ状を呈するとともに、前記フレアー部が接続部を介することなく前記チューブに一体的に形成されてなる構成としたものである。そして前記フレアー部の先端には、チューブ接続用締め付け金具への装着性を増すために、円筒状の鍔部を形成してもよい。
【0016】
また、第2の発明のカテーテル用チューブの製造方法は、第1の発明のカテーテル用チューブを製造するための方法であって、円錐状のフレアー成形面の頂部から軸方向にチューブ案内棒を突設してなるフレアー拡張体の外周に外金型を嵌装して、これらフレアー拡張体と外金型との間に断面形状が台形エッジ状のフレアー成形空間を形成する第1工程と、熱可塑性合成樹脂からなるチューブを前記チューブ案内棒の外周に挿入して前記フレアー成形空間内に導入する第2工程と、導入された前記チューブの端末を加熱溶融しながら前記フレアー成形空間内に充填してフレアー部を成形して行く第3工程と、充填完了後に冷却固化により前記フレアー部の形状を定着させる第4工程と、端末に前記フレアー部が成形されたチューブを前記外金型及びフレアー拡張体から離型する第5工程とからなる構成になっている。
【0017】
更に、第3の発明のカテーテル用チューブの製造装置は、第2の発明の製造方法を実施するための装置であって、外周に円錐状のフレアー成形面を有し、該フレアー成形面の頂部から軸方向にチューブ案内棒が突設され、内部にチューブ加熱用ヒーターと加熱温度調節用センサーとが埋設されてなる、カテーテル用チューブの端末を加熱溶融しながら後記フレアー成形空間内に充填するためのフレアー拡張体と、開閉自在の中空割り型で、中空部にフレアー成形凹窩を有し、前記フレアー拡張体の外周を抱恃して前記フレアー成形凹窩と前記フレアー成形面との間に断面形状が台形エッジ状のフレアー成形空間を形成する外金型と、チューブを前記チューブ案内棒の外周に挿入して前記フレアー成形空間内に押し込むスライドテーブルとを具備してなる構成になっている。
【0018】
【作用】
本発明では、フレアー部をフレアー拡張体と外金型との間に形成した円錐状のフレアー成形空間内で射出成形の要領で成形するので、フレアー部は均一の厚さに且つその内外両円錐面が互いに平行に形成され、その断面形状はフレアー成形空間と同じ台形エッジ状を呈する(後述の実施例に対応する図1及び図2参照)。
【0019】
従って、図2に示すようにフレアー部をチューブ接続用締め付け金具に装着したときは、締め付け金具の締め付けにむらがなく、両締め付け金具により挟まれる面積Fが従来のフレアー部における面積(図12(b)中のf)よりも広い。そのため、シール性は従来のフレアー部より優れている。
【0020】
また、フレアー部が接続部を介することなくチューブの一端に一体的に形成されるので、チューブの信頼性が高い。
更に、フレアー部が射出成形の要領で形成されるので、フレアー部の外観形状の品質は射出成形品と同様に極めて高い。
【0021】
【実施例】
以下、本発明の一実施例を図1〜図8に基づいて説明する。
図1は本発明の一実施例を示すカテーテル用チューブの断面図である。図1に示すように、カテーテル用チューブ11は、低密度ポリエチレン等の熱可塑性合成樹脂からなるチューブ12の一端に、円錐状のフレアー部13が接続部を介することなく一体的に成形されている。
【0022】
フレアー部13は、均一の厚さに且つその内外両円錐面14、15が互いに平行に成形されている。従って、両円錐面14、15の円錐角は相等しく、θとなっている。そして、フレアー部13の断面形状は後述するフレアー成形空間34(図4、図5)と同じ台形エッジ状を呈している。
【0023】
このカテーテル用チューブ11は、フレアー部13がチューブ12に一体的に成形されるので信頼性が極めて高い。また、図2に示すように、フレアー部13をチューブ接続用締め付け金具9、10に装着したとき、フレアー部13が均一の厚さに且つ両円錐面14、15が互いに平行に成形されているので、締め付けにむらがなく、両締め付け金具9、10に挟まれる面積Fが広いのでシール性が良好である。
【0024】
上記カテーテル用チューブ11は、図3に示すような製造装置により製造することができる。この製造装置は、支持台21にフレアー拡張体22、外金型23及びスライドテーブル24を組み付けてなるものである。
【0025】
支持台21には、前部軸受25及び後部軸受26が立設され、これら両軸受25、26の間に支軸27が架設されている。
フレアー拡張体22は、チューブ加熱用ヒーター28及び加熱温度調節用センサー29を内蔵した伝熱性の良い黄銅製棒状体で、基部が前部軸受25の上部に植設されている。このフレアー拡張体22は、図4に拡大して示すように先端部外周に円錐角がθの円錐状フレアー成形面30を有し、フレアー成形面30の頂部から軸方向にステンレス製のチューブ案内棒31が突設されている。フレアー成形面30には、離型性を良くするためにテフロン(du Pont社の登録商標)等フッソ系樹脂コーティング又は離型剤塗布が施されている。
【0026】
外金型23は、開閉自在の中空割り型で、離型性及耐熱性の良好なテフロンからなり、フレアー拡張体22に対する位置調整可能に支持体32を介して支軸27上に取り付けられている。この外金型23は、図4に拡大して示すように、中空部に円錐角がθの円錐状フレアー成形凹窩33を有し、フレアー拡張体22の外周を抱恃したとき、フレアー成形凹窩33とフレアー成形面30との間に円錐角がθの円錐状フレアー成形空間34を形成する。このフレアー成形空間34の断面形状は台形エッジ状にしてある。
スライドテーブル24は、チューブ12をチューブ案内棒31の外周に挿入してフレアー成形空間34内に押し込むためのもので、支軸27上に軸方向移動可能に取り付けられている。
【0027】
上記製造装置によりカテーテル用チューブ11を製造するには、まず第1工程で図4に示すように、外金型23を閉じてフレアー拡張体22に対し所定位置に位置決めすることにより、外金型23でフレアー拡張体22の外周を抱恃し、フレアー成形空間34を形成する。なお、前記外金型23の位置決め及び芯出しは、図示のように、外金型23の中空部にフレアー拡張体22の円柱部に嵌合可能な凹窩を設けることにより容易に達成される。
【0028】
次に第2工程で、図3に示すように、チューブ12をスライドテーブル24にセットするとともに、ヒーター28及びセンサー29によりフレアー拡張体22を150℃に加熱しておく。続いて、図5に示すように、スライドテーブル24を移動させてチューブ12の端末をチューブ案内棒31の外周に挿入し、溶融代を20mmにセットした後、チューブ12を40mm/分の速度でフレアー成形空間34内に導入して行く。
【0029】
次の第3工程では、図6に示すように、導入されたチューブ12の端末がフレアー成形面30に接触し、ヒーター28からの伝熱で溶融し始める。溶融した樹脂は、引き続き導入されてくるチューブ12によりフレアー成形空間34内に押し込まれ、更なる加熱により流動性を増すとともに、引き続き押し込まれてくる溶融樹脂の圧力でフレアー成形空間34内に充填され、図7に示すようなフレアー部13を成形して行く。
【0030】
次に第4工程で、図7に示すように、充填完了と同時にチューブ12の導入を停止し、風冷により80℃まで冷却して、フレアー成形空間34内のフレアー部13を固化し、その形状を定着させる。
【0031】
最終の第5工程で、図8に示すように、外金型23を開き、チューブ12の端末にフレアー部13が成形されたカテーテル用チューブ11を外金型23及びフレアー拡張体22から離型して取り出す。
得られたカテーテル用チューブ11のフレアー部の肉厚は、図11(本発明品)に示すように、フレアー拡張始端Aから末端Bまで均一であった。尚、本発明のカテーテル用チューブのフレアー拡張始端A及び末端Bを図13に示した。
【0032】
本発明者らは、上記操作を60回繰り返したが、同じ品質のカテーテル用チューブ11を再現性良く得ることができた。しかも、射出成形品に匹敵する品質を持ったフレアー部13を得ることができた。また、温度条件についても、135〜165℃の広い範囲でフレアー部13の成形が可能であった。
【0033】
なお、フレアー部13の形状は、本実施例では図1に示すような形状としたが、必ずしもこれに限定するものではなく、他の実施例として図9に示すように、フレアー部13の先端に円筒状の鍔部16を一体成形してもよい。これにより、締め付け金具9、10への装着性が増す。
【0034】
更に、本発明をより効果的にするために、ヒーター28による加熱の代わりに外金型23を発熱させたり、これらを併用してもよい。また、チューブ案内棒31は、チューブ12の挿入を容易にするために先端にテーパーを付してもよく、またフレアー拡張体22からの伝熱を少なくするために材質をセラミックにしたり、中空管にして熱を逃がすようにしてもよい。更にまた、チューブ12のフレアー成形空間34内への導入に際してチューブ12の挫屈を防止するために、冷却機構を設けてチューブを冷却し、その腰を強くしてもよい。
【0035】
【発明の効果】
以上説明したように、本発明では、フレアー成形空間内に導入したチューブの端末を融点まで加熱し、射出成形の要領でフレアー部を形成する。従って、フレアー部の冷却固化に際しては残留応力が残らず、フレアー部は均一の厚さに且つその内外両円錐面が互いに平行に形成され、その断面形状はフレアー成形空間と同じ形状(台形エッジ状)を呈する。
【0036】
このようにして得たフレアー部は、チューブ接続用締め付け金具に装着したとき、締め付け金具の締め付けにむらがなく、また両締め付け金具により挟まれる面積が従来のフレアー部における面積よりも広いので、優れたシール性を発揮する。
【0037】
また、フレアー部が接続部を介することなくチューブの一端に一体的に形成されるので、カテーテル用チューブの信頼性が高まる。
【0038】
更に、フレアー部が射出成形の要領で形成されるので、フレアー部の外観形状のばらつきは飛躍的に改善される。
【0039】
更にまた、製造装置の構造が簡易であるので、カテーテル用チューブの製造コストが低くてすむ。
【0040】
なお、フレアー部の先端に円筒状の鍔部を形成すれば、フレアー部のチューブ接続用締め付け金具への装着性が向上する。
【図面の簡単な説明】
【図1】本発明のカテーテル用チューブの一実施例を示す断面図である。
【図2】本発明のカテーテル用チューブのフレアー部を締め付け金具に装着した状態を示す断面図である。
【図3】本発明の製造装置の全体構成図である。
【図4】本発明の製造方法の第1工程を示す説明図である。
【図5】本発明の製造方法の第2工程を示す説明図である。
【図6】本発明の製造方法の第3工程を示す説明図である。
【図7】本発明の製造方法の第4工程を示す説明図である。
【図8】本発明の製造方法の第5工程を示す説明図である。
【図9】本発明のカテーテル用チューブの他の実施例を示す断面図である。
【図10】従来の製造方法の一例を説明するための断面図である。
【図11】従来のカテーテル用チューブ及び本発明のカテーテル用チューブのフレアー部の拡張始端から末端までの肉厚変化を示す図である。
【図12】従来のカテーテル用チューブのフレアー部の拡張始端Aから末端Bを示す図である。
【図13】本発明のカテーテル用チューブのフレアー部の拡張始端Aから末端Bを示す図である。
【図14】従来のカテーテル用チューブのフレアー部を締め付け金具に装着した状態を示す断面図である。
【図15】従来のカテーテル用チューブのフレアー部を締め付け金具に装着した状態を示す断面図である。
【符号の説明】
11 カテーテル用チューブ 12 チューブ
13 フレアー部 14 内側円錐面
15 外側円錐面 16 鍔部
22 フレアー拡張体 23 外金型
24 スライドテーブル 28 ヒーター
29 センサー 30 フレアー成形面
31 チューブ案内棒 33 フレアー成形凹窩
34 フレアー成形空間[0001]
[Industrial application fields]
The present invention relates to a catheter tube made of a thermoplastic synthetic resin and having a conical flared portion at one end, and a method and apparatus for manufacturing the same.
[0002]
[Prior art]
Usually, many medical catheters are composed of inner and outer double tubes, and each tube is connected to a tube for supplying a drug, a contrast agent, or the like via a conical flare provided at one end thereof. Therefore, certainty and good sealing properties are required for connecting the tubes. For this reason, the flare portion is required to have high quality and high accuracy. And the following two methods are conventionally employ | adopted for the process of such a flare part.
[0003]
As shown in FIG. 10, the first flare processing method presses one end of a tube 4 made of a thermoplastic synthetic resin by a slide table 3 against a conical flare molding surface 2 provided at the tip of the flare extension 1. The flare portion is obtained by appropriately heating and softening one end of the tube 4 with the tube heating heater 5 and the heating temperature adjusting sensor 6 embedded in the flare expansion body 1 and conically extending along the flare molding surface 2. 7 is a method of molding 7. This method has a low production cost because the apparatus is simple, and is highly reliable because the flare portion 7 is integrally formed at one end of the tube 4.
[0004]
Although the second flare processing method is not shown in the figure, it uses an injection molding method, in which a pellet-shaped thermoplastic synthetic resin is melted and fed into an injection mold at a high pressure. In this method, after forming the part, the flare part is connected to one end of the tube by an adhesive or heat welding. This method is suitable for the case where the flare appearance shape is complicated or the quality of the appearance is important because the desired flare shape can be obtained with high accuracy depending on the shape of the mold.
[0005]
[Problems to be solved by the invention]
However, the conventional flare processing method has the following problems.
In the first flare processing method, first, there is a problem that the molding temperature condition of the flare part 7 is very narrow. This will be described based on the results of a flaring experiment using the polyethylene tube shown in Table 1.
[0006]
[Table 1]
Figure 0003836520
[0007]
When the set temperature is less than 70 ° C., expansion is impossible because it does not soften, and when it is 70-85 ° C., cracking occurs during expansion because of insufficient softening. On the other hand, when the set temperature exceeds 115 ° C., the flare expansion body 1 touches the flare expansion body 1 so that it is in a semi-molten state and does not expand, and becomes a dumpling on the spot.
Accordingly, the flared region is approximately 87 to 115 ° C., but the temperatures around 87 ° C. and 115 ° C. are practically unstable regions, and the temperature range in which flaring can be performed stably is 90 to 105 ° C. Further, the flare portion 7 molded at 90 to 103 ° C. has a drawback that it cannot be kept in its shape at the time of molding because it shrinks due to residual stress at the time of mold release. Therefore, the temperature range for obtaining the flare portion 7 that is satisfactory to some extent is about 104 to 105 ° C., but even in this case, the shrinkage occurred slightly.
[0008]
As described above, the problem that the molding temperature condition is extremely narrow and the shrinkage at the time of mold release is unavoidable is a highly crystalline resin, that is, a resin that rapidly softens and melts near the melting point as the temperature rises. For example, it appears more prominently in polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, polyamide and the like.
[0009]
Next, there is a problem that the quality of the external shape of the molded flare portion 7 is not always sufficient. That is, in this first method, as shown in FIG. 10, one end of the tube 4 having a constant thickness is forcibly expanded into a conical shape by the flare expansion body 1, so that the flare portion 7 can be increased by increasing the surface area. As shown in FIG. 11 (conventional product), the thickness decreases from the flare expansion start end A toward the end B, and a roundness 8 is formed at the tip of the flare portion 7 as shown in FIG. The flare expansion start end A and end B of the conventional catheter tube are shown in FIG.
[0010]
As the thickness is reduced, as shown in FIG. 14, the cone angle α of the outer cone surface of the flare portion 7 is smaller than the cone angle β of the inner cone surface. This causes unevenness in the tightening of the flare portion 7 and lowers the sealing performance.
[0011]
In addition, due to the roundness 8 at the tip of the flare portion 7, as shown in FIG. 15, the area f sandwiched between the two fastening fittings 9 and 10 is the area F of the trapezoidal edge flare portion (indicated by the dotted line in the figure). The sealing performance is further reduced.
[0012]
Further, since the amount of change in the thickness of the flare portion 7 and the roundness 8 at the tip are not controlled, the shape of the flare portion is slightly different even when molded under the same conditions, and the shape of the flare is stable. It's hard to get things. Therefore, it is difficult to deal with the fastening hardware 9 and 10.
[0013]
Next, in the second flare processing method, the mold part of the injection molding machine is expensive, and the apparatus becomes large, so the production cost increases dramatically, and the flare part is made into parts. There is a problem that a connecting process is required.
In particular, the connection to the tube may be difficult to bond depending on the material. For example, when the material is polyethylene, a connection method by heat welding is employed because there is no good adhesive. However, it is difficult to obtain a sufficient adhesive force even by heat welding in a crosslinked tube or a resin with strong cohesion due to ion groups such as ionomer, and it is easy to connect the parted flare part to the tube is not. Even if the connection can be made by some method, it is inevitable that the reliability of the connection point is inferior to that in which the flare portion is integrally formed at one end of the tube by the first flare processing method.
[0014]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a catheter tube that is low in cost, high in reliability, and high in appearance quality of the flare portion.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the catheter tube of the first invention is made of a thermoplastic synthetic resin, and the catheter tube has a conical flared portion at one end of the tube. The flare portion has a uniform thickness. and the inner and outer conical surfaces are formed in parallel with each other, the cross-sectional shape is obtained by said tube formed by integrally formed with the configuration without Rutotomoni to Teisu trapezoidal edge shape, in which the flare portion through a connecting portion is there. In addition, a cylindrical flange may be formed at the tip of the flare portion in order to increase the mounting property to the tube connection fastening bracket.
[0016]
The catheter tube manufacturing method of the second invention is a method for manufacturing the catheter tube of the first invention, wherein the tube guide rod protrudes in the axial direction from the top of the conical flare molding surface. A first step in which an outer mold is fitted on the outer periphery of the flare extension body provided to form a flare molding space having a trapezoidal edge in cross section between the flare extension body and the outer mold; A second step of inserting a tube made of a plastic synthetic resin into the outer periphery of the tube guide rod and introducing it into the flare molding space; and filling the flare molding space while heating and melting the end of the introduced tube. A third step of forming the flare portion, a fourth step of fixing the shape of the flare portion by cooling and solidification after filling, and a tube having the flare portion formed at the terminal as the outer metal And it has a configuration comprising a fifth step of releasing the flare expandable body.
[0017]
Furthermore, the manufacturing apparatus for a catheter tube of the third invention is an apparatus for carrying out the manufacturing method of the second invention, and has a conical flare molding surface on the outer periphery, and the top of the flare molding surface A tube guide rod is projected in the axial direction from the inside, and a tube heating heater and a heating temperature adjustment sensor are embedded therein, so that the end of the catheter tube is filled in the flare molding space described below while heating and melting. And a hollow split mold that can be freely opened and closed, and has a flare molding recess in the hollow portion, and hugs the outer periphery of the flare extension between the flare molding recess and the flare molding surface. ingredients and outer die cross-sectional shape to form a trapezoidal edges shaped flare forming space, and a slide table which is inserted the tube on an outer periphery of the tube guide rod pushed into the flare molding space It has become to become a configuration.
[0018]
[Action]
In the present invention, since the flare portion is molded in the manner of injection molding in a conical flare molding space formed between the flare extension body and the outer mold, the flare portion has a uniform thickness and both inner and outer cones. The surfaces are formed in parallel with each other, and the cross-sectional shape thereof has the same trapezoidal edge shape as the flare molding space (see FIGS. 1 and 2 corresponding to the embodiments described later).
[0019]
Therefore, as shown in FIG. 2, when the flare portion is attached to the tube-connecting clamp, there is no uneven tightening of the clamp, and the area F sandwiched between the two clamps is the area of the conventional flare (FIG. 12 ( It is wider than f) in b). Therefore, the sealing performance is superior to the conventional flare portion.
[0020]
Moreover, since the flare part is integrally formed at one end of the tube without passing through the connection part, the reliability of the tube is high.
Furthermore, since the flare part is formed in the manner of injection molding, the quality of the external shape of the flare part is extremely high as in the case of the injection molded product.
[0021]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view of a catheter tube showing an embodiment of the present invention. As shown in FIG. 1, a catheter tube 11 is integrally formed with one end of a tube 12 made of a thermoplastic synthetic resin such as low-density polyethylene without a conical flared portion 13 via a connecting portion. .
[0022]
The flare portion 13 is formed to have a uniform thickness and its inner and outer conical surfaces 14 and 15 are parallel to each other. Accordingly, the conical angles of both conical surfaces 14 and 15 are equal to each other and θ. And the cross-sectional shape of the flare part 13 is exhibiting the same trapezoid edge shape as the flare shaping | molding space 34 (FIG. 4, FIG. 5) mentioned later.
[0023]
The catheter tube 11 is extremely reliable because the flare portion 13 is formed integrally with the tube 12. Further, as shown in FIG. 2, when the flare portion 13 is mounted on the tube connecting fastening fittings 9 and 10, the flare portion 13 is formed to have a uniform thickness and the conical surfaces 14 and 15 are formed in parallel to each other. Therefore, there is no unevenness in tightening, and since the area F sandwiched between both the tightening brackets 9 and 10 is wide, the sealing performance is good.
[0024]
The catheter tube 11 can be manufactured by a manufacturing apparatus as shown in FIG. In this manufacturing apparatus, a flare extension body 22, an outer mold 23, and a slide table 24 are assembled to a support base 21.
[0025]
A front bearing 25 and a rear bearing 26 are erected on the support base 21, and a support shaft 27 is installed between the bearings 25 and 26.
The flare expansion body 22 is a brass rod-shaped body having good heat conductivity and incorporating a tube heating heater 28 and a heating temperature adjustment sensor 29, and a base portion is implanted above the front bearing 25. As shown in an enlarged view in FIG. 4, the flare extension 22 has a conical flare molding surface 30 having a cone angle θ on the outer periphery of the tip portion, and a tube guide made of stainless steel in the axial direction from the top of the flare molding surface 30. A rod 31 is projected. The flare molding surface 30 is coated with a fluorinated resin coating such as Teflon (registered trademark of du Pont) or a release agent in order to improve releasability.
[0026]
The outer mold 23 is a hollow split mold that can be freely opened and closed, and is made of Teflon that has good releasability and heat resistance. Yes. As shown in an enlarged view in FIG. 4, the outer mold 23 has a conical flare molding recess 33 having a conical angle θ in the hollow portion, and when the outer periphery of the flare expansion body 22 is held, flare molding is performed. A conical flare molding space 34 having a cone angle θ is formed between the recess 33 and the flare molding surface 30. The cross-sectional shape of the flare molding space 34 is a trapezoidal edge.
The slide table 24 is for inserting the tube 12 into the outer periphery of the tube guide rod 31 and pushing it into the flare molding space 34, and is mounted on the support shaft 27 so as to be movable in the axial direction.
[0027]
In order to manufacture the catheter tube 11 by the manufacturing apparatus, first, as shown in FIG. 4, the outer mold 23 is closed and positioned at a predetermined position with respect to the flare extension body 22 in the first step. 23 embraces the outer periphery of the flare extension 22 to form a flare molding space 34. The positioning and centering of the outer mold 23 can be easily achieved by providing a hollow in the hollow portion of the outer mold 23 that can be fitted into the cylindrical portion of the flare extension 22 as shown in the figure. .
[0028]
Next, in the second step, as shown in FIG. 3, the tube 12 is set on the slide table 24, and the flare expansion body 22 is heated to 150 ° C. by the heater 28 and the sensor 29. Subsequently, as shown in FIG. 5, the slide table 24 is moved to insert the end of the tube 12 into the outer periphery of the tube guide rod 31, and after setting the melting allowance to 20 mm, the tube 12 is moved at a speed of 40 mm / min. It is introduced into the flare molding space 34.
[0029]
In the next third step, as shown in FIG. 6, the end of the introduced tube 12 comes into contact with the flare molding surface 30 and starts to melt by heat transfer from the heater 28. The molten resin is pushed into the flare molding space 34 by the tube 12 that is continuously introduced, and the fluidity is increased by further heating, and the flare molding space 34 is filled with the pressure of the molten resin that is continuously pushed in. Then, the flare portion 13 as shown in FIG. 7 is formed.
[0030]
Next, in the fourth step, as shown in FIG. 7, the introduction of the tube 12 is stopped at the same time as the filling is completed, the tube 12 is cooled to 80 ° C. by air cooling, and the flare portion 13 in the flare molding space 34 is solidified. Fix the shape.
[0031]
In the final fifth step, as shown in FIG. 8, the outer mold 23 is opened, and the catheter tube 11 in which the flare portion 13 is formed at the end of the tube 12 is released from the outer mold 23 and the flare expansion body 22. And take it out.
The thickness of the flare portion of the obtained catheter tube 11 was uniform from the flare expansion start end A to the end B as shown in FIG. 11 (product of the present invention). The flare expansion start end A and end B of the catheter tube of the present invention are shown in FIG.
[0032]
The present inventors repeated the above operation 60 times, but were able to obtain the same quality catheter tube 11 with good reproducibility. Moreover, the flare portion 13 having a quality comparable to that of an injection molded product could be obtained. Moreover, also about temperature conditions, shaping | molding of the flare part 13 was possible in the wide range of 135-165 degreeC.
[0033]
In addition, although the shape of the flare part 13 was made into the shape as shown in FIG. 1 in a present Example, it is not necessarily limited to this, As shown in FIG. 9 as another Example, the front-end | tip of the flare part 13 is shown. Alternatively, the cylindrical flange 16 may be integrally formed. Thereby, the mounting property to the fastening fittings 9 and 10 increases.
[0034]
Furthermore, in order to make the present invention more effective, the outer mold 23 may generate heat instead of being heated by the heater 28, or these may be used in combination. The tube guide rod 31 may be tapered at the tip to facilitate insertion of the tube 12, and the material may be ceramic or hollow to reduce heat transfer from the flare extension 22. A tube may be used to release heat. Furthermore, in order to prevent the tube 12 from buckling when the tube 12 is introduced into the flare molding space 34, a cooling mechanism may be provided to cool the tube and strengthen the waist.
[0035]
【The invention's effect】
As described above, in the present invention, the end of the tube introduced into the flare molding space is heated to the melting point, and the flare portion is formed in the manner of injection molding. Thus, not leaving residual stress upon cooling and solidification of the flared portion, flared portion and the inner and outer conical surfaces in the thickness of the uniform are formed in parallel with each other, the same shape (trapezoidal edge and its cross-sectional shape flared molding space Present).
[0036]
The flare part obtained in this way is excellent because there is no uneven tightening of the tightening metal fitting when mounted on the tube fitting, and the area sandwiched between the two metal fittings is wider than the area of the conventional flare part. Excellent sealing performance.
[0037]
Moreover, since the flare part is integrally formed at one end of the tube without passing through the connection part, the reliability of the catheter tube is increased.
[0038]
Furthermore, since the flare portion is formed by injection molding, the variation in the external shape of the flare portion is dramatically improved.
[0039]
Furthermore, since the structure of the manufacturing apparatus is simple, the manufacturing cost of the catheter tube can be reduced.
[0040]
In addition, if the cylindrical collar part is formed at the tip of the flare part, the mountability of the flare part to the tube-connecting fastening metal fitting is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a catheter tube of the present invention.
FIG. 2 is a cross-sectional view showing a state in which the flared portion of the catheter tube of the present invention is attached to a fastening fitting.
FIG. 3 is an overall configuration diagram of a manufacturing apparatus according to the present invention.
FIG. 4 is an explanatory view showing a first step of the production method of the present invention.
FIG. 5 is an explanatory view showing a second step of the production method of the present invention.
FIG. 6 is an explanatory view showing a third step of the production method of the present invention.
FIG. 7 is an explanatory diagram showing a fourth step of the manufacturing method of the present invention.
FIG. 8 is an explanatory diagram showing a fifth step of the production method of the present invention.
FIG. 9 is a cross-sectional view showing another embodiment of the catheter tube of the present invention.
FIG. 10 is a cross-sectional view for explaining an example of a conventional manufacturing method.
FIG. 11 is a view showing a change in wall thickness from the start of expansion to the end of a flare portion of a conventional catheter tube and the catheter tube of the present invention.
FIG. 12 is a view showing a flared portion of a conventional catheter tube from an expansion start end A to a terminal end B.
FIG. 13 is a view showing a flared portion of the catheter tube according to the present invention from an expansion start end A to a terminal end B.
FIG. 14 is a cross-sectional view showing a state in which a flare portion of a conventional catheter tube is attached to a fastening fitting.
FIG. 15 is a cross-sectional view showing a state in which a flared portion of a conventional catheter tube is attached to a fastening fitting.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Catheter tube 12 Tube 13 Flare part 14 Inner conical surface 15 Outer conical surface 16 Ridge part 22 Flare extension body 23 Outer metal mold 24 Slide table 28 Heater 29 Sensor 30 Flare molding surface 31 Tube guide rod 33 Flare molding recess 30 Flare Molding space

Claims (4)

熱可塑性合成樹脂からなり、チューブの一端に円錐状のフレアー部を有するカテーテル用チューブにおいて、前記フレアー部が均一の厚さに且つその内外両円錐面が互いに平行に形成され、その断面形状は台形エッジ状を呈するとともに、前記フレアー部が接続部を介することなく前記チューブに一体的に形成されてなることを特徴とするカテーテル用チューブ。The catheter tube is made of a thermoplastic synthetic resin and has a conical flared portion at one end of the tube. The flare portion has a uniform thickness and both inner and outer conical surfaces are formed in parallel with each other , and the cross-sectional shape thereof is a trapezoid. It edged the Teisu Rutotomoni, catheter tube, characterized by comprising integrally formed on the tube without the flare portion through the connecting portion. フレアー部の先端に円筒状の鍔部が形成されてなる請求項1記載のカテーテル用チューブ。  The catheter tube according to claim 1, wherein a cylindrical flange is formed at the tip of the flare portion. 円錐状のフレアー成形面の頂部から軸方向にチューブ案内棒を突設してなるフレアー拡張体の外周に外金型を嵌装して、これらフレアー拡張体と外金型との間に断面形状が台形エッジ状のフレアー成形空間を形成する第1工程と、熱可塑性合成樹脂からなるチューブを前記チューブ案内棒の外周に挿入して前記フレアー成形空間内に導入する第2工程と、導入された前記チューブの端末を加熱溶融しながら前記フレアー成形空間内に充填してフレアー部を成形して行く第3工程と、充填完了後に冷却固化により前記フレアー部の形状を定着させる第4工程と、端末に前記フレアー部が成形されたチューブを前記外金型及びフレアー拡張体から離型する第5工程とからなることを特徴とするカテーテル用チューブの製造方法。An outer mold is fitted on the outer periphery of a flare extension body that is formed by projecting a tube guide rod in the axial direction from the top of the conical flare molding surface, and a cross-sectional shape between the flare extension body and the outer mold Has a first step of forming a trapezoidal edge-shaped flare molding space, a second step of inserting a tube made of a thermoplastic synthetic resin into the outer periphery of the tube guide rod and introducing it into the flare molding space, and A third step of filling the flare molding space while heating and melting the end of the tube to form a flare portion; a fourth step of fixing the shape of the flare portion by cooling and solidifying after completion of filling; and a terminal And a fifth step of releasing the tube formed with the flare portion from the outer mold and the flare expansion body. 外周に円錐状のフレアー成形面を有し、該フレアー成形面の頂部から軸方向にチューブ案内棒が突設され、内部にチューブ加熱用ヒーターと加熱温度調節用センサーとが埋設されてなる、カテーテル用チューブの端末を加熱溶融しながら後記フレアー成形空間内に充填するためのフレアー拡張体と、開閉自在の中空割り型で、中空部にフレアー成形凹窩を有し、前記フレアー拡張体の外周を抱恃して前記フレアー成形凹窩と前記フレアー成形面との間に断面形状が台形エッジ状のフレアー成形空間を形成する外金型と、チューブを前記チューブ案内棒の外周に挿入して前記フレアー成形空間内に押し込むスライドテーブルとを具備してなることを特徴とするカテーテル用チューブの製造装置。A catheter having a conical flare molding surface on the outer periphery, a tube guide rod protruding in the axial direction from the top of the flare molding surface, and a tube heating heater and a heating temperature adjusting sensor embedded therein A flare expansion body for filling the later-described flare molding space while heating and melting the tube end, and a hollow split mold that can be freely opened and closed, and has a flare molding recess in the hollow portion, and the outer periphery of the flare expansion body is An outer die that forms a flare molding space having a trapezoidal edge in cross section between the flare molding recess and the flare molding surface, and a tube is inserted into the outer periphery of the tube guide rod. An apparatus for manufacturing a catheter tube, comprising: a slide table that is pushed into a forming space.
JP15832795A 1995-05-31 1995-05-31 Catheter tube and method and apparatus for manufacturing the same Expired - Lifetime JP3836520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15832795A JP3836520B2 (en) 1995-05-31 1995-05-31 Catheter tube and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15832795A JP3836520B2 (en) 1995-05-31 1995-05-31 Catheter tube and method and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08322940A JPH08322940A (en) 1996-12-10
JP3836520B2 true JP3836520B2 (en) 2006-10-25

Family

ID=15669225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15832795A Expired - Lifetime JP3836520B2 (en) 1995-05-31 1995-05-31 Catheter tube and method and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3836520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974411B2 (en) 2008-05-21 2015-03-10 Becton, Dickinson And Company Conical diffuser tip
JP6394090B2 (en) * 2014-06-13 2018-09-26 株式会社ジェイ・エム・エス Catheter flare processing method and apparatus
JP6618335B2 (en) * 2015-11-12 2019-12-11 テルモ株式会社 Method and apparatus for manufacturing a medical needle

Also Published As

Publication number Publication date
JPH08322940A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
JP3836520B2 (en) Catheter tube and method and apparatus for manufacturing the same
US4003665A (en) Method for the manufacture of writing instruments
JP6320419B2 (en) Formation of distal catheter tip
TWI821261B (en) Manufacturing method of resin piping, and resin piping
JP4424137B2 (en) Manufacturing method of tube resin joint
US4124675A (en) Process of insert molding of teflon tube and plastic body
JP3265405B2 (en) Manufacturing method of electrofusion joint
JPH09187840A (en) Manufacture of flanged resin lining steel pipe
JP2863253B2 (en) Manufacturing method of electrofusion joint
JPH0146300B2 (en)
JPH07132555A (en) Preparation of resin lining steel pipe with flange
JP4000541B2 (en) Electric fusion joint and method for manufacturing the same
JP2002079566A (en) Method and apparatus for manufacturing resin pipe for lining
JP2900230B2 (en) Method of manufacturing thermoplastic elastomer bent tube
JP4218855B2 (en) Manufacturing method of electrofusion saddle joint
JPH0732472A (en) Manufacture of tubular flange member
JP3235631B2 (en) Electric fusion joint
JPS58179629A (en) Manufacture of pipe joint made of plastic
JP2709363B2 (en) Plastic pipe manufacturing method
JPH0367497B2 (en)
JPH07171908A (en) Production of flanged resin lining steel pipe
JPH1026275A (en) Attaching method of joint made of resin for hose and hose therefor
JPH0533296Y2 (en)
JP2789568B2 (en) Manufacturing method of electrofusion joint
JPH0213888B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term