JP3835851B2 - Manufacturing method of integrated electrode for electric double layer capacitor - Google Patents

Manufacturing method of integrated electrode for electric double layer capacitor Download PDF

Info

Publication number
JP3835851B2
JP3835851B2 JP11645096A JP11645096A JP3835851B2 JP 3835851 B2 JP3835851 B2 JP 3835851B2 JP 11645096 A JP11645096 A JP 11645096A JP 11645096 A JP11645096 A JP 11645096A JP 3835851 B2 JP3835851 B2 JP 3835851B2
Authority
JP
Japan
Prior art keywords
electrode
kneaded material
integrated
collector electrode
metal collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11645096A
Other languages
Japanese (ja)
Other versions
JPH09306798A (en
Inventor
隆 野島
直人 田中
久嗣 出原
政章 山岸
Original Assignee
株式会社パワーシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パワーシステム filed Critical 株式会社パワーシステム
Priority to JP11645096A priority Critical patent/JP3835851B2/en
Publication of JPH09306798A publication Critical patent/JPH09306798A/en
Application granted granted Critical
Publication of JP3835851B2 publication Critical patent/JP3835851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the productivity of a laminated electric double-layer capacitor by producing an integrated electrode composed of a metal-made collecting electrode and polar electrode used as a positive and negative electrodes of this capacitor with the less number of steps than that of the prior art. SOLUTION: An active carbon powder is kneaded with at least a binder added thereto to prepare a kneaded material for forming a polar electrode. This material is thrown by specified amount in a die 4 to form a first kneaded material layer 1, a mesh-like metalmade collecting electrode 11 is laid thereon, that kneaded material is thrown by a specified amt. thereon to form a second kneaded material layer 2. The layers are compression-formed by a press 3 to bury the collecting electrode 11 in the polar layer with collecting electrode leads 11a led outside to form an integrated electrode.

Description

【0001】
【発明の属する技術分野】
この発明は、電動自転車、電動工具などの電源として利用できる静電容量1000〜10000F程度の大容量の積層型電気二重層コンデンサの構成部品であって、正極および負極として用いられ、金属製集電極と分極性電極とを一体化してなる一体型電極を、従来より少ない工程数にて製造できるようにした、電気二重層コンデンサ用の一体型電極の製造方法に関するものである。
【0002】
【従来の技術】
従来より、一時的に大きなエネルギを供給する電源として利用できる大容量の電気二重層コンデンサとして、正極用の金属製集電極と正電荷蓄積用の分極性電極とからなる正極と、負極用の金属製集電極と負電荷蓄積用の分極性電極とからなる負極とをセパレータを間に介在させて交互に積層し、電解液と分極性電極との界面に形成される電気二重層に電荷を蓄積することを利用する積層型の電気二重層コンデンサが提案されている。図5は従来方法で作製された一体型電極である正極を示す斜視図、図6は図5に示す一体型電極が組み込まれた積層型の電気二重層コンデンサの全体構成をその一部を切り欠いて示す斜視図である。
【0003】
図5に示すように、平板状をなす正極50は、その一部に帯状のリード部52aが形成された矩形をなす金属製集電極52の両側に、活性炭粉末をシート化してなる矩形の分極性電極53,53′を、導電性フィルムを用いた熱融着などによって接着し、金属製集電極52と分極性電極53,53′とを一体化した一体型電極として作製されている。ここで、各分極性電極53,53′は、電荷を蓄積するための活性炭粉末と結着剤(バインダ)としてのPTFE(ポリテトラフルオロエチレン)を混練し、この混練物をプレス機あるいは圧延ロール等を用いて成型し作製される。
【0004】
前記各分極性電極53,53′は、その厚みが0.1〜2.0mm程度のものであり、この分極性電極53,53′から電荷を集めるための金属製集電極52は、厚みが5〜300μm程度であって、アルミニウムあるいはステンレスよりなるものである。金属製集電極52のリード部52aは、外部端子との電気的導通をとるためのものである。なお、負極51も正極50と同一構造であって一体型電極として構成されている。
【0005】
この正極50と負極51とが、図6に示すように、分極性電極53,53′と同一外形寸法のセパレータ54を間に介して交互に積層される。セパレータ54は、イオン透過性及び電気絶縁性を有する多孔質材料よりなり、例えばポリプロピレン繊維不織布が用いられる。そして、図6に示すように、多数枚の正極用の各リード部52aを、リード体55を介して電気絶縁性の蓋体58に設けられた正極外部端子56へ接続する。同様にして、負極用の各リード部52a′を負極外部端子56′へ接続する。次いで、電極50,51を重ね合わせた電極積層体を角形外装ケース57内に収納し、しかる後、前記蓋体58を取り付けて密閉するようにしている。
【0006】
【発明が解決しようとする課題】
しかし前述した従来の、金属製集電極52と分極性電極53,53′とを一体化してなる一体型電極50の製造方法では、予めプレス機あるいはロール圧延などにより各分極性電極53,53′を成型しておく工程と、金属製集電極52に前記得られた各分極性電極53,53′を固定一体化する工程とが必要であり、金属製集電極との固定一体化と分極性電極自体の成型とを同時になしうるようにすることにより、製造工程数を減らし、これにより電気二重層コンデンサの生産性を向上させる余地があった。
【0007】
また、金属製集電極52に分極性電極53,53′を導電性フィルムによる熱融着などによって接着して固定一体化するようにしたものであるから、電極同士が確実かつ強固に固定されないことがあった。このため、このような一体型電極が組み込まれた電気二重層コンデンサは、その内部抵抗値が大きくなることで充放電時の抵抗損失が大きくなり、また、電動自転車や電気自動車などに搭載した場合、機械的振動や衝撃によって一体型電極が剥がれやすいという不具合がある。
【0008】
そこでこの発明は、金属製集電極と分極性電極とを一体化してなる積層型電気二重層コンデンサ用の一体型電極を、従来より少ない工程数にて製造でき、これにより電気二重層コンデンサの生産性の向上を図ることができ、さらに金属製集電極と分極性電極とを確実で強固に密着一体化することができ、これにより電気二重層コンデンサに組み込むことで、内部抵抗値が小さく、機械的振動や衝撃に強い電気二重層コンデンサを得られるようにした、電気二重層コンデンサ用の一体型電極の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記の目的を達成するために、この発明による電気二重層コンデンサ用の一体型電極の製造方法は、積層型の電気二重層コンデンサの正極および負極として用いられ、金属製集電極と分極性電極とを一体化してなる一体型電極を製造するに際し、活性炭に少なくとも結着剤を加えたものを混練して分極性電極形成用の混練物を用意し、金型内に前記混練物を所定量投入して第1の混練物層とし、次いでその上にメッシュ状をなす金属製集電極を載置し、さらにその上に前記混練物を所定量投入して第2の混練物層とし、しかる後、加圧機にて加圧成型を行うことにより、集電極リード部が外部に引き出された状態で金属製集電極を分極性電極の中に埋め込み、金属製集電極と分極性電極とを一体化するようにしたことを特徴とするものである。
【0010】
前記のように構成されるこの発明による製造方法では、加圧機にて加圧成型を一回行うだけで、分極性電極自体の成型と、その分極性電極と金属製集電極との固定一体化とを同時になしえ、従来より製造工程数を減らすことができる。
【0011】
また、金属製集電極として、アルミニウムのネット箔、アルミニウム箔にパンチングメタルのような孔あけ加工を施したアルミパンチング箔、アルミニウム箔にエキスパンド加工を施したアルミエキスパンド箔などのような、金属箔あるいは金属板に多数の小孔が形成されたメッシュ状のものよりなる金属製集電極を用いるようにしている。このため加圧成型を行うことで、メッシュ状の金属製集電極の前記多数の小孔内に分極性電極形成用の混練物が食い込み、金属製集電極と分極性電極とを確実で強固に密着一体化することができる。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照しながら説明する。図1はこの発明方法に係る加圧成型の様子をその説明のために模式的に示す説明図、図2はこの発明方法に用いられるメッシュ状金属製集電極の一例を模式的に示す正面図である。
【0013】
まず、メッシュ状金属製集電極(以下、メッシュ状集電極という)を作製しておく。この例では正極用のメッシュ状集電極11は、図2に示すように、エキスパンド加工が施されて表面がささくれだった例えば厚み50μmのアルミニウム箔を刃付きプレス機により型抜きすることにより、矩形をなす集電極本体と幅が狭く帯状をなすリード部11aとが一体成形されている。このメッシュ状集電極11の寸法は、この例では、集電極本体:幅50mm,長さ100mm、リード部11a:幅15mm,長さ100mmである。なお、後述の負極用のメッシュ状集電極14も前記集電極11と同様にして作製される。
【0014】
次に、分極性電極形成用の混練物を用意する。すなわち、活性炭粉末80重量%、結着剤としてフッ素樹脂系のPTFE10重量%、および電導性改善用のカーボンブラック10重量%に、混練助剤として水あるいはアルコールを加え(例えばアルコールの場合、活性炭粉末1gに対して1.5ccを加える)、ニーダー(kneader )等によりゴム状につながった状態まで混練する。そして、この混練物を温度100℃程度に設定された乾燥器内に収容して前記混練助剤を除去し、しかる後に、塊状のものは成型しやすい大きさである粒度0.5mm以下の大きさに粉砕して、分極性電極形成用混練物を得る。
【0015】
次いで、図1に示すように、所定寸法にて平面視矩形をなす凹部が形成された金型4内に、前記分極性電極形成用混練物を仕上がり時の分極性電極の半分の重量分投入し、厚みがほぼ均一になるようにならして第1の混練物層1とする。次に、この混練物層1上に、そのリード部11aが金型4の凹部の外に引き出された状態で前記メッシュ状集電極11を載置し、さらにその上に、第1の混練物層1と同様にして、分極性電極形成用混練物を仕上がり時の分極性電極の半分の重量分投入し、厚みがほぼ均一になるようにならして第2の混練物層2とする。
【0016】
しかる後、プレス機3にて加圧成型を行うことにより、図3に示すように、リード部11aが外部に引き出された状態でメッシュ状集電極11を分極性電極12の中に埋め込み、この例では厚み1.0mmの分極性電極12とメッシュ状集電極11とを一体化してなる正極用の一体型電極10を作製する。なおプレス機3による加圧条件は、例えば、加圧力:500kgf/cm2 、加圧時間:1minである。
【0017】
このようにして加圧成型を一回行うだけで、分極性電極12自体の成型と、その分極性電極12とメッシュ状集電極11との固定一体化とを同時になしえ、しかもメッシュ状集電極11に形成された多数の小孔内に分極性電極形成用の混練物が食い込み、メッシュ状集電極11と分極性電極12とを確実で強固に密着一体化することができる。なお同様の製造手順にて、図3に示すように、リード部14aが外部に引き出された状態でメッシュ状集電極14を分極性電極15の中に埋め込み、メッシュ状集電極14と分極性電極15とを一体化してなる負極用の一体型電極13が得られる。
【0018】
図4は図3に示す一体型電極が組み込まれた積層型の電気二重層コンデンサの全体構成例をその一部を切り欠いて示す斜視図である。
【0019】
図4に示すように、正極用の一体型電極10と負極用の一体型電極13とを、この例では厚み25μm程度のポリプロピレン繊維不織布よりなるセパレータ16を間に介在させて交互に多数枚積層する。そして、この電極積層体を、締めつけ用の板17を両側の最外部に配してその上に締めつけ用ベルト18を巻き付けることで積層方向に締めつけた状態で、角形外装ケース19に収納する。次いで有機系電解液を含浸させ、ケース上蓋20に固定される正極外部端子21に、正極用の各一体型電極10のメッシュ状集電極11のリード部11aをそれぞれ接続し、同様して負極外部端子22に、負極用の各一体型電極13のメッシュ状集電極14のリード部14aをそれぞれ接続する。しかる後、ケース19の開口部にケース上蓋20を取り付けて密閉する。
【0020】
このように、この発明による一体型電極の製造方法によると、プレス機にて加圧成型を一回行うだけで、分極性電極自体の成型と、その分極性電極とメッシュ状金属製集電極との固定一体化とを同時になしえ、従来より少ない製造工程数にて一体型電極10,13を得ることができ、これにより電気二重層コンデンサの生産性の向上を図ることができる。しかも、金属製集電極として、アルミエキスパンド箔などのような多数の小孔が形成されたメッシュ状のものよりなる金属製集電極11,14を用いるようにしているので、加圧成型を行うことで、メッシュ状金属製集電極に形成された多数の小孔内に分極性電極形成用の混練物が食い込み、金属製集電極と分極性電極とが確実で強固に密着一体化された一体型電極10,13を製造することができる。これにより電気二重層コンデンサに組み込むことで、内部抵抗値が小さく、また、機械的振動や衝撃に強い電気二重層コンデンサを得ることができる。
【0021】
【発明の効果】
以上述べたように、この発明による電気二重層コンデンサ用の一体型電極の製造方法によると、金属製集電極と分極性電極とを一体化してなる一体型電極を、従来より少ない工程数にて製造でき、これにより電気二重層コンデンサの生産性の向上を図ることができ、さらに金属製集電極と分極性電極とが確実で強固に密着一体化された一体型電極を製造することができ、この一体型電極を電気二重層コンデンサに組み込むことにより、内部抵抗値が小さくて大電流を流す大容量に適した、また、機械的振動や衝撃に強くて電動自転車や電気自動車への搭載に適した電気二重層コンデンサを得ることができる。
【図面の簡単な説明】
【図1】この発明方法に係る加圧成型の様子をその説明のために模式的に示す説明図である。
【図2】この発明方法に用いられるメッシュ状金属製集電極の一例を模式的に示す正面図である。
【図3】この発明に係る一体型電極を模式的に示す斜視図である。
【図4】図3に示す一体型電極が組み込まれた積層型の電気二重層コンデンサの全体構成例をその一部を切り欠いて示す斜視図である。
【図5】従来方法で作製された一体型電極である正極を示す斜視図である。
【図6】図5に示す一体型電極が組み込まれた積層型の電気二重層コンデンサの全体構成をその一部を切り欠いて示す斜視図である。
【符号の説明】
1…第1の混練物層 2…第2の混練物層 3…プレス機 4…金型 10…正極用の一体型電極 11…正極用のメッシュ状金属製集電極 11a…リード部 12…分極性電極 13…負極用の一体型電極 14…負極用のメッシュ状集電極 14a…リード部 15…分極性電極 16…セパレータ 19…角形外装ケース 20…ケース上蓋 21…正極外部端子 22…負極外部端子
[0001]
BACKGROUND OF THE INVENTION
The present invention is a component of a large-capacity multilayer electric double layer capacitor having a capacitance of about 1000 to 10,000 F that can be used as a power source for electric bicycles, electric tools, etc., and is used as a positive electrode and a negative electrode, and is a metal collector electrode The present invention relates to a method for producing an integrated electrode for an electric double layer capacitor, in which an integrated electrode formed by integrating a polarizable electrode and a polarizable electrode can be manufactured with a smaller number of processes than in the past.
[0002]
[Prior art]
Conventionally, as a large-capacity electric double layer capacitor that can be used as a power source for temporarily supplying large energy, a positive electrode comprising a positive electrode metal collecting electrode and a positive charge storage polarizable electrode, and a negative electrode metal A negative electrode consisting of a collector electrode and a polarizable electrode for accumulating negative charge is alternately stacked with a separator in between, and charges are accumulated in an electric double layer formed at the interface between the electrolyte and the polarizable electrode. A multilayer electric double layer capacitor that utilizes the above has been proposed. FIG. 5 is a perspective view showing a positive electrode that is an integrated electrode manufactured by a conventional method, and FIG. 6 is a partial cutaway view of the entire configuration of the multilayer electric double layer capacitor incorporating the integrated electrode shown in FIG. It is a perspective view shown missing.
[0003]
As shown in FIG. 5, a flat plate-like positive electrode 50 has a rectangular portion formed by sheeting activated carbon powder on both sides of a rectangular metal collecting electrode 52 having a strip-shaped lead portion 52a formed in a part thereof. The polar electrodes 53 and 53 'are bonded together by heat fusion using a conductive film or the like, and the metal collector electrode 52 and the polarizable electrodes 53 and 53' are integrated as an integrated electrode. Here, each polarizable electrode 53, 53 'kneads activated carbon powder for accumulating electric charge and PTFE (polytetrafluoroethylene) as a binder (binder), and the kneaded product is pressed by a press or a rolling roll. Etc. are used for molding.
[0004]
Each of the polarizable electrodes 53 and 53 'has a thickness of about 0.1 to 2.0 mm, and the metal collector electrode 52 for collecting charges from the polarizable electrodes 53 and 53' has a thickness of about 0.1 to 2.0 mm. It is about 5-300 micrometers, Comprising: It consists of aluminum or stainless steel. The lead portion 52a of the metal collector electrode 52 is for establishing electrical continuity with an external terminal. The negative electrode 51 also has the same structure as the positive electrode 50 and is configured as an integrated electrode.
[0005]
As shown in FIG. 6, the positive electrodes 50 and the negative electrodes 51 are alternately stacked with separators 54 having the same outer dimensions as the polarizable electrodes 53 and 53 ′. The separator 54 is made of a porous material having ion permeability and electrical insulation, and for example, a polypropylene fiber nonwoven fabric is used. Then, as shown in FIG. 6, a large number of lead portions 52 a for positive electrodes are connected to positive electrode external terminals 56 provided on an electrically insulating lid body 58 via lead bodies 55. Similarly, each negative electrode lead portion 52a 'is connected to the negative electrode external terminal 56'. Next, the electrode laminate in which the electrodes 50 and 51 are overlapped is accommodated in the rectangular outer case 57, and then the lid 58 is attached and sealed.
[0006]
[Problems to be solved by the invention]
However, in the conventional method of manufacturing the integrated electrode 50 in which the metal collecting electrode 52 and the polarizable electrodes 53 and 53 ′ are integrated, the polarizable electrodes 53 and 53 ′ are previously formed by a press or roll rolling. And a step of fixing and integrating each of the obtained polarizable electrodes 53 and 53 'to the metal collector electrode 52, and fixing and integration with the metal collector electrode and polarizability. By making it possible to simultaneously mold the electrode itself, there is a room for reducing the number of manufacturing steps, thereby improving the productivity of the electric double layer capacitor.
[0007]
In addition, since the polarizable electrodes 53 and 53 'are bonded to the metal collector electrode 52 by heat fusion using a conductive film and fixed and integrated, the electrodes are not securely and firmly fixed to each other. was there. For this reason, an electric double layer capacitor incorporating such an integrated electrode has a large internal resistance value, resulting in a large resistance loss during charging / discharging, and when mounted on an electric bicycle or electric vehicle. There is a problem that the integrated electrode is easily peeled off by mechanical vibration or impact.
[0008]
Therefore, the present invention can produce an integrated electrode for a multilayer electric double layer capacitor in which a metal collecting electrode and a polarizable electrode are integrated with a smaller number of processes than before, thereby producing an electric double layer capacitor. In addition, the metal collector electrode and the polarizable electrode can be firmly and tightly integrated with each other. By incorporating this into an electric double layer capacitor, the internal resistance value is small, An object of the present invention is to provide a method for manufacturing an integrated electrode for an electric double layer capacitor, which can obtain an electric double layer capacitor that is resistant to mechanical vibration and impact.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing an integrated electrode for an electric double layer capacitor according to the present invention is used as a positive electrode and a negative electrode of a multilayer electric double layer capacitor, and a metal collector electrode, a polarizable electrode, When producing an integrated electrode made by integrating a mixture of activated carbon and at least a binder, kneaded material for forming a polarizable electrode is prepared, and a predetermined amount of the kneaded material is put into a mold. Then, a metal collecting electrode having a mesh shape is placed thereon, and a predetermined amount of the kneaded material is placed thereon to form a second kneaded material layer. The metal collector electrode is embedded in the polarizable electrode in a state where the collector electrode lead portion is pulled out by performing pressure molding with a pressurizer, and the metal collector electrode and the polarizable electrode are integrated. It is characterized by the fact that
[0010]
In the manufacturing method according to the present invention configured as described above, the polarizable electrode itself is molded and the polarizable electrode and the metal collector electrode are fixed and integrated only by performing pressure molding once with a pressurizer. The number of manufacturing processes can be reduced as compared with the conventional method.
[0011]
In addition, as a metal collector electrode, an aluminum net foil, an aluminum punched foil obtained by punching an aluminum foil such as a punching metal, an aluminum expanded foil obtained by subjecting an aluminum foil to an expanded process, a metal foil or A metal collector electrode made of a mesh-like material in which a large number of small holes are formed in a metal plate is used. For this reason, by performing pressure molding, the kneaded material for forming the polarizable electrode bites into the numerous small holes of the mesh-shaped metal collector electrode, and the metal collector electrode and the polarizable electrode are surely and firmly secured. It can be tightly integrated.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing, for explanation, the state of pressure molding according to the method of the present invention, and FIG. 2 is a front view schematically showing an example of a mesh-shaped metal collecting electrode used in the method of the present invention. It is.
[0013]
First, a mesh-shaped metal collector electrode (hereinafter referred to as a mesh collector electrode) is prepared. In this example, as shown in FIG. 2, the mesh-shaped collector electrode 11 for the positive electrode is rectangular by punching out an aluminum foil having a thickness of 50 μm, for example, which has been subjected to an expanding process, with a bladed press. And a lead portion 11a having a narrow width and a band shape are integrally formed. In this example, the mesh-shaped collector electrode 11 has a collector electrode body: 50 mm wide and 100 mm long, and a lead portion 11a: 15 mm wide and 100 mm long. A negative electrode mesh collector 14 described later is also produced in the same manner as the collector electrode 11.
[0014]
Next, a kneaded material for forming a polarizable electrode is prepared. That is, 80% by weight of activated carbon powder, 10% by weight of fluororesin PTFE as a binder, and 10% by weight of carbon black for improving electrical conductivity, water or alcohol as a kneading aid (for example, in the case of alcohol, activated carbon powder Kneader), kneader and the like are kneaded to a rubbery state. Then, the kneaded product is accommodated in a dryer set at a temperature of about 100 ° C. and the kneading aid is removed. After that, the lump is easy to mold and has a particle size of 0.5 mm or less. The mixture is then pulverized to obtain a kneaded product for forming a polarizable electrode.
[0015]
Next, as shown in FIG. 1, the polarizable electrode-forming kneaded material is put in a mold 4 having a predetermined dimension and having a rectangular shape in plan view, and is half the weight of the polarizable electrode when finished. Then, the first kneaded material layer 1 is made to have a substantially uniform thickness. Next, the mesh-shaped collector electrode 11 is placed on the kneaded material layer 1 in a state in which the lead portion 11a is drawn out of the concave portion of the mold 4, and the first kneaded material is further formed thereon. In the same manner as for layer 1, the kneaded material for forming a polarizable electrode is charged in half the weight of the polarizable electrode at the time of finishing, and the thickness is made substantially uniform to form the second kneaded material layer 2.
[0016]
After that, by performing pressure molding with the press machine 3, as shown in FIG. 3, the mesh-shaped collector electrode 11 is embedded in the polarizable electrode 12 with the lead portion 11a being drawn to the outside. In the example, an integrated electrode 10 for a positive electrode formed by integrating a polarizable electrode 12 having a thickness of 1.0 mm and a mesh-like collector electrode 11 is manufactured. The pressurizing condition by the press machine 3 is, for example, pressurizing force: 500 kgf / cm 2 and pressurizing time: 1 min.
[0017]
In this way, the molding of the polarizable electrode 12 itself and the fixing and integration of the polarizable electrode 12 and the mesh-shaped collector electrode 11 can be performed simultaneously by performing pressure molding only once. The kneaded material for forming the polarizable electrode bites into a large number of small holes formed in the electrode 11, so that the mesh-like collector electrode 11 and the polarizable electrode 12 can be firmly and firmly integrated. In the same manufacturing procedure, as shown in FIG. 3, the mesh-like collector electrode 14 is embedded in the polarizable electrode 15 with the lead portion 14a being pulled out, and the mesh-like collector electrode 14 and the polarizable electrode are then embedded. As a result, an integrated electrode 13 for the negative electrode formed by integrating 15 is obtained.
[0018]
FIG. 4 is a perspective view showing an example of the overall configuration of the multilayer electric double layer capacitor in which the integrated electrode shown in FIG. 3 is incorporated.
[0019]
As shown in FIG. 4, the positive electrode integrated electrode 10 and the negative electrode integrated electrode 13 are alternately laminated in this example with separators 16 made of polypropylene fiber nonwoven fabric having a thickness of about 25 μm interposed therebetween. To do. And this electrode laminated body is accommodated in the rectangular outer case 19 in a state where the fastening plates 17 are arranged on the outermost sides on both sides and the fastening belt 18 is wound on the plates 17 and fastened in the stacking direction. Next, the lead portion 11a of the meshed collecting electrode 11 of each of the integrated electrodes 10 for the positive electrode is connected to the positive electrode external terminal 21 which is impregnated with the organic electrolytic solution and fixed to the case upper lid 20, and similarly the negative electrode external The lead 22a of the mesh collector 14 of each integrated electrode 13 for the negative electrode is connected to the terminal 22, respectively. Thereafter, the case upper lid 20 is attached to the opening of the case 19 and sealed.
[0020]
As described above, according to the method for manufacturing an integrated electrode according to the present invention, only by performing pressure molding once with a press machine, the polarizable electrode itself is molded, and the polarizable electrode and the mesh-shaped metal collector electrode The integrated electrodes 10 and 13 can be obtained with a smaller number of manufacturing steps than in the past, thereby improving the productivity of the electric double layer capacitor. Moreover, the metal collector electrodes 11 and 14 made of a mesh-like material having a large number of small holes, such as aluminum expanded foil, are used as the metal collector electrodes. Thus, the kneaded material for forming the polarizable electrode bites into a large number of small holes formed in the mesh-shaped metal collector electrode, and the metal collector electrode and the polarizable electrode are integrated firmly and firmly. Electrodes 10 and 13 can be manufactured. As a result, by incorporating it into an electric double layer capacitor, it is possible to obtain an electric double layer capacitor that has a small internal resistance and is resistant to mechanical vibration and impact.
[0021]
【The invention's effect】
As described above, according to the method of manufacturing an integrated electrode for an electric double layer capacitor according to the present invention, an integrated electrode formed by integrating a metal collecting electrode and a polarizable electrode can be formed with a smaller number of processes than in the past. It can be manufactured, thereby improving the productivity of the electric double layer capacitor, and further, it is possible to manufacture an integrated electrode in which the metal collector electrode and the polarizable electrode are firmly and firmly integrated. By incorporating this integrated electrode into an electric double layer capacitor, the internal resistance is small and suitable for large capacity to carry a large current. Also, it is resistant to mechanical vibration and shock and suitable for mounting on electric bicycles and electric vehicles. An electric double layer capacitor can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a state of pressure molding according to the method of the present invention for explanation.
FIG. 2 is a front view schematically showing an example of a mesh-shaped metal collector electrode used in the method of the present invention.
FIG. 3 is a perspective view schematically showing an integrated electrode according to the present invention.
4 is a perspective view showing an example of the overall configuration of a multilayer electric double layer capacitor in which the integrated electrode shown in FIG. 3 is incorporated, with a part thereof cut away.
FIG. 5 is a perspective view showing a positive electrode that is an integrated electrode manufactured by a conventional method.
6 is a perspective view showing the overall structure of the multilayer electric double layer capacitor in which the integrated electrode shown in FIG. 5 is incorporated, with a part thereof cut away. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st kneaded material layer 2 ... 2nd kneaded material layer 3 ... Press 4 ... Metal mold | dies 10 ... Integrated electrode for positive electrodes 11 ... Mesh-shaped metal collector electrode for positive electrodes 11a ... Lead part 12 ... Minutes Polar electrode 13 ... Integral electrode for negative electrode 14 ... Mesh-shaped collector electrode 14a for negative electrode 14a ... Lead part 15 ... Polarizable electrode 16 ... Separator 19 ... Square outer case 20 ... Cover lid 21 ... Positive external terminal 22 ... Negative external terminal

Claims (3)

積層型の電気二重層コンデンサの正極および負極として用いられ、金属製集電極と分極性電極とを一体化してなる一体型電極を製造するに際し、
活性炭に少なくとも結着剤を加えたものを混練して分極性電極形成用の混練物を用意し、平面視矩形をなす凹部が形成された金型内に前記混練物を所定量投入して第1の混練物層とし、次いでその上に金属製集電極を、その周囲と金型側壁との間に隙間ができるように載置し、さらにその上に前記混練物を所定量投入して第2の混練物層とし、しかる後、加圧機にて該第1の混練物層と第2の混練物層とが該隙間で接触して一体となるまで加圧成型を行うことにより、集電極リード部が外部に引き出された状態で該集電極リード部以外の金属製集電極をその端部まで分極性電極の中に埋め込み、金属製集電極と分極性電極とを一体化するようにしたことを特徴とする電気二重層コンデンサ用の一体型電極(その後切断されるものを除く)の製造方法。
When manufacturing an integrated electrode that is used as a positive electrode and a negative electrode of a multilayer electric double layer capacitor and is formed by integrating a metal collector electrode and a polarizable electrode,
A kneaded material for forming a polarizable electrode is prepared by kneading at least a binder with activated carbon, and a predetermined amount of the kneaded material is charged into a mold having a concave portion having a rectangular shape in plan view . Then, a metal collector electrode is placed thereon so that there is a gap between the periphery and the mold side wall, and a predetermined amount of the kneaded material is put on the metal collector electrode. 2 and then press forming until the first kneaded material layer and the second kneaded material layer come into contact with each other in the gap and are integrated with each other by a pressurizer. With the lead part pulled out to the outside, a metal collector electrode other than the collector electrode lead part is embedded in the polarizable electrode up to its end so that the metal collector electrode and the polarizable electrode are integrated. manufactured integral electrode for an electric double layer capacitor, wherein (except those subsequently cut) that Method.
活性炭に少なくとも結着剤を加えたものを混練して分極性電極形成用の混練物を用意し、平面視矩形をなす凹部が形成された金型内に前記混練物を所定量投入して第1の混練物層とし、次いでその上に金属製集電極を、その周囲と金型側壁との間に隙間ができるように載置し、さらにその上に前記混練物を所定量投入して第2の混練物層とし、しかる後、加圧機にて該第1の混練物層と第2の混練物層とが該隙間で接触して一体となるまで加圧成型を行うことにより、集電極リード部が外部に引き出された状態で金属製集電極を分極性電極の中に埋め込み、金属製集電極と分極性電極とを一体化するようにした一体型電極(その後切断されるものを除く)を得る工程;及び
該一体型電極を、セパレータを間に介在させて交互に複数枚積層し、締め付け用の板を両側の最外部に配してその上に締め付け用ベルトを巻き付けることで積層方向に締め付けて、電極積層体を得る工程;
を包含する、電気二重層コンデンサ用の電極積層体の製造方法。
A kneaded material for forming a polarizable electrode is prepared by kneading at least a binder with activated carbon, and a predetermined amount of the kneaded material is charged into a mold having a concave portion having a rectangular shape in plan view . Then, a metal collector electrode is placed thereon so that there is a gap between the periphery and the mold side wall, and a predetermined amount of the kneaded material is put on the metal collector electrode. 2 and then press forming until the first kneaded material layer and the second kneaded material layer come into contact with each other in the gap and are integrated with each other by a pressurizer. An integrated electrode in which the metal collector electrode is embedded in the polarizable electrode with the lead portion pulled out, and the metal collector electrode and polarizable electrode are integrated (except for those that are subsequently cut) And a plurality of the integrated electrodes are alternately stacked with a separator interposed therebetween, A step of obtaining an electrode laminate by arranging fastening plates on the outermost sides of both sides and winding a fastening belt on the fastening plates in the laminating direction;
A method for producing an electrode laminate for an electric double layer capacitor, comprising:
前記金属製集電極がメッシュ状をなす金属製集電極である請求項1又は2記載の方法。The method according to claim 1 or 2, wherein the metal collector electrode is a mesh metal collector electrode.
JP11645096A 1996-05-10 1996-05-10 Manufacturing method of integrated electrode for electric double layer capacitor Expired - Fee Related JP3835851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11645096A JP3835851B2 (en) 1996-05-10 1996-05-10 Manufacturing method of integrated electrode for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11645096A JP3835851B2 (en) 1996-05-10 1996-05-10 Manufacturing method of integrated electrode for electric double layer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006095030A Division JP3836123B2 (en) 2006-03-30 2006-03-30 Electrode laminate for multilayer electric double layer capacitors

Publications (2)

Publication Number Publication Date
JPH09306798A JPH09306798A (en) 1997-11-28
JP3835851B2 true JP3835851B2 (en) 2006-10-18

Family

ID=14687426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11645096A Expired - Fee Related JP3835851B2 (en) 1996-05-10 1996-05-10 Manufacturing method of integrated electrode for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3835851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518625B2 (en) * 2000-05-30 2010-08-04 京セラ株式会社 Electric double layer capacitor
CN1816886A (en) * 2003-06-30 2006-08-09 日本瑞翁株式会社 Method for producing electrode for electric double layer capacitor
JP2008270349A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Electrode for electric double-layer capacitor and method for manufacturing same

Also Published As

Publication number Publication date
JPH09306798A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
KR100770554B1 (en) Electrochemical device
US7481853B2 (en) Method for producing non-aqueous electrolyte secondary battery
TWI466365B (en) An insulating layer with heat-resistant insulation
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
JP2011142007A (en) Method of producing solid electrolyte-electrode assembly
JP3953327B2 (en) Batteries and electric double layer capacitors
KR101517062B1 (en) Process for Preparation of Secondary Battery
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
TWI287240B (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP3729112B2 (en) Solid electrolyte battery
JP3632586B2 (en) Battery and manufacturing method thereof
JP3835851B2 (en) Manufacturing method of integrated electrode for electric double layer capacitor
JP7359023B2 (en) Energy storage module
JPH10125348A (en) Battery
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
JP3836123B2 (en) Electrode laminate for multilayer electric double layer capacitors
JP3829080B2 (en) Method for manufacturing prismatic battery and electrode group thereof
JP5402853B2 (en) Method for producing power generation element of solid battery
JP2000285896A (en) Electrode structure for battery and capacitor and manufacture thereof
CN106537650A (en) Method for producing a prismatic battery cell
JP2020024827A (en) Bipolar battery and manufacturing method of bipolar battery
JP2020024828A (en) Bipolar battery and manufacturing method of bipolar battery
JPH097893A (en) Electric double-layer capacitor and manufacture thereof
JP2020161256A (en) Method for manufacturing nickel zinc battery
JPS6168868A (en) Sheet-shaped battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees